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Abstract : - Statistical process control (SPC) is one of the important approaches used in quality management. 

SPC can be applied in plants to obtain good quality and high standard products that have become very popular in 

many industries. Fuzzy process capability analysis by using X-R control charts gives more realistic results, 

developed with fuzzy theory. Fuzzy control charts are more sensitive than SPC. Therefore, fuzzy control charts 

lead to producing better-quality products. In this study, total color difference parameter (ΔE) was studied using 

fuzzy observation on a calcite grinding plant products. For this purpose, color parameters of the grinding plant 

products were evaluated using triangular fuzzy number (TFN) and fuzzy process capability indices (PCIs). The 

results show that the mill plant seems to be under control. Therefore, on a randomly selected sample used in the 

fuzzy statistical process control work was chosen and other color parameters such as whiteness index (WI), 

saturation index (SI), hue angle (H), browning index (BI) and yellowness index (YI) and particle size properties, 

XRF, XRD, FTIR, TGA-DTA and SEM were then determined on the calcite sample. 
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I. INTRODUCTION 
One of the predominant technologies in mining, production of minerals. and materials treatment is 

grinding. Ball mills are mainly used for that purpose [1]. Grinding by collision is more effective for size 

reduction of brittle materials. One of the few machines for grinding of materials by collision is a disintegrating 

mill-disintegrator [2], a mill for reducing lump material to a granular product. where crushing took place partly 

by direct impact and partly by interparticulate attrition [3]. Ground and precipitated calcium carbonates are 

widely used as performance minerals in the rubber, plastics and paper industries. Both untreated and surface-

modified forms are used. depending upon the nature of the end product [4]. In polymer applications the calcium 

carbonate is often blended with polypropylene (PP) homopolymer or polyethylene (PE) to improve 

processability and properties such as stiffness and impact resistance of composite materials. For effective 

mixing and good adhesion characteristics it is desirable that the surface energies of the mineral and polymer are 

close to each other [5]. 

The aspect and color of the calcite surface is the first quality parameter evaluated by consumers and is 

critical in the acceptance of the product. Industrial applications require specific properties and characteristics. 

Among the most valuable characteristics is the color, a function of the parent rock and its alteration [6]. In 

polymineral natural samples with complex crystallochemistry, the study of color is more complicated than in 

minerals of high purity (or even synthetic ones) where diffuse reflectance spectroscopy techniques are employed 

[7]. An organization called the Commission International Eclairage (CIE) determined the standard values that 

are used worldwide to measure color. The values used by CIE are called L*, a*, and b* and the color 

measurement method is called CIELab. Symbol L* represents the difference between light (where L* = 100) 

and dark (where L* = 0) a* represents the difference between green (−a*) and red (+a*). and b* represents the 

difference between yellow (+b*) and blue (−b*) [8].  

Statistical process control (SPC) concept has become very important in chemical and manufacturing 

industries. Its objective is to monitor the performance of a process over time in order to detect any special events 

that may occur. By finding assignable causes for them, improvements in the process and in the product quality 

can be achieved by eliminating the causes or improving the process or its operating procedures [9]. The use of 

statistical process control techniques in mineral processing plants is as important as in many other industries, as 

management aims for a certain quality, which will enhance reputation and future progress. Control charts are 

among the most effective means for controlling process control systems via statistical methods in an economical 

and secure way. Control charts are used for determining quantitative and qualitative variations that occur in a 

process over a certain time frame [10]. To use a control chart such as the X-chart to monitor the process mean or 

the R-chart to monitor variability, samples are taken over time and values of a statistic are plotted [11].  Control 

chart type X-R is a very important quality tool. Its determined statistical measures are recorded properties of 



Fuzzy Statistical Process Control of a Calcite Grinding Plant 

International organization of Scientific Research                                                                      8 | P a g e  

products obtained as a result of inspections taken randomly from the samples of products in the determined 

place of the process. The aim of control chart type X-R is to observe and register the changing ability of the 

characteristics of the researched element of the production process. The example of implementing control chart 

type X-R shows the possibility of monitoring parameters of the production process according to an idea of 

defect prevention. Using this method allows monitoring the production process, provides opportunities for cost 

reduction, and maintains the production process stability [12]. 

 Conventionally, for monitoring a manufacturing process, the Shewhart control charts are applicable on 

the condition that collected sample data are real-valued numbers only. However. in many cases the key quality 

characteristic of manufactured products, such as the color-intensity quality of produced pictures or screens and 

the reading-precise quality shown on analogue measurement equipments, apparently inheres with imprecise 

character, whose samples data are collected by taking certain imprecise information into consideration, known 

as interval-valued or fuzzy numbers/data [13,14]. Besides. the fuzzy data may also come from output 

measurements judging with humans‟ partial knowledge or subjectivity or gathered from the manufacturing 

process with scarce or coarse samples [15,16,17]. Therefore, based on the fuzzy sample data to identify whether 

a manufacturing process exists special causes variation, or is needed to makes certain correction. traditional 

Shewhart control charts must be expanded so as to possibly carry out the process monitoring in this fuzzy 

environment [18]. 

 In general, statistical and fuzzy methodologies exist to deal with the categorical data. Early research on 

statistical methodologies goes back to Duncan [19] who introduced a chisquare control chart for monitoring a 

multinomial process with categorical data. Later. this type of control chart is discussed further by Marcucci [20] 

and Nelson [21]. Marcucci [20] introduced a statistical approach for the case, where the proportion of each 

category is not known before. In the case of fuzzy methodologies, several approaches are proposed. Bradshaw 

[22] for the first time, used fuzzy sets as a basic for explaining the measurement of conformity of each product 

unit with the specifications. 

 In this study, data from related color parameters of grinding process products of a company in Niğde-

Turkey are obtained. An application is presented for fuzzy X-R control charts; it‟s tried to be analyzed whether 

or not the process is under control by constructing fuzzy control charts using calculated total color differences 

(ΔE). In addition, the specifications of the micronized calcite, on a randomly selected sample used in the fuzzy 

statistical process control work, were then determined by other color parameters such as whiteness index (WI), 

saturation index (SI), hue angle (H), browning index (BI) and yellowness index (YI) that were calculated and 

particle size properties of the micronized calcite product were given. In addition, XRD, XRF, FTIR, TGA, DTA 

analyses were made on the selected ultra-fine grinding sample. 

II. MATERIAL- METHOD 
Conventional ball-mill grinding technology is used to obtain calcite with micronized on the industrial 

scale. Fine/very fine sizes of calcite products could be produced with the mill running closed circuit by 

separation of air. Flow diagram of a micronized calcite grinding plant is given in Figure 1. The particle size 

distribution of the mill feed sample was determined by screening. It is shown in Figure 2. It can be seen that the 

d80 size is about 1.0 mm particle size. The products used in statistical color parameters (L*, a*, b*) studies are 

cyclone products. In the total color difference calculations, averages of the five samples values, are used as 

L*=96.77, a*=0.19, b*= 1.56 (Table 1).  

 

 
Figure 1. Flow Diagram of a Micronized Calcite Grinding Plant (1-Feed calcite, 2-Ball mill, 3- Separator, 4-

Cyclone, 5-Filter, 6-Fan, 7-Cyclone product, 8-Filter product) [23]. 
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Table 1. Color Parameters Values of the Feed Samples 

 

                                                L* a* b* 

 96.74 0.12 1.45 

 96.63 0.20 1.51 

 96.73 0.30 1.82 

 96.91 0.20 1.50 

 96.85 0.14 1.51 

Avarage 96.77 0.19 1.56 

 

 
Figure 2.  Cumulative Under Size (%) of Feed Sample 

An organization called Commission Internationale del'Eclairage (CIE) determined the standard values 

that are used worldwide to measure color. The values used by CIE are called L*. a*. and b*, and the color 

measurement method is called CIELAB. Symbol L* (Lightness) represents the difference between light (“pure 

white”) (where L*=100) and dark (“black”) (where L*= 0); a* (Redness-Greenness) represents the difference 

between green (−a*) and red (+a*); and b* (Yellowness-Blueness) represents the difference between yellow 

(+b*) and blue (−b*) [8]. The colour measurement method is called CIELAB. The CIELAB values are 

calculated from the red green and blue filters of the colorimeters and are particularly suited to describing near 

white samples according to the following equations [24]: 

L*= 116 (Y/Y
n
)

1/3
-16                                                                                                                                             (1) 

a*=200[((X/X
n
)

1/3
-(Y/Y

n
)

1/3
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n
)

1/3
-(Y/Y

n
)

1/3
]                                                                                                                                  (3) 

where X. Y and Z are the tristimulus values for the samples arising from the colourimetric system and 

X
n
. Y

n
 and Z

n
 are those of a surface colour chosen as the nominal white stimulus. Using this system and colour 

that correspons to a place on the Cylindrical CIELAB color space system was shown in Figure 3. 

 

Figure 3. Cylindrical CIELAB Color Space [25] 
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Another useful parameter for describing White, which is given in the BS 3900 [26] is delta E (∆Ε). The 

total color difference (ΔE) was calculated using the measurements and Equation 4. by using L*, a* and b* 

values [27, 28]. The color parameters (L*, a*, b*) of calcite samples were measured using a Datacolor Elrepho 

SF450X spectrophotometer in the study. 

ΔE = [(L0 − L*)
2
 + (a0 −a*)

2
 + (b0 − b*)

2
]

0.5
                                                                                                          (4)  

where subscript “0” refers to the color reading of the feed sample used as the reference, and a larger ΔE indicates 

greater color change from the reference sample [24].  

The CIELAB, or CIE (1976) L*a*b* values have a perceptual meaning: L* is the lightness which 

relates to the physical intensity of a color, whilst a* and b* are coordinates on the red–green and yellow–blue 

color axes respectively. This scheme is designed such that a constant difference in color, ΔE, defined by the 

Euclidean distance.  It should give a constant „perceived‟ total color difference-regardless of the location in the 

color space. The smallest perceivable difference for two colored patches contacting one another is 

approximately 0.5–1.0 ΔE units [29]. A whiteness index (WI) has been described based on the distance of a 

color value from a nominal white point, represented in CIELAB color space as L*=100, a*=0 and b*=0. In 

spectral terms a white material is one whose reflectance across the visible wave length range is constant and 

high (i.e. close to 100% or reflectance factor of 1). Varying shades of gray to black have a constant reflectance 

with the perfect black having a reflectance of 0% [30].  

The hue angle is traditionally measured starting at the direction corresponding to pure red. The simplest 

way to derive an expression for this angle is to project the vector (1; 0; 0) corresponding to red in the RGB  (red, 

green, and blue) space and an arbitrary vector c onto a plane perpendicular to the achromatic axis, and to 

calculate the angle between them. For the derivation of an expression for the saturation of an arbitrary color c, 

we begin by looking at the triangle which contains all the points with the same hue as c. The intersection of this 

triangle and the iso-brightness surfaces are lines parallel to the line between c and its brightness value on the 

achromatic axis L(c) = [L (c); L (c); L (c)]. Traditionally, the saturation is calculated as the length of the vector 

from L(c) to c divided by the length of the extension of this vector to the surface of the RGB cube. Moreover, it 

is clear that this definition of the saturation depends intimately on the form of the brightness function chosen 

(i.e. on the slopes of the iso-brightness lines) [31].   

The Hunter b or CIELAB b* coordinate is often used for the characterization of yellowness. 

Yellowness indices are unduly neglected in the publications reviewed; they report only in a few cases the 

application of the according to ASTM (2005), where CX and CZ are illuminant- and observer-specific constants, 

or the formula 6 often referenced [32]. Browning index in the literature may mean one of two things: a simple 

indicator of a chemical change (often characterized by the optical density at a given wavelength or the ratio of 

the reflectance at 570 and 650 nm) or the color change due to oxidation of a freshly cut fruit or vegetable 

surface, during storage or drying, or the baking of bread. The simplest (and probably least adequate) indicator of 

the color change is the L* coordinate (or 100 − L* or 100/L*) [33].   

 Whiteness index (WI), saturation index (SI), hue angle (H), browning index (BI) and yellowness index 

(YI) were calculated using measured Equation 5, 6, 7, 8 and 9, respectively by using L*, a* and b* values [33, 

34, 35].
 

WI =100 – [(100 − L*)
2
+ a *

2
+b *

2
]

0,5              
                                                                                                         (5) 

 

SI = [a*
2
+ b*

2
]

0,5
                                                                                                                                                  (6) 

 

H = arctan (b*/a*)                                                                                                                                                 (7)  

 

BI=[100*(x-0.31)]/0.17                                                                                                                                         (8) 

 

where; x=(a*+1.75xL*)/(5.645xL*+a*-3.012xb*) 

YI=142,86xb*/L*                                                                                                                                                  (9) 

We now briefly review the development of the equations for constructing the control limits on the X 

and R control charts.  In X chart, means of small samples are taken at regular intervals, plotted on a chart and 

compared against two limits. The limits are known as upper control limit (UCL) and lower control limit (LCL). 

These limits are defined as below: 

LCL =  - A2*R  and                                                          (10)                                  

UCL =  + A2*R                                                (11) 

where,  is the target mean and factor A2 depends on sample size (Table 2). The process is assumed to be out of 

control when the sample average falls beyond these limits. 
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Table 2. Constants for Control Charts [36] 

 

Subgroup size (n) A2 D2 D3 D4 

2 1.880 1.128 0 3.267 

3 1.023 1.693 0 2.574 

4 0.729 2.059 0 2.282 

5 0.577 2.326 0 2.114 

 

In these charts, the sample ranges are plotted in order to control the variability of a variable. The centre 

line of the R chart is known as average range. The range of a sample is simply the difference between the largest 

and smallest observation.  If R1, R2, .... Rk. be the range of k samples, then the average range (R bar) is given by: 

= (R1+R2+R3…………….Rn)/ki                          (12) 

The upper and lower control limits of R chart are: 

Upper control limit:  UCLR=D4*                         (13) 

Lower control limit: LCLR=D3*                          (14) 

where, factors, D2, D3 and D4 depend only on sample size (n) (Table 2) [37]  

Assume that a quality characteristic is defined as "approximately X". Considering the fuzzy sets 

concept, this value can be converted to the triangular fuzzy number (TFN)  = (X1; X2; X3). After measuring a 

sample of size n from triangular fuzzy numbers (X1j,X2j. ;X3j) j = 1;……….. ; n, the average of this sample can 

be calculated by extension principle as follows: 

 

                                   (15) 

 

Also considering extension principle. the range of the sample can be calculated by 

                                       (16) 

=(max X1j, max X2j, max X3j)-(min X1j, min X2, min X3j)                                                                          (17) 

 =( max X1j- min X1j, max X2j- min X2j, max X3j- min X3j)                                                                       (18) 

where (maxX1j; maxX2j; maxX3j) and (minX1j; minX2j; minX3j) represent the maximum and minimum 

values of fuzzy measurements, respectively. One method to determine the maximum and minimum values of 

fuzzy measurements is assign from ranking method [38].  

For m subgroups with size n, the fuzzy grand average and the average range of samples are [39] 

 

                                                                          (19) 

                                    (20) 

respectively, therefore. the control limits for control charts are calculated as follows: 

=( 1+  2+ 3+                      (21) 

= =( 1, 2, 3)=(CL( )1, CL( )2, CL( )3)                      (22) 

=( 1-  2- 3-                                    (23) 

and similarly, for  control chart. 

=(D4  D4                        (24) 

= =( 1, 2, 3)=(CL( )1, CL( )2, CL( )3)                     (25) 

=(D3  D3                        (26) 

There have been a number of process capability indices proposed over the years for the purpose of 

assessing the capability of a process to meet certain specifications. The two most widely used standard PCIs are 

Cp and Cpk. The index Cp which is the first process capability index (PCI) to appear in the literature and called 

precision index [40] is defined as the ratio of specification width (USL-LSL) over the process spread (6r). The 

specification width represents customer and/or product requirements. The process variations are represented by 

the specification width. If the process variation is very large. the Cp value is small and it represents a low 

process capability. Cp indicates how well the process fits within the two specification limits. It is calculated by 

using Eq. (22). Cp simply measures the spread of the specifications relative to the six-sigma spread in the 

process [38, 41]. The process capability ratio Cp does not take into account where the process mean is located 

relative to specifications [38]. Cp focuses on the dispersion of the studied process and does not take into account 
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centering the process and thus gives no indication of the actual process performance. Kane (1986) [40] 

introduced index Cpk to overcome this problem. The index Cpk is used to provide an indication of the 

variability associated with a process. It shows how a process confirms to its specifications. The index is usually 

used to relate the „„natural tolerances (3r)” to the specification limits. Cpk describes how well the process fits 

within the specification limits. taking into account the location of the process mean. Cpk should be calculated 

based on Eqs. (27)–(28) [38, 40, 41]. 

 

                                                                                                                                                       (27)    

]                                                                                                                                    (28) 

 

where μ denotes the process mean. Cpu, l indicates. in addition. how well the distribution is centred about the 

nominal (target) value, a property that can better reveal the relationship between the mean and objective values.                                                                                      

Assume that specification limits (SLs) and measurements of the considered quality characteristic are 

defined by linguistic variables such as „„approximately” or „„around”. Triangular fuzzy numbers (TFNs) are 

more suitable for this case. SLs can be defined as follows: 

 

                         (29) 

                         (30) 

Also fuzzy process mean  and standard deviation  can be calculated as follows [42]: 

 

=TFN (µ1, µ2, µ3)                                 (31) 

 

=( , , )=TFN (s1, s2, s3)                                    (32) 

 

Based on these definitions. fuzzy process capability indices can be calculated as follows: 

 

=TFN( )                                    (33) 

 

=TFN( )                                    (34) 

 

=TFN( )                                    (35) 

 

The value of index Cp gives us an opinion about process‟ performance. For example if it is greater than 

1.33 which corresponds to 63 nonconforming parts per million (ppm) for a centered process. we conclude that 

process performance is satisfactory. The six quality conditions and the corresponding Cpvalues are summarized 

in Table 3 [43]. 

                                                   Table 3. Quality Conditions and Cp Values [43] 

 

Quality conditions  Cp values 

Super excellent 2.00 ≤ Cp 

Excellent 1.67  Cp ≤ 2.00 

Satisfactory 1.33  Cp ≤ 1.67 

Capable 1.00  Cp ≤ 1.33 

Inadequate 0.67  Cp ≤ 1.00 

Poor Cp ˂ 0.67 

The mean particle size and width of PSD of the final ultra-fine calcite products were determined. There 

are several evaluation methods that have been used to represent the width of the PSD of ground product. The 

cumulative weight passing particle sizes d20 and d80  [44, 45] are used to evaluate the width of the PSD in 

mineral processing, and the particle size ratio of d80/d20 is often calculated for the PSD width. The particle sizes 

d10, d50, and d90 are used for the evaluation of the grinding characteristic of solid materials [46, 47, 48]. The 

particle size ratio of d90/d10 is more useful for representing the PSD width because the size ratio of d90/d10 has a 

wider range comparison than the ratio d80/d20. The size ratio (d90-d10)/d50 („„span value‟‟) also can be used in 

addition to the ratios d80/d20and d90/d10 [49, 50]. A decrease in these particle size ratios means a narrower PSD. 



Fuzzy Statistical Process Control of a Calcite Grinding Plant 

International organization of Scientific Research                                                                      13 | P a g e  

On the other hand, steepness ratio can be also defined by the „„steepness factor‟‟ (SF). The SF can be calculated 

from the PSD curve of the powder using the following equation: 

SF =d50/d20            (36) 

A curve with the greater than 2 is described as „„broad‟‟ and those with the factor of less than 2 as „„narrow‟‟ or 

„„steep‟‟ [51]. 

 

In this study, the particle size distribution and values of whiteness color parameters (L*, a*, b*) were 

determined using Mastersizer 2000 (Malvern) and Elrepho 450x (Datacolor) in the laboratory of Mikrokal Co. 

Nigde-Turkey. Other analyses were performed at Bayburt University. XRD analysis was made between 2-70° 

by Cu X-ray tube D8 DISCOVER device. TG-DTA and SEM analyzes were performed by using Perkin Elmer 

STA 8000 and Nova Nano SEM 450 instruments, respectively. The vibration modes of functional groups of the 

compound were determined by Fourier transforms infrared (FTIR) analysis. The FTIR spectra were measured in 

the range of 450–4000 cm-1 by the Perkin Elmer Spectrum Two. 

 

III. RESULTS 
In this study, fuzzy X and R control charts for monitoring the process average and variability based on 

the fuzzy sample data were given as an example. The appearance of the display seen through total color 

difference is of great importance for micronized calcite users. For this reason, companies evaluate the amount of 

total color difference values from feed and ultra-fine calcite products. Color parameters of ground calcite 

samples are measured with a few grams of sample, obtained from tons of material. Therefore, it seems to be the 

right approach to use fuzzy statistical methods. At the present time, fuzzy statistical process control methods 

based upon the product quality data have been the standard approach to process monitoring. In order to analyze 

the variation in color parameters such as L*, a* and b* (measured using Datacolor Elrepho 450x Datacolor) of 

the ground calcites delivered to the conventional ball-mill with control charts, data from 20 days have been 

gathered. Data arranged as m=20 (number of sample) and n=4 (size of sample) are given in the Figure 4, 5 and 

6. Calculated values of total color differences (ΔE) using feed and ground samples are given in Table 4.  

 

 
Figure 4. Case Study Data for L* Values 

 
Figure 5. Case Study Data for a* Values 
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Figure 6. Case Study Data for b* Values 

 

Table 4. Calculated Values of Total Color Differences (ΔE) 

 

Sample 1 2 3 4 

     1 2.165 1.769 1.999 1.883 

2 1.982 2.097 2.087 1.739 

3 1.876 1.999 1.905 1.703 

4 1.946 1.915 1.957 1.897 

5 1.641 2.095 1.793 1.640 

6 1.759 2.033 1.934 1.658 

7 2.006 2.150 1.667 1.759 

8 1.715 1.979 1.860 1.813 

9 1.840 2.066 2.023 1.878 

10 1.652 1.914 2.046 1.931 

11 1.743 2.042 1.969 1.734 

12 1.529 1.806 1.592 1.884 

13 1.788 2.068 2.069 1.807 

14 1.552 1.995 1.845 1.951 

15 1.686 2.027 1.535 2.088 

16 1.730 1.762 1.995 2.041 

17 1.544 1.968 2.003 2.037 

18 1.640 1.693 1.651 2.285 

19 1.783 1.959 1.966 1.979 

20 1.934 1.995 1.760 2.039 

 

Firstly, a normal distribution test was made with SPSS program. The results showed that the process is 

said to be normally distributed because the value obtained, 0.457, is larger than α = 0.05 (% 95 reliability level). 

Therefore, it can be said that the process is normal distribution. In this paper, -R control charts were 

redesigned when the quality characteristics are defined as fuzzy measurements. While the charts are 

designed, one case in which measurements represent triangular fuzzy numbers (TFNs) was taken into account. 

The calculations in Table 5 have been determined as approximate values. Then, the process is checked to 

determine whether or not it is in statistical control. The results are shown in Table 6. Using Eqs. 21-26, UCLX, 

CLX, LCLX and UCLR, CLR, LCLX are calculated as Table 7.  
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Table 5. Total Color Difference as Triangular Fuzzy Numbers (TFNs) 

 

 X1 X2 X3  X4 

1 2.160, 2.165, 2.170 1.764, 1.769, 1.774 1.994, 1.999, 2.004 1.878, 1.883, 1.888 

2 1.977, 1.982, 1.987 2.092, 2.097, 2.102 2.082, 2.087, 2.092 1.734, 1.739, 1.744 

3 1.871, 1.876, 1.881 1.994, 1.999, 2.004 1.900, 1.905, 1.910 1.698, 1.703, 1.708 

4 1.941, 1.946, 1.951 1.910, 1.915, 1.920 1.952, 1.957, 1.962 1.892, 1.897, 1.902 

5 1.636, 1.641, 1.646 2.090, 2.095, 2.100 1.788, 1.793, 1.798 1.635, 1.640, 1.645 

6 1.754, 1.759, 1.764 2.028, 2.033, 2.038 1.929, 1.934, 1.939 1.653, 1.658, 1.663 

7 2.001, 2.006, 2.011 2.145, 2.150, 2.155 1.662, 1.667, 1.672 1.754, 1.759, 1.764 

8 1.710, 1.715, 1.720 1.974, 1.979, 1.984 1.855, 1.860, 1.865 1.808, 1.813, 1.818 

9 1.715, 1.715, 1.715 2.061, 2.066, 2.071 2.018, 2.023, 2.028 1.873, 1.878, 1.883 

10 1.647, 1.652, 1.657 1.909, 1.914, 1.919 2.041, 2.046, 2.051 1.926, 1.931, 1.936 

11 1.738, 1.743, 1.748 2.037, 2.042, 2.047 1.964, 1.969, 1.974 1.729, 1.734, 1.739 

12 1.524, 1.529, 1.534 1.801, 1.806, 1.811 1.587, 1.592, 1.597 1.879, 1.884, 1.889 

13 1.783, 1.788, 1.793  2.063, 2.068, 2.073 2.064, 2.069, 2.074 1.802, 1.807, 1.812 

14 1.547, 1.552, 1.557 1.990, 1.995, 2.000 1.840, 1.845, 1.850 1.946, 1.951, 1.956 

15 1.681, 1.686, 1.691 2.022, 2.027, 2.032 1.530, 1.535, 1.540 2.083, 2.088, 2.093 

16 1.725, 1.730, 1.735 1.757, 1.762, 1.767 1.990, 1.995, 2.000 2.036, 2.041, 2.046 

17 1.539, 1.544, 1.549  1.963, 1.968, 1.973 1.998, 2.003, 2.008 2.032, 2.037, 2.042 

18 1.635, 1.640, 1.645 1.688, 1.693, 1.698 1.646, 1.651, 1.656 2.280, 2.285, 2.290 

19 1.778, 1.783, 1.788 1.954,  1.959, 1.964 1.961, 1.966, 1.971 1.974, 1.979, 1.984 

20 1.929, 1.934, 1.939 1.990, 1.995, 2.000 1.755, 1.760, 1.765 2.034, 2.039, 2.044 

 

Table 6. Average and Range Values with Control Results 

 

           X Decision R Decision 

1 1.949, 1.954, 1.959 In control 0.396, 0.396, 0.396 In control 

2 1.971, 1.976, 1.981 In control 0.358, 0.358, 0.358 In control 

3 1.865, 1.870, 1.875 In control 0.296, 0.296, 0.296 In control 

4 1.923, 1.928, 1.933 In control 0.060, 0.060, 0.070 In control 

5 1.787, 1.792, 1.797 In control 0.455, 0.455, 0.455 In control 

6 1.841, 1.792, 1.851 In control 0.375, 0.375, 0.375 In control 

7 1.890, 1.895, 1.900 In control 0.483, 0.483, 0.483 In control 

8 1.836, 1.841, 1.846 In control 0.264, 0.264, 0.264 In control 

9 1.916, 1.920, 1.924 In control 0.346, 0.351, 0.356 In control 

10 1.880, 1.885, 1.890 In control 0.394, 0.394, 0.394 In control 

11 1.867, 1.872, 1.877 In control 0.308, 0.308, 0.308 In control 

12 1.697, 1.702, 1.707 In control 0.277, 0.313, 0.355 In control 

13 1.928, 1.933, 1.938 In control 0.281, 0.281, 0.281 In control 

14 1.830, 1.835, 1.840 In control 0.443, 0.443, 0.443 In control 

15 1.829, 1.834, 1.839 In control 0.402, 0.402, 0.553 In control 

16 1.877, 1.882, 1.887 In control 0.311, 0.311, 0.311 In control 

17 1.883, 1.888, 1.893 In control 0.493, 0.493, 0.493 In control 

18 1.812, 1.817, 1.822 In control 0.635, 0.645, 0.645 In control 

19 1.916, 1.921, 1.926 In control 0.196, 0.196, 0.196 In control 

20 1.927, 1.932, 1.937 In control 0.279, 0.279, 0.279 In control 

Avarage 1.871, 1.876, 1.881  0.353, 0.355, 0.366  
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Table 7. UCLX, CLX, LCLX and UCLR, CLR, LCLX Values 

 

X 

 

 

UCLX 2.12 2.13 2.15 

CLX 1.87 1.88 1.88 

LCLX 1.62 1.62 1.62 

R 

 

 

UCLR 0.79 0.8 0.82 

CLR 0.35 0.36 0.37 

LCLR 0 0 0 

 

The TFNs of USL and LSL as expected values for calculations indexes were obtained from the 

management of the plant. Fuzzy process capability indices (PCIs) are determined for the inside total color 

difference. The measurements in Table 8 are shown as approximate values. Then, the process is checked to 

determine whether or not it is in statistical control. According to Table 8 and µ, σ, Cp, Cpu and Cpl were 

obtained by using Equation 26-30 (Table 9). The index Cp, Cpu and Cpl were determined as 3.889-3.866-

3.1795, 6.084, 6.039, 5.499 and 1.695, 1.694, 1.653, respectively. The parameters values after performing the 

few iterations of data collection were greater than 1.33 and it was determined that the plant was adequate for 

produce coated calcite. 

 

Table 8. Fuzzy Capability Indexes Total Color Difference of Plant           

 ∆E 

USL 4.995-5.000-5.005 

LSL 0.995-1.000-1.005 

 

Table 9. Values of µ, σ, Cp, Cpu and Cpl Parameters 

Parameters Values 

µ 1.872, 1.876, 1.881 

σ 0.171, 0.172, 0.178 

Cp 3.889, 3.867, 3.179 

Cpu 6.084, 6.039, 5.499 

Cpl 1.695, 1.694, 1.653 

 

Other Color Properties of Randomly Selected Micronized Calcite Product 
Other color parameters such as whiteness index (WI), saturation index (SI), hue angle (H), browning 

index (BI) and yellowness index (YI) were calculated in the chapter. The color parameters of the randomly 

selected sample, because the process is under control, are L*= 98.48, a* = 0.03, b* = 0.71. Total color 

difference (ΔE), which is a combination of parameters L*, a* and b* values, is a colorimetric parameter 

extensively used in the micronized calcite products to characterize the variation of colors depending on 

processing conditions. An increase in ΔE was observed (Table 10) with grinding operation from 0 to 1.91. The 

smallest perceivable difference for two colored patches contacting one another is approximately 0.5–1.0 ΔE 

units. Therefore, it can be indicated that a very large color change occurs between products. Experimental 

results are shown in Table 4 that indicates significant increase from 96.09 to 98.32 for WI with grinding process. 

As seen in the same table, the saturation index (SI) decreased from 1.57 to 0.71. In addition, on hue angle (H), 

values increased important ratio from 82.97 to 97.31. Besides these, significant reductions were obtained in BI 

and YI color parameters with calcite ore grinding. 
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Table 10. Other Color Parameters Values 

Parameters Feed calcite Micronized calcite  

ΔE 0 1.91 

WI 96.09 98.32 

SI 1.57 0.71 

H 82.97 97.31 

BI 1.76 0.73 

YI 1.73 1.03 

 

Particle Size Properties of Randomly Selected Micronized Calcite Product 
In this study, cumulative under size (%) of the product, randomly selected sample, are given in Figure 

7. The product has d10=0.74, d50=2.84 µm and d90=7.40 µm particle sizes. The size of calcite ore (d50=1 mm) has 

been reduced to ultra-fine dimensions (d50=2.84 µm) after grinding and separation processes. Table 11 shows 

some specific particle size, SF, and span values of feed material and final products. The mean particle size of the 

feed powder as received was approximately 2.84 µm and the steepness ratio was reduced from 3.00 to 2.69. A 

curve with greater than 2 is described as „„broad,‟‟ and the one with the factor of less than 2 as „„narrow‟‟ and 

„„steep.‟‟ Expect for one, all of them have smaller values than 2; namely, micronized talc products show broad 

properties according to SF. In addition, the results of d90/d10, d80/d20 and d90-d10)/d50, PSD width calculations 

showed that their values decreased with grinding process.  

 

 
Figure 7.  Cumulative Under Size (%) of Randomly Selected Micronized Calcite Product 

 

Table 11. Variation of Some of the Parameters of The Particle Size Distribution with Grinding Time for the 

Final Product 

 

Meterial SF  

(d50/d20) 

                     Width of PSD (WPSD) 

  d90/d10            d80/d20         Span [(d90-d10)/d50)] 

Feed  3.00 22.50 8.00 5.73 

Micronized  2.69 10.0 5.44 2.35 
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Some analyses of Randomly Selected Micronized Calcite Product 
Chemical properties of micronized calcite sample are reported in Table 12. The analysis indicated that 

the ore was composed of 99.6% CaCaO3. X-ray diffraction analysis verified that calcite was the sole mineral in 

the ore (Figure 8). 

 

Table 12. Chemical Properties of Micronized Calcite Sample [52] 

 

                    Property % 

CaCO3  99.60 

SiO2 0.01 

Al2O3 0.02 

FeO2 0.01 

MgO 0.20 

Others 0.16 

Total 100 

 

 

Figure 8. X-ray Diffraction Analysis of Randomly Selected Micronized Calcite Product 

For calcite, two main steps are usually visible in the thermal curves in the temperature range of 25-

600°C. The third part starts at approximately 580°C and corresponds to the decomposition of calcite [53]. DTA 

and TG results on micronized calcite samples are presented in Figure 9. It can be clearly seen that there is no 

exothermic reaction in the DTA result of the micronized calcite sample. No weight loss is observed in the 

micronized calcite up to approximately 600 °C in the TGA analysis. As a further characterization method, FTIR 

spectral analysis was carried out on the micronized samples. Cifrulak (1970)
 
[54] showed that the vibration 

modes of calcium carbonate result in three active IR bands, 714 cm
-1

 (v4-in-plane bend), 879 cm
-1

 (v2-out-of-

plane bend) and 1432 cm
-1

 (v3-antisymmetric stretching), and one inactive band at 1097 cm
-1

 (v1-symmetric 

stretching). FTIR analyses of micronized calcite is shown in Figure 10. It can be seen that the IR bands are 

overlapping each other. The bands at 712 cm
-1

, 873 cm
-1

 and 1406 cm
-1

 are diagnostic for the calcite sample.  
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Figure 9. TG and DTA Analysis of Randomly Selected Micronized Calcite Product 

Scanning Electron Microscopy (SEM), also known as SEM analysis or SEM microscopy, is used very 

effectively in microanalysis and failure analysis of solid inorganic materials. Scanning electron microscopy is 

performed at high magnifications, generates high-resolution images and precisely measures very small features 

and objects [55]. Figure 11 shows scanning electron microscopy (SEM) images of micronized calcite. It can be 

seen that the surface of calcite after grinding appears smooth and uniform. 

 

Figure 10. FTIR Analysis of Randomly Selected Micronized Calcite Product 

 

Figure 11. SEM Analysis of Randomly Selected Micronized Calcite Product 
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IV. CONCLUSION 

The results acquired from this study which aims the fuzzy process controlling of the relevance of a calcite 

grinding plant using color difference parameter (ΔE) of a commercial foundry are summarized below; 

 

i) The process variations have to be controlled using fuzzy statistical process control and process capability 

index that is one of the important aspects in any production line. X-R control charts created with c o l o r  

d i f f e r e n c e  were observed to be in control. In addition, the calculated Cp values such as 3.889-3.867-

3.179, are greater than 1.33. Meanwhile, the Cpru and Cprl values are greater than 1.33. Therefore, it can 

be said that the process is adequate. 

 

ii) Total color difference (ΔE), which is a combination of parameters L*, a* and b* values, is a colorimetric 

parameter extensively used in the micronized calcite products to characterize the variation of colors 

depending on processing conditions. An increase in ΔE was observed with the grinding operation from 0 to 

1.91. Experimental results are shown which indicate significant increase from 96.09 to 98.32 for WI with 

grinding process. As seen in the same table, the saturation index (SI) decreased from 1.57 to 0.71. In 

addition, on hue angle (H), values increased important ratio from 82.97 to 97.31. Besides these, significant 

reductions were obtained in BI and YI color parameters with calcite ore grinding. 

iii) In this study, cumulative under size (%) of the product, randomly selected sample has d10=0.74, d50=2.84 µm 

and d90=7.40 µm particle sizes. The mean particle size of the feed powder as received was approximately 

2.84 µm and the steepness ratio was reduced from 3.00 to 2.69. A curve with greater than 2 is described as 

„„broad,‟‟ and the one with the factor of less than 2 as „„narrow‟‟ and „„steep.‟‟ Expect for one, all of them 

have smaller values than 2; namely, micronized talc products show broad properties according to SF. In 

addition, the results of d90/d10, d80/d20 and d90-d10)/d50, PSD width calculations showed that their values 

decreased with grinding process.  

iv) FTIR analysis showed that there is a normal result for calcite. DTA results show that there was no an 

exothermic reaction in the calcite. TG curves demonstrate that the calcite has a layer situation. Electron 

microscopy (SEM) images of micronized calcite show that the surface of the calcite after grinding appears to 

be smooth and uniform.  

v) The fuzzy statistical process control methods are very effective in the grinding plant of calcite.  
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