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Abstract:-  In mechanics, as in many scientific domains, information and data can be:deterministic (certainty 

known or with error - safety coefficient),probabilistic (random with known probability distribution),possibilistic 

(random known with an uncertainty factor on the reliability of the information. Parameters change in a known 

range, but the probability is unidentified).The probabilistic mechanical approaches aim to give an estimation of 

the solution when the information on the parameters of analyzed problem is uncertain.For some mechanical 

problems with probabilistic parameters, a constraint to be satisfied is added. In engineering design, the 

reliability analysis is an example of such constraint.In this paper, and for static probabilistic-reliability analysis, 

an approach reducing the size of numerical computing is proposed. It will be validated on static discrete and 

continuous systems having probabilistic parameters. 
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I. GENERAL INTRODUCTION: PROBABILISTIC ANALYSIS FOR THE 

RELIABILITY 
 To improve the security level of mechanical components, a reliability analysis should be done from the 

first stage of the conception, mainly when the parameters are random or uncertain.In reliability analysis, choice 

or/and modification of parameters are made to satisfy some conditions. It leads to a large number of sensitive 

computations [1-7]. Remind that, the reliability analysis compares the security constraints (stress or 

displacement) with the resistance or displacement limits; needs versus resistance. As a global indicator, the 

probability of failure is calculated in which the need is greater than or equal to the resistance; [8-15]. 

A good approach should easily:  

 

 takes into account the impact of uncertain or partially unknown parameters on the reliability constraints, 

 has the possibility to act (or to change) on theses parameters to satisfy theses constraints.  

 For a better risk management consideration, the analysis should be done at the beginning of the design 

phase. Moreover, the lack of information about these uncertainties can be a handicap for a good modeling of the 

studied systems.When the reliability constraints, with the probabilistic parameters, are considered in the 

mechanical problem formulation, a very large size problem or a large number of problems is obtained. In some 

cases or methods, it is recommended to reduce the number of parameters which can be obtained by coupling 

between the condensation methods and the reliability methods. First and second-order reliability methods 

(FORM and SORM, respectively) are famous approximation methods that estimate the probability of a failure 

event. These methods are useful in the uncertainty analysis of models with a single failure criterion. For a 

mechanical model with np basic random parameters, X=(x1, x2,….xnp), the objective of the reliability approach is 

to estimate the probability of failure when the failure condition is not reached. Generally, it is defined by a 

function G(x1, x2,….xnp)<0. In the case of the limit state of displacement, as an example, the failure condition 

can be defined as: 

 

G(x1, x2,….xnp)=W(x1, x2,….xnp)-Wlim<0    (1) 

 

where Wlim is an allowable displacement and W is the displacement at defined design location. 

Then, in reliability analysis, the probability of failure is an important factor to be determined. It is defined by:  

 

Pf = P(G(x1, x2,….xnp)<0)=P(W(x1, x2,….xnp)-Wlim<0)  (2) 
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 The probability of failure, even it can be written easily but it needs a big capacity of computer 

calculation. It can be estimated using some approximation methods, such FORM/SORM [3, 4]. By using a 

tangent (FORM), or by a parabolic (SORM) approximation of the function G at the failure point closest to the 

design point, the probability of failure can be determined as a simple function of failure point. 

To obtain an approximation of the probability of failure, Bjerager [16] proposed the following step for FORM 

and SORM: 

 The basic random variables x and the failure function, G, are mapped into a vector of standardized and 

uncorrelated normal variants u, as x(u) and g(u), respectively 

 The function g(u) is approximated by a tangent (FORM) or a parabolic (SORM) at the failure point u* closest 

to the origin; (see Figure 1) 

 The probability of failure is then calculated as a simple function of u* 

 

 Compared to Monte Carlo methods, FORM and SORM can be computed easily, especially for 

scenarios corresponding to low probabilities of failure. By its higher-order approximation, SORM is more 

accurate than FORM but it needs more intensive computer operations.Even if FORM and SORM are based on a 

simple mapping of the failure function onto a standardized set, the minimization of the function G involves 

significant computational effort for nonlinear problems. Additional efforts are necessary when the problem 

contains a multiple failure criteria; the determination of the probability of failure needs a simultaneous 

evaluations. These methods also impose some conditions on the joint distributions of the random parameters, 

thus limiting their applicability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Principle of the approximation methods FORM/SORM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The presented work is not a classical condensation method; the condensation is obtained by a projection on a set 

of representative functions. Finally, the paper deals with the following aspects:Developing a strategy for 

treatment of imprecision for assessing the probability of structures failure by coupling the probabilistic and 

mechanical methods;Analyzing the methods of coupling between condensation methods and reliability methods 

in order to reduce computational cost. 
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II. GENERAL PRESENTATION OF THE SPACE-PROBABILISTIC SEPARATION 

APPROACH 
 In reliability of mechanical system, the determination of the safe area (where a criterion is satisfied) 

leads to a large numerical problem(s). The first objective is to reduce the problem’s size; [18-23]. The optimum 

choice of new parameters optimizing the cost or the technical design and fabrication is a second objective. To 

reach the two objectives, accelerator methods should be used and this work is one of them. The present 

approach is based on a separation variables method and on a projection on a specific set of representative 

functions. The research of a solution by separating variables is not a new proposal; the space-time separated 

representation is a famous example. Here proposed a new application of the decomposition on a separated 

variable functions but at space-probabilistic domains.Even the approach is valid for any linear probabilistic 

application; mechanical applications are chosen to valid this approach. Consider that each probabilistic variable 

Vi follows its law (seen in appendix two examples of classical laws) defined by its density distribution and its 

cumulative distribution function Pi(vi) which can be inversed to vi(Pi). 

Consider that a static problem containing np probabilistic parameters, Vi, defined by a linear problem: 

FXPPK

FXPvKnotedFXPvPvK

pn

iipnpn
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   (3) 

K is the stiffness matrix issued from the space discretization and contains np probabilistic parameters. Each 

probabilistic parameter number i, vi, has its own probabilistic law. F is the force vector and also could depend of 

probabilistic parameters. 

Let 
j  a known and chosen probabilistic representative functions (it is not established that it is a base); j 

varies from 1 to at last np. In section 3, 4 and 5 of this paper, it will be explained how to choose the functions for 

each specified problem. In some cases, 
j  can depend only of one parameter, and then the number of the used 

functions is np. For other cases, 
j  can depend of different parameters, and then the number of the used 

function is less than np.; 
'
pn  will denote the maximum number of functions. 

By using the separation variables approach and by decomposition the unknown parameters X on the 

representative set of functions, 
j , the solution X is written as the following decomposition: 
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Using the decomposition 4, equation 3 is written as:  
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Multiplying equation 5 by any function k  and integrates it in the probabilistic domain (from 0 to 1) leads to 

equation 6. 
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For many cases, the integration defined by equation 6 is formal (expressions are analytical). Equation 6 leads to 

'
pn   associated problems, as expressed by 7: 

'

'

1

1;
pk

pn

j

jkj
ntokFXK 



      (7) 

 

The n’p  problems defined by equation 7 are written as: 
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The dimension of  kjK  is the same of K. The Xj are solved and the probabilistic solution is obtained by the 

recombination defined by: 
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Remarks: compared to a direct approach, and suppose that the probabilistic domain of each parameter (between 

0 and 1) is divided into only 10 intervals, the reduction of the size of calculation is: 

• np=1  : reduction: 90% (from 10 problems with n*n dimensions to 1 problem with n*n) 

• np=3: reduction: 97,3% (from 1000 problems with n*n to 1 problem with 3n*3n)  

•  np=4: reduction: 99,36 % (from 10000 problems with n*n to 1 problem with 4n*4n) 

• np=k: reduction: %100.
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The presented approach is first applied for discrete system (section 3) and for beam structure (section 4). Even 

the examples are academic, the accuracy of the method will be demonstrated. 

 

III. PROBABILISTIC DISCRETE SYSTEM APPLICATIONS 
 Notation: for all discrete examples, k is a stiffness, m is a mass, f is a force and x is a local 

displacement. The probabilistic parameters are defined by their mean or expectation of the distribution and their 

standard deviation. Their probability (cumulative distribution function) P(k) is then estimated and its inverse 

function k(P) is calculated. For discrete systems, solutions are computed using the maple tools. 

 

3.1.  A Two-DOF discrete system with two probabilistic parameters  

Consider two degrees of freedom spring-masse system, shown in figure 2.  The mean or expectation of the 

distribution and the standard deviation of k1 and k2 are respectively: μk1= 2E10 N/m, σk1 = 4E9 N/m, μk2= 1E10 

N/m, σk2 = 3E9 N/m. The forces are f1=3.5E7 N and f2=3.5E7 N. 

 

 

 

 

 

 

 

Figure 2.  A two degrees of freedom (DOF) system with 2 probabilistic parameters 

 

The static equilibrium equations are written as follows: 
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Two functions are used here and defined by: 
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The analytical displacements x1 and x2 are superposed to those obtained by the RPR model  in figure 3 and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Displacement x1       Figure 4. Displacement x2  

 

as a function of the cumulative distribution function P1(k1) and P2(k2) 

 

The Relative error (%) for the displacements x1  and x2 as a function of the cumulative distribution function 

P1(k1) and P2(k2) are less than 10
-6

 %. As example of reliability criterion, the displacements (x1 and x2) should be 

less than 0.008 m and 0.01 m, respectively. The displacement x1 is always less than the limit; the limitation for 

the displacement x2 is respectively represented by figures 5.a and 5.b.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.a  Reliability criterion:   Figure 5.b. Reliability criterion: 

                            G= x2(P1, P2) -0.008                                   G= x2(P1, P2) -0.01 

 

 

3.2.  Two-DOF lumped parameter system with two different probabilistic laws 

 

Consider the same example described in the section 3.1 but let k1 be a uniform distribution law defined by:  

ak1=8E9 N/m and bk1=3.2E10 N/m, and let k2 be a Gaussian probabilistic law defined by μk2= 1E10 N/m, σk2.= 

3E9 N/m. The forces are f1= f2= 3.5E7 N. 

The relative error between the analytical solution and RPR solution is around 1E-6.  

As example of reliability criterion, the displacement will be less than 0.008 m. The safe and unsafe areas are 

represented as a function of the probabilities (figure 6.a) and as a function of stiffness (figure 6.b). 
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Figure 6.a. safe and unsafe area are represented as a function of the probabilities  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.b safe and unsafe area are represented as a function of the of stiffness 

 

3.3.  A curious example: Two-DOF lumped parameter system with one probabilistic and one 

deterministic parameters 

Consider the same example described in the section 3.1 but let k1 be a determinist parameter, k1=2E10 N/m, and 

let k2 be a probabilistic one defined by μk2= 1E10 N/m, σk2.= 3E9 N/m. The forces are f1= f2= 3.5E7 N. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Two degrees of freedom (DOF) system 

 

First, only one probabilistic function is used. The displacements x1 and x2 (exact and done by this approach) are 

superposed in figures 8 and 9. The relative error is important. 

Then, using a special function associated to a deterministic parameter, the solution is close to the exact one;  
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Figure 8. Superposition of x1 (in %)  Figure 9. Superposition of and x2 (in %) 

exact and                                                       done by one function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Superposition of x1    Figure 11. Superposition of x2 

*** exact and ____ done by two functions 

 

3.4.  A confirmation of the necessity of one function associated to all deterministic parameters:  three-DOF 

discrete system with only one probabilistic parameter  

Consider a three degrees of freedom spring-masse system, as shown in figure 12.  The forces are f1= f2= 

f3=3.5E7 N. 

k1 and k3 are deterministic parameters with  k1=2E10 N/m and k3=3E10 N/m; k2 is a probabilistic one defined by 

μk2= 1E10 N/m, σk2.= 3E9 N/m. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. A three degrees of freedom (DOF) system 

 

Here, two probabilistic base functions are used: the first one corresponds to all constant parameters and the 

second one corresponds to the probabilistic parameter. 

The superposition of the displacements x1, x2 and x3 and an example of the relative error of x2 are  represented 

respectively  in figure 13.a to 13.d.  
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Figure 13.a Displacement x1    Figure 13.b Displacement x2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Figure 13.c Displacement x3                         Figure 13.d Relative error of  x2, as example 

 

IV. FRAME SYSTEM APPLICATIONS 

a.  Introduction 
The implementation of the approach was performed on the Matlab numerical code, especially for a 2D beam 

finite element defined by its probabilistic parameters: the Young modulus, E, and the two section parameters a 

and b; figure 14.  

 

 

 

 

 

 

Figure 14. Beam with rectangular section 

 

 The results obtained by this approach are compared with those obtained by Monte Carlo (MC) 

simulations. Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational algorithms 

that rely on repeated random sampling to obtain numerical results. The Monte Carlo (MC) method calculates 

functions of the form E (X) = μ, where X is a real and vector random variable. It is based on the generation of 

numerous pulling of independent copies of X and the strong law of large numbers: 

 

𝜇 = lim𝑛→+∞

1

𝑛
(  𝑋1 +  … + 𝑋𝑛 ≔ lim

𝑛→+∞
𝜇 𝑛     (13) 

The precision of the result is measured by the probability of being wrong. Called "α% Confidence Interval, C-I". 

It is  of the form  𝜇 𝑛 − 𝜀, 𝜇 𝑛 + 𝜀  , in which it is safe to α%. It is guaranteed by: 

𝑃  𝜇 − 𝜇 𝑛  > 𝜀 < 1 − 𝛼      (14) 

a 

b 

L 

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Random
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The central limit theorem indicates that  
 𝑛

𝜎
 𝜇 𝑛 − 𝜇  converges to a centered and reduced Gaussian distribution, 

with 𝜎2 = 𝑉(𝑋). We deduce that: 

𝑃  𝜇 − 𝜇 𝑛  > 𝜀 ~
1

 2𝜋
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2
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When it was considered that 
1

 2𝜋
 𝑒

−𝑥2

2
+∞

𝑎
𝑑𝑥 = 1 − 𝛼, then the  α% confidence interval is given by: 

 𝜇 𝑛 − 𝑎
𝜎

 𝑛
 , 𝜇 𝑛𝑛

+ 𝑎
𝜎

 𝑛
        (16) 

When σ is unknown, it is replaced by the sample variance of the observations noted 𝜎𝑛  and given by: 

𝜎𝑛
2 =

1

𝑛−1
  𝑋𝑖 − 𝜇 𝑛 

2𝑛
𝑖=1      (17) 

 

4.1.  First analyzed structure 

Let a frame structure constrained at A and loaded at B by a force equal to F=5E5 N, as indicated in figure 15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. The analyzed structure  

 

Three cases are analyzed, as defined by Table1: 
Case 1 Case 2 Case 3 

(E,a) probabilistic (E,b) probabilistic (E,a,b) probabilistic 

(E)= 2E11 N/m2 

(E)= 2E10 N/m2 

(a)= 0.035 m 

(a)= 0.0035 m; b=0.35 

(E)= 2E11 N/m2 

(E)= 2E10 N/m2 

(b)= 0.35 m; (b)= 0.035 m 

a=0.035 

(E)= 2E11 N/m2 

(E)= 2E10 N/m2 

(a)= 0.035 m; (a)= 0.0035 m 

(b)= 0.35 m; (b)= 0.035 m 
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Table1. Definition of different analyzed cases 

 

It is assumed that the reliability is defined by a criterion on the deflection W, at the node B, which should be 

smaller than a limited displacement wmax = -0.3m. The objective function can be defined as follows: 

G = W − wmax      (18) 

The objective is to calculate the probability of default, Pf, defined by: 

Pf(G = W − wmax < 0)     (19) 

 

Figure 16 (respectively 18) shows the evolution of the deflection at node B as a function of cumulative  

 

distribution functions of the probabilistic parameters of case 1 (respectively of the case 2). 

Figure 17 (respectively 19 and 20) shows the limit separating the area where the criterion is verified and the area 

where it is not verified, as a function of cumulative distribution functions of the probabilistic parameters of case 

1 (respectively of the case 2 and case 3). The explicit result obtained by our approach is compared with the 

Monte-Carlo simulation. 
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Figure 16. Case 1: Evolution of the displacement at B as a  

function of cumulative distribution functions of P(E) and P(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Case 1: Safe  and unsafe areas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Case 2: Evolution of the displacement at B as a function of 

 cumulative distribution functions of P(E) and P(b) 
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Figure 19. Case 2: Safe  and unsafe areas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Case 3:   Safe  and unsafe areas 

 

 The failure probability, Pf, was calculated by the RPR model (PfRPR), the validation of this probability 

is made by a comparison with results obtained by the Monte Carlo method (PfMC).Table 2 compares the 

probability of failure and the Confidence Interval (C-I) between Monte-Carlo pulling and RPR method. Table 2 

is done with =0.95: we are sure, with 95% of confidence, that the Pf will be in the C-I. 

 
 Number  of pulling 

 100 1000 10000 

PfMC: Case 1: 

          Case 2: 

          Case 3: 

0.810 

0.670 

0.680 

0.821 

0.645 

0.663 

0.814 

0.651 

0.649 

PfRPR: Case 1: 

          Case 2: 

          Case 3: 

0.770 

0.630 

0.640 

0.814 

0.638 

0.654 

0.803 

0.654 

0.649 

C-IMC: Case 1: 
           Case 2: 

           Case 3: 

[0.642   0.977] 
[0.517   0.822] 

[0.529   0.830] 

[0.767   0.874] 
[0.600   0.689] 

[0.616   0.709] 

[0.797   0.831] 
[0.637   0.665] 

[0.635   0.664] 

C-IRPR: Case 1: 
            Case 2: 

            Case 3: 

[0.608   0.931] 
[0.491   0.768] 

[0.497   0.782] 

[0.760   0.867] 
[0.593   0.682] 

[0.608   0.699] 

[0.787   0.820] 
[0.640   0.669] 

[0.635   0.663] 

Table 2. Comparison of the probability of failure and Confidence 

 Interval  between Monte-Carlo pulling and RPR method 

 

4.2. An example with different probabilistic area or with deterministic and probabilistic area 

Let the structure constrained at A and D and loaded at C with a force F = 5E7 N; see figure 21. In Table 4, the 

parameters of different analyzed cases are defined. 
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Figure 21. Analyzed structure and the two studied cases 

 

 AB: zone 1 BC: zone 2 CD: zone 3 

Case 1 E1=Probabilistic  

a1=0.035 

b1=0.35 

E2=2E11 

a2= Probabilistic 

b2=0.35 

E3=2E11 

a3=0.035 

b3= Probabilistic 

Case 2 E1=2E11 

a1=0.035 

b1=0.35 

E2=2E11 

a2= Probabilistic 

b2=0.35 

E3=2E11 

a3=0.035 

b3= Probabilistic 

 

Tables 4. Different analyzed cases 

 

 The case 1 is analyzed for its probabilistic parameters at different zones of the structure. The case 2 is 

analyzed for its deterministic zone and the necessity or not of the use of a special function as the examples of the 

sections 5.2 and 5.3. For the case 1, the classical representative functions are used and a good result is obtained 

showing the possibility of the use of the present method for non global probabilistic parameters and a different 

local  probabilistic parameters; see figure 22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Case 1. Safe and non safe area for a limit  

displacement 0.6 m at point C 

 

For the case 2, first only probabilistic classical representative functions are used and then a special function 

associated to all deterministic parameters is used. Figures 23.a and 23.b show that the use of the special function 

gives very good results. 
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        Figure 23.a. Without using a special function                    f igure 23.b. With using a special function 

 

V. EMPIRICAL METHOD OF CHOOSE OF REPRESENTATIVE FUNCTIONS 
 From examples, and it is not demonstrated, the best set representative functions are obtained by the 

independent function obtained from the inverse of the elementary matrix. As follows, the set functions 

associated to classical examples are given.  

 

5.1.  Example 1: Discrete system 

The discrete system of the section 5.1 is defined by its stiffness matrix and its inverse: 


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The independent functions (
1

1

k
,

2

1

k
) represent the representative set of functions. 

The discrete system of the section 5.3 is defined by its stiffness matrix and its inverse: 
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The independent functions (

1

1

k
,

2

1

k
,

3

1

k
) represent the representative set of functions. 

 

5.2.  Example 2: 2D in plane stress 

Let a system with three unknown parameters (11, 22,12) with two probabilistic parameters E and and 

related by the following linear system (2D in plane stress). The inverse matrix gives an idea about the set of 

representative functions. 
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It is clear that the two functions 
E

1
 and 

E


 are independent and can be a representative set of functions. It is 

confirmed that any independent combination can be a set representative functions, as:  
E

1
 and 

E

1
. 

Safe 

Safe 

Unsafe 

Unsafe Safe 
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5.3.  Example 3: 2D beam element 

For a 2D beam, the elementary matrix and its inverse are:  
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   (23) 

The two representative functions are: 

)()()(
),,(1

baE

baE
baE

PbPaPE
PPP


 ; 

 

)()()(

),,(
3

3

2

baE

baE
baE

PbPaPE

PPP


  (24) 

 

Remark: for any other finite element, it is suggested to inverse the elementary finite element matrix (the 

inversed part) and the independent functions will be the representative set functions. 

 

VI. CONCLUSIONS AND PERSPECTIVES 
 For a reliability analysis with probabilistic parameters, classical approaches lead to a problem with a 

large size. Reducing its size without any alteration of the solution is recommended for a good design.Here 

presented a general theory for static approach for reliability probabilistic analysis. For static problem, the 

solution is projected on well-chosen representative set of functions and an approximated solution is obtained. 

The equivalent problem reduces the size problem.The Reduction Probabilistic Reliability (RPR) approach, here 

described, is applied for static probabilistic discrete and frame examples. Discrete and frame static systems are 

analyzed and compared with exact solutions or issued from Monte-Carlo pulling analysis.As perspectives, these 

approach can be extended to possibilistic evolution parameters and to dynamic analysis in frequencies domain. 
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Appendix: Basic examples of probabilistic laws  

 Here is characterized, through some examples, the probabilistic parameters and theirs relative laws. As 

examples, two practical used probabilistic law parameters are presented and characterized.  

 

Gaussian Law distribution 

Consider that variable vi follows the Gauss normal law which is defined by:  
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 The parameter μi is the mean or expectation of the distribution (and also its median and mode). The 

parameter σi is its standard deviation; its variance is therefore σi
2
. 

For a generic normal distribution fi with mean μi and deviation σi, the cumulative distribution function is: 
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erf(x) is the related error function defined by: dtexerf
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It gives the probability that the value of a standard normal random variable Vi  will not exceed vi. The inverse 

expression )( iPiv  of )( iviP   will be used to write the problem as a function of the cumulative distribution 

functions of variables. It can be obtained for all probabilistic laws. 

 

Uniform Law distribution 

 The uniform law distribution is based on the continuous uniform distribution or rectangular 

distribution. It is a family of symmetric probability distributions such that for each member of the family, all 

intervals of the same length on the distribution's support are equally probable. The support is defined by its 

minimum and maximum values: 
min
iv  and 

max
iv . 

The probability density function of the continuous uniform distribution is: 
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The cumulative distribution function is: 
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