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Abstract: -This paper focusses on the use of homomorphic encryption schemes in solving data security in cloud 

computation. We started by acknowledging Gentry’s contribution on partial homomorphic encryption schemes 

where he constructed a somewhat homomorphic encryption based on ideal lattices using both additive and 

multiplicative Homomorphisms. We also noted improvement made on his construction by Dijkwherehe used 

integers instead of ideal lattices. Again we appreciated efforts by Braskerski based on Learning with Errors 

(LWE) and Ring Learning with Errors (Ring LWE) problems. Besides all these efforts, the schemes still had 

strain on the computing storage and processing resources. We discovered that there is need to constructan 

encryption scheme which lessens the computational strain on the computing assets. Here, we found remedy in 

the use of both addition and composition operations to implement a fully homomorphic encryption scheme. A 

mathematical theory was translated into an algorithm implementable JAVA. We testediton a single hardware 

with minimum specifications: 1.5GHz, 4GB RAM and Windows 10 OS. The results showed that the new 

scheme supports faster encryption process, larger ciphertext sizes and is versatile. This new addition-

composition fully homomorphic scheme enhances data security in cloud computation thus boosts consumer 

confidence in the cloud services and applications. 
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I. INTRODUCTION 
1.1 Cloud Computing Definition 

Cloud Computing has become the emergent technological term common with computing data storage 

and offsite computing resource management. A recent study on its definition reviewed twenty-two (22) different 

definitions that saw many of them overlapping in meaning [1]. However, its definition by the United States 

National Institute of Standards and Technology (US-NIST) has been viewed as more refined since it captures its 

practical meaning [2].  

In order to arrive at a more functional understanding of Cloud Computing, there is need to understand 

the concept of the term CLOUD. Weinmann [3] derived five logical tautology and concludes that a cloud 

structure is a six-tuple (space, time, directed graph, set of states, transition function, and initial state) that 

satisfies the five axioms namely; Common, Location-independent, Online, Utility, and on-Demand 

(C.L.O.U.D).  

The definitions of the five axioms were captured as follows; 

 Common: It is common if and only if there are at least two nonzero flows that are commonly sourced. 

 Location-independent: It is location-independent if there still exists some feasible allocation at any other 

possible locations given that at least one feasible allocation at time t given a particular configuration of 

locations. 

 Online: It is online when there still exists a path between any two vertices on a network graph without 

emphasizing on the direction of each edge. 

 Utility: It is utility since its pricing is proportional to quantity. 

 On-Demand: it is on-Demand if and only if it is completely feasible. 
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1.2 Cloud Computing Architecture 

From the definition of cloud computing [4], cloud computing is delivered by server-based applications 

accessible via the Internet. There are five evident qualities synonymous with cloud computing, namely, on 

demand self-service, broad network access, resource pooling, rapid elastic or expansion, and measured services.  

 
Fig.1 Cloud computing architecture 

 
The architecture is designed in such a way that it has the front-end which is the visible interface that 

cloud users encounter through web-enabled client devices, and the back-end which comprises resources required 

to deliver cloud computing services. The back-end comprises of the bare metal servers, data storage 

compartments, virtual machines, implemented security mechanism, and cloud service(s) with conformity with a 

particular deployment model. It is the primary responsibility of the back-end to integrate built-in security 

mechanisms, traffic management control, and protocols. In the bare metal has the operating system referred to as 

hypervisor which makes use of well-defined protocols enabling efficient concurrent access onto the virtual 

machines.  

The cloud computing architecture is functionalized in such a way that all applications are controlled 

and served by a central cloud server with replicated data remotely in the cloud configuration to create limitless 

efficiency and possibilities. The figure below shows a diagrammatic summary of cloud computing architecture. 

 

 
Fig.2 Cloud Computing Structure 

 

Building on the five qualities of cloud computing mentioned above, the type of cloud computing can be 

categorized based on two models: cloud computing Service Delivery Models and Cloud Computing Deployment 

Models[5]. 

1.3 Cloud Service Delivery Models 

The delivery of services within the cloud environment can be implemented through the following service 

delivery models; 
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1.3.1 Software as a Service (SaaS) 

This is a service delivery model where applications are available to the cloud users over the network. 

The cloud providers takes the responsibility of hosting these applications used by the consumers under software 

distribution model. This model is characterized by application delivery from 1:M model, that is, single-instance, 

multitenant architecture as opposed to traditional 1:1 model, and also associated with pay-as-you-go 

subscription licensing model. The distinguishing bit of SaaS from other service delivery model is that it was 

designed to work with web browsers. 

The main advantages with this model includes automated updates and patch management services, data 

compatibility across the enterprise and global accessibility of software of interest by the cloud users. 

 

1.3.2 Platform as a Service (PaaS) 

This is service delivery model where all facilities required to support the complete life cycle of 

building and delivery of web applications and services entirely available on the Internet. It is an outgrowth of 

SaaS model but concerns with web-based development unlike with SaaS where specific operating systems 

instance is favoured. The advantages with this service delivery model is that it allows users to focus on 

innovation and not the complex infrastructure as it provides all the infrastructure needed. 

 

1.3.3 Infrastructure as a Service (IaaS) 

This is service delivery model where cloud service providers manage the transition and hosting of 

selected applications on their infrastructure. In this model, the computing services are provided on a virtualized 

environment with cloud users maintaining ownership and management of the applications while hosting 

operations and infrastructure management are off-loaded to the cloud provider. The benefits that comes with this 

service delivery model includes availability of resources on demand from any location 24x7when required by 

the cloud users. The physical security of cloud users’ data and any chance of system failure is smoothly handled 

by the cloud provider. 

 

1.3.4 Communication as a Service (CaaS) 

This is service delivery model where communication is outsourced and the provider is responsible for 

management of VOIP services, IM services, video conferencing et cetera consumed by their user base. This 

model allows a CaaS provider’s business customer to selectively deploy communication feature and services 

throughout their company on a pay-as-you-go basis on the services used.  

The advantages that comes with this model is that every component of this solution comes with 24/7 

management by CaaS provider with no capital expenses needed. The customers has the benefit of multiple 

carrier-grade data centers with full redundancy built on to the system with minimized point of failure. 

 

1.3.5 Monitoring as a Service (MaaS) 

This is service delivery model the provision of security is outsourced especially on business platforms 

depends on the Internet to conduct business. This kind of protection benefits enterprise or single client assets 

from cyber threats since there is constant vigilance over security of infrastructure and critical organizational 

assets. The advantage that comes with this model is the early detection and protection against internal and 

external threats since the platform is under constant control and monitoring. 

 

1.3.6 Network as a Service (NaaS) 

This is a service delivery model where the provision of a virtual network service is by the owners of the 

network infrastructure to the third party. It is sometimes referred to as Telco As A Service (TaaS) since it 

involves optimization of resources allocation by considering network and computing resources over a 

connectivity. It is the business model that guarantees delivery of network infrastructure in a data center virtually 

over the Internet. The advantages of this service delivery model is the on-demand network resource usage as the 

network is maintained by the cloud provider and the ability to deliver network capabilities and services without 

the requirements of configuring individual devices. 

 

1.4Cloud Deployment Models 

Due to the principle of outsourcing computing resources through cloud computing, their deployment can be 

viewed under the following models. 

1.4.1 Private Cloud 

This is type of cloud infrastructure that is provisioned exclusive use by a single organization with multi-tenants 

resource access. It may be owned, managed and operated by the organization, a third party or some combination 

of them.  
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1.4.2 Public Cloud 

This is type of cloud infrastructure that is provisioned for open use of resources dynamically by the general 

public. It may be owned, managed and operated by one or more organizations who sells the cloud services. 

1.4.3 Community Cloud 

This is type of cloud infrastructure that is provisioned for exclusive use by a specific community of clients from 

organizations that share common interests like mission, security requirements, policy or compliance 

considerations. It is owned, managed and operated by one or more organization in a community. 

1.4.4 Hybrid Cloud 

This is type of cloud infrastructure composed of two or more distinct cloud infrastructures 

characteristics (private, public or community) that remain unique entities, but are bounded together by 

standardized or proprietary technology that enables data and application portability. It is owned, managed and 

operated by both cloud infrastructures incorporated. 

 

1.4.5 Virtual Private Cloud 

This is a type of cloud infrastructure allocated within a public cloud environment provisioned for a 

certain level of isolation between the different organizations sharing the cloud resources. It is viewed as a hybrid 

model of cloud infrastructure in which a private cloud solution is provided within a public cloud infrastructure. 

Its ownership, management and operations is assumed by the public cloud infrastructure. 

 

1.5Cloud Computing Security 

In consideration of cloud architecture, its security components and services must be transparent and 

generic: transparent since there is need to be applied automatically without much human intervention, and 

generic to ensure adjustability on the part of clients, requirements, applications and required services. A 

functional cloud computing security architecture is composed of Security Access Points that provides front-end 

security services, Security infrastructure servers that manage all cloud stored data registered in the cloud, and 

secure client for cloud standard clients stations extended with some security components. 

 

 
Fig.3 Cloud Computing Security Infrastructure 

 
The multi-tenancy model and the pooled computing resources has introduced new security challenges 

such as shared resources on the same physical machines inviting unexpected side channels between machine 

resources and a regular resource [6]. Security being an important component of cloud computing deployment, 

there is need to address it to enable cloud consumers enjoy its benefits uninterrupted [7].  

Research has pointed out that the most important security issue in cloud computing is data security. 

The problem is that the cloud service being a web application, it contains data remembrance or persistence 

remains an issue due to the replication and distribution of data even after user has left a cloud provider. This can 

be corrected by use of homomorphic encryption schemes to protect data on cloud [8].  

 

1.6 Homomorphic Encryption Schemes and Cloud Data Security 

The term homomorphism is borrowed from algebra meaning a structure-preserving map between two 

algebraic structures of the same type. The concept of homomorphism has been employed in explaining 

homomorphic, which means in literal sense same effect for different expression.  

Encryption is one secure way of ensuring that cloud data is shielded from confidentiality abuse. The 

fact that cloud user has off-loaded his data onto the cloud environment despite uncertainty and hostility that 

comes with it, makes encryption a better candidate in security enhancement. A better proposal to ensure that 
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confidentiality of data is maintained while it is offloaded in the cloud environment is to find a way in which any 

operation on the said data can be effected without a third party being privy to its contents.  

Homomorphic encryption enables computation to be performed on the encrypted data without 

requiring the secret key. This makes it a better approach to enhance security of sensitive data stored and 

manipulated on untrusted storage systems [9]. Therefore an efficient and fully homomorphic cryptosystem have 

great practical benefits to outsourcing private computations.  

The concept of homomorphic encryption was introduced in 1978 by Rivest, Adleman and Dertouzous 

after the development of RSA algorithm [10], where they highlighted four possible encryption functions which 

include RSA as additive and multiplicative privacy homomorphism.  

Since then, many encryption schemes have been developed but they were either using addition or 

multiplication homomorphic computations [11]. According to [12], an encryption scheme was developed that 

perform unlimited number of addition operations but single multiplication.  

The realization of fully homomorphic encryption scheme appeared elusive for more than thirty years 

until in 2009 when Craig Gentry from IBM implemented the first version that could perform many additions and 

multiplications using ideal lattices and bootstrapping technique [13].  

Even though Gentry’s scheme was able to demonstrate the possibility of fully homomorphic encryption 

scheme, there was still need to improve on its complexity, efficiency and performance. For instance, he 

estimated that building a circuit to execute an encrypted Google search with encrypted keywords would multiply 

the current computing time by one trillion [11]. 

 

1.6.1 Gentry Fully Homomorphic Encryption Scheme 

Gentry’s scheme [13] based his construction on somewhat homomorphic encryption scheme, that is, it 

supported both addition and multiplication operations on ciphertexts. His idea was based on ideal lattices to 

provide additive and multiplicative homomorphism. His construction started from a somewhat homomorphic 

encryption scheme limited to evaluating low-degree polynomials over encrypted data. He then proceeded to 

show how to slightly modify the scheme to make it bootstrappable. Then finally, he proved that any 

bootstrappable somewhat encryption scheme can be converted to a fully homomorphic encryption scheme 

through a recursive self-embedding.  

The bootstrapping technique “refreshes” the ciphertext to reduce noise factor responsible for making 

the ciphertext indecipherable, which was increasing with every increase in addition and multiplication of 

ciphertexts. With the introduction of periodical refreshing by the Boolean circuit whenever the noise increases, 

computation of arbitrary number of additions and multiplications was made possible, qualifying the scheme to 

be fully homomorphic.  

He based the security of his scheme on assumed hardness of two problems: 

 Certain worst-case problems over ideal lattices, and 

 The sparse subset sum problem. 

In general scenario, homomorphic encryption schemes are described by the following functions: 

 KeyGen (λ): this is responsible for generating encryption keys where it takes the security parameter λ as an 

input, and generates the secret key sk and the public key pk. 

 Enc (pk, m): this is responsible for encrypting the plaintext m with the public key pk and create ciphertext 

c. 

 Dec (sk, c): this is responsible for decrypting the ciphertext c using the secret key sk to retrieve the 

plaintext m. 

In Gentry’s construction, he added another new function “Evaluate” as follows: 

 Eval (pk, C, c1, c2, …….,cl): this uses a Boolean circuit C to output a ciphertext c’ of f(m) such that Decrypt 

(sk, m) = f(m). 

There are three main elements evident in Gentry’s scheme [11]: 

 A Somewhat homomorphic encryption scheme that evaluates low degree polynomials 

 A technique to “squash the decryption circuit” to obtain “bootstrappable” scheme, and 

 A method of transferring “bootstrapping” the scheme into fully homomorphic scheme. 

 

The goal of his scheme was to get a scheme that can evaluate high degree polynomials while the 

decryption procedure can still be expressed as low degree polynomial. Provided the scheme could evaluate its 

own decryption function plus an additional operation then it is called “bootstrappable” scheme and can be 

converted into a fully homomorphic scheme. 

 

1.6.2 Fully Homomorphic Encryption Scheme over Integers 

In June 2010, a new scheme was proposed based on the hardness of the approximate integer greatest 

common divisors (approximate GCD) problem [14]. It borrowed heavily from Gentry’s construction though 
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didn’t use ideal lattices. They considered a simpler mathematical approach where they replaced the Gentry’s 

somewhat homomorphic scheme that uses ideal lattices with a simpler somewhat homomorphic scheme that 

uses integer over polynomial ring.  

The main goal of this scheme was to reduce the complexity of Gentry’s scheme. This scheme borrowed 

from [15] which supported only additions though can be improved to accept a limited number of multiplications, 

and also from [16] which was not even additively homomorphic. 

In this Dijk’s somewhat homomorphic encryption scheme, it has the following functions: 

 KeyGen (λ): The secret key here is a random -bit integer: p(2Z+1)Ո(2
-1

, 2

). Where Z is a real number 

and  is a bit-length of the secret key,  is the bit-length of the integers in public key,  is the bit-length of 

the noise and  is the number of integers in public-key. For the public key sample a random number xi from 

the distribution D,(p) for 0i subject to the condition that the largest xi is odd. The public key 

pk=<x0,x1,……x>. 

 Enc (pk, m):This encrypts the plaintext message m{1,2,…….,} and a random integer r in (-2

, 2


) the 

output ciphertext c is calculated as c[m+2r+2iSXi]x0. 

 Eval (pk, C, c1, c2,……,cl):The evaluate function work as per Gentry’s scheme, however all operations are 

performed over integers. 

 Dec (sk, c):The outputs m’ is calculated as m’(c mod p) mod2. 

The greatest challenge with this scheme is that it can only be fully homomorphic scheme if the noise stays 

sufficiently smaller than the secret key p, meaning if the noise grows bigger then the original plaintext cannot be 

revealed well.  

 

1.6.3 Fully Homomorphic Encryption without Bootstrapping 

This proposed scheme was based on Learning with Errors (LWE) and Ring Learning with Errors (Ring 

LWE) problems [17]. The bootstrapping technique was not employed here since there was need of having to 

“squash the decryption circuit” in order to realize a fully homomorphic encryption scheme.  

The Braskerski’s somewhat homomorphic algorithms consists of the following functions: 

 KeyGen (l
λ
): Sample sk:=sRq to be polynomial with small coefficients chosen from the error distribution 

. 

 Enc (sk, , R2): Sample aRq at random, and a polynomial e with small coefficient from error distribution 

. The output ciphertext c is calculated as c:=(a,as+2e+). 

 Dec (sk, c=(a,b)): Sample bRq, at random, :=b-as over Rq. The output :=’(mod2). 

 

Unlike in the earlier Fully Homomorphic Encryption schemes, the breakthrough in this scheme is the use of 

modulus switching in the management of noise so that it increases linearly with the multiplicative level instead 

of exponentially in precious cases. This allowed the scheme to increase the number of homomorphic operations 

without squashing or bootstrapping. 

1.7 Analysis of the Fully Homomorphic Schemes 

The fully homomorphic encryption schemes are compared based on three parameters, namely, security, 

efficiency and complexity factors. 

1.7.1 Gentry’s Fully Homomorphic Encryption Scheme 

Complexity: This scheme is based on somewhat homomorphic encryption scheme with assumed hardness 

of certain worst-case problems over ideal lattices, and the sparse subset sum problem.  

Performance: The ciphertext size and computation time increases with increase in security level making the 

scheme impractical [18].  

Security: The security of this scheme is based on assumed hardness of certain worst-case problems over ideal 

lattices, and the sparse subset sum problem [19]. 

1.7.2 Fully Homomorphic Encryption over Integers Scheme 

Complexity:  This scheme was motivated by the need to reduce the complexity of Gentry’s scheme. It 

significantly proved that different mathematical approaches and theories can be applied to construct a fully 

homomorphic encryption scheme using Gentry’s blueprint. 

Performance:  The noise factor increases here with addition and multiplication operations performed, that is, 

it doubles with addition and squares with multiplication. For instance, in order to improve the security of the 

scheme, the ciphertext was selected to have a large value n
6
, which increases with multiplication hence impact 

negatively on the efficiency. 

Security:  The security of this scheme is based on the hardness of the approximate-gcd problem. With 

appropriate selection of parameters the scheme has proved to resist different types of attacks to recover the 

secret key including brute-force attack with at least 2λ time. It has also been proved that the scheme can be 

attacked to recover the plaintext from ciphertext using lattice reduction algorithm [20]. 
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1.7.3 Fully Homomorphic Encryption without Bootstrapping Scheme 

Complexity: In comparison with Dijk’s scheme, Brakerski’s scheme uses more complex mathematical 

algorithms and notations as a result of Ring Learning With Errors instead of working with integers. Compared 

to Gentry’s scheme, removal of bootstrapping technique has simplified the decryption functions and 

calculations. 

Performance: This scheme made milestone in noise management technique under three considerations. First 

the technique controlled the noise level by constraining it to increasing linearly with multiplication instead of 

exponentially. Secondly it had allowed the L-level arithmetic circuit to be evaluated with Ō(λ.L
3
) per-gate 

computation or instead of Ω’(λ
4
) which is large polynomial in the security parameter. Thirdly the removal of 

bootstrapping technique resulted on real cost reduction as the cost of bootstrapping in only Ɵ(λ) time was 

Ω’(λ
4
), hence allowing evaluation of deeper circuits at a lower cost. 

Security: The security of this scheme is based on the hardness of lattice problems with quasi-polynomial 

approximation factors. The security level has not improved from original Fully Homomorphic Encryption 

Scheme as it remains 2λ time against known lattice attacks. 

 

II. METHODOLOGY 
In order to design the Addition-Composition fully homomorphic scheme, there is need to define and prove 

mathematical concept around it. It is the developed mathematical concept that was used to generate an 

algorithm, which was later tested. We started by deriving mathematical theory to support the new scheme. 

 

2.1 Mathematical Background 

Let R = Z[x]/ )(x where )(x is irreducible over Q[x] but factor modulo t. If  splits exactly into r distinct 

irreducible factors of degree g = n/r = rd /)( i.e. )(x 


r

j

j xj
1

)( . 

then by Chinese Remainder Theorem, the following R t  Z t [x]/ (f 1 (x) …… Z t [x]/f
r
(x)) is a natural 

isomorphism which is obtained. 

In particular this helps to add and multiply in parallel. In our new technique we obtain the addition-composition 

via tensor products. 

 

Definition 2.1 

Let f(x) and g(x) be two polynomials such that f(x):AB and g(x):BC where A, B, C are arbitrary rings. 

Then the composition of f(x) and g(x) is well defined and given by: 

g(x)  f(x) = (g  f)(x) = g(f(x))   x A. 

Example  

Let f(x) = 3x+1 and g(x) =x-2. Clearly, (g  f)(x) = 3x-1. 

Definition 2.2 

Consider two ciphers  and .  

We define addition-composition homomorphic encryption by: 

)(   = )()(   where  is a composite function and  is an additive function. 

Lemma 2.3 

Generally, 

 



m

i

ii

1

)(:)(   
m  

Proof 

Definition is well posed and defined. To see this consider  and  and z
 where z=Z. 

So    =  
2

1 mod nyx    

   =   mod2

yk  2n  

    =  
kyx  1 mod2 n

2
 

  =        mod)( 21

ykx  
n

2
 

So  21  …………..  m = 
).........( 21 mxxx   ( mod)...........( 21

y

m mn and this completes proof. 

The addition-multiplication homomorphic encryption is to the advantage of being usable in real time. The 

composite function element comes in handy since the result of the composite function f(x) is encrypted and 
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malicious hosts cannot know the results of the function. For instance in the mobile phone technology, the owner 

of the function gets the encrypted result through the function g(x). For instance Richard is the owner of function 

h(x) he wants to calculate the input c of Bernard but he doesn’t want to expose himself as the owner of the 

function. So he chooses g(x) and creates f(x) then sends it to Bernard. Bernard hence calculates the result 

through f(x) using his input x and sends the result to Richard. Bernard cannot calculate h(x) because what he can 

see is just f(x). Only Richard can get the real result of h(x) through adding f(x) into inverse function i.e. h(x) = g
1

(f(x)). For this reason, we develop some theoretic results based on the addition-composition homomorphic 

encryption[21]. 

 

III. SCHEME TESTING AND RESULTS 
To run the program run 

> javac acfhes.java 

> java acfhes 10 20 

 

The above runs the program specifying values of 10 and 20 for m1 and m2 a brief explanation of the outputs, this 

can be found in the code 

 

$ java acfches 10 20  

# Specify 10 and 20 as inputs 

10 composed to 34 # (10 + 7) * 2 

20 composed to 54 # (20 + 7) * 2 

 

34 reverse composed to 10 # (34 / 2) - 7 

54 reverse composed to 20 # (54 / 2) - 7 

 

Input 10 was encrypted to 

914230298129780563011715681158340346654543602699977594450413796356184635162358093323230424

681696171637738663970932013303240313090330397882701683852919774558090980556153806745895351

887029329584210683602643550613641944502069410962257148973647432913024456315152143971912392

18922096715229579116578586841359618827 

 

Input 20 was encrypted to 

195871832380398390712064736903081228410982010530497359491304890546381955178006401516941397

235860351701415195879993524751311621904227470186880716468621690370012492329637488592526514

419657178063328558900523651203645487805449824562590341630887921851927793128324256451209785

33016963729009633333582640628244441680 

 

Composed 34 was encrypted to 

435979835190856069575731053492627477693122994147643478666481631966106300080928605072941717

361105448847316024008073488076464116457390131962519865940279770694936674882194902603300653

368128233844131406381093790852058588239611074466185351965911407413382081930993606892729547

2518192502771130916516605558783858404 

 

Composed 54 was encrypted to 

562234489019579959780500888969326350546292803602895504092061574348688071282624629945470971

345564002577314785691081471268095671752902222216274678842140014299124832954267865103647902

544118836854787492471316016565033986749963234007657859580660106797755236895691903430025641

55127322014572152909088866952530229958 

 

First 10 input decrypted to 10  

Second 20 input decrypted to 20 

 

First composed 34 decrypted to 34 

Second composed 54 decrypted to 54 

 

# Above shows acfches successful encryption and decryption  

 

Original sum: 30  

# Manual sum of 10 + 20 
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Composed sum: 88  

# Manual sum of 34 + 54 

 

# Below are now homomorphic 

 

/* test homomorphic properties -> D(E(m1)*E(m2) mod n^2) = (m1 + m2) mod n */ 

Decrypted original sum: 30  

# Decrypt(E(10) * E(20) mod n
2
) 

Decrypted composed sum: 88  

# Decrypt(E(34) * E(54) mod n
2
) 

Reversed decrypted composed sum: 37  

# Applying ReverseComposition on Sum 

 

/* test homomorphic properties -> D(E(m1)^m2 mod n^2) = (m1*m2) mod n */ 

 

 

Original product: 200  

# Manual product 10 * 20 

Composed product: 1836  

# Manual product 34 * 54 

 

Decrypted product: 200  

# (E(10) to power 20) mod n  

Decrypted composed product: 1836  

# Sum as above  

Reversed decrypted composed product: 911  

# Result from reverse composing theproduct. 

 

IV. CONCLUSIONS 
The study focused on the design and analysis of addition-composition fully homomorphic encryption 

technique that enhances data security on cloud computing. We have demonstrated that this is a possibility. A 

new scheme was developed that has foundations on mathematical proofs on validity and reliability. The study 

also demonstrated that on the tested metrics, addition-composition fully homomorphic scheme performs better 

than the previous schemes. The scheme is complex for easy adversarial attack, the speed of encryption faster 

and the resource consumption are manageable. 
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