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Abstract: Singular value decomposition(SVD) plays a vital role in matrix transformation. It is the basis on 

which number of vector- based methods like Principal Component Analysis (PCA), Independent Analysis. As 

we work with big data, there is a chance of facing these methods rather frequently.by transforming the matrix in 

multiple ways using SVD, it makes us to check the meaning of words from various angles. Usually a matrix can 

be decomposed into 3 matrices. A is the original matrix, and U and V are the new basis. And D stands in 

between U and Metrics only has diagonal elements are similar values of A. U rows are document vectors but 

now with different coefficient V: columns of V
T
 are word vectors.A sparse matrix solver is topic that people 

have been working on for 50 years in HPC (High Performance Computing). There are several math solver 

libraries like Petsc, Trilinos, and Python or Mat lab in order to compute these 3 matrices.The Matrix can get 

large when we go to the internet scale but SVD can handle the computation of a few hundred million cells in a 

large sparse matrix with the help of dimension reduction by shrinking the size of the matrix. 
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I. INTRODUCTION 
This paper define what is PCA and SVD , and to give some example of PCA and SVD . then  discuss 

about how to reduce the dimension of data (in matix) by using SVD: the basic idea of this method putting zero 

in smallest singular value in SVD of A. then find product of changed decomposed matrices , we get a new 

matrix as a result. This resultant matrix dimension is reduced compare to the given matrix. 

 

1.1 Principal Component Analysis (PCA) 

PCA is used as a technique for collection a dataset consisting of a set of tuples point in a high 

dimension resembling space and finding directions along which the tuple line up fast. This is to formulate the set 

of tuple as a matrix A and find eigen vector of     and    . These eigen vector can be considered as affixed 

rotation in a high dimensional space. If we apply this transformation to the original data the axis corresponding 

to the principle eigen vector is the axis along which the point are most speed out. 

 

1.2 Singular Value Decomposition 

We now look at a process in which a higher dimensional  matrix converts into  lower dimensions matrix by 

using singular value decomposing. 

Let A be a     matrix and rank is r then  

                 
  

1. U is      column orthogonal matrix 

2. V is      column orthogonal matrix 

3.  is a diagonal matrix the elements are called the singular value of A. 

 

II. METHOD AND ANALYSIS 
The data is two dimensional a number of dimensions that is too small to make PCA really useful. The data 

shown in fig 1.1 has only four points.  

 

https://www.hpc.informatik.uni-mainz.de/sparse-matrix-vector-multiplication/


A Study On Dimension Reduction By Using Singular Value Decomposition 

International organization of Scientific Research                                                               67 | P a g e  

 
 

Let us represent the points by a matrix A with four rows one for each point and two columns, corresponding to 

the X- axis and Y- axis. This matrix is 

   

  
  
  
  

  

     
    
    

  

  
  
  
  

   
    
    

  

We may find the eigen value for the matrix     and corresponding eigen vectors        

Therefore the unit eigen vector corresponding to the principle eigen vakue 52 is     

 

  
 

  

  

For the second eigen value in 8 the unit eigen vector corresponding to the principle eigen value 2 is  

   

 
 
 
 
  

  
 

   
 
 
 

 

Now, let us construct the matrix of eigen vector for the matrix     placing the principle eigen vector first, 

   

 
 
 
 
 

  

  

  
 

  

 

   
 
 
 

 

Any matrix of orthogonal vectors represent a rotation of the axes of a Euclidean space. 

The matrix above can be viewed as a rotation 45 degrees anti clock wise. 

 For example 

Let us multiply A by E the product  is 
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We observed that AE is the point of A transformed into a new coordinate space. In this case the X-axis 

is most significant. If we want to transform A to a space with fewer dimensions than the choice.that preserved 

the most significant is the one that uses the eigen vector associate with the largest eigen values and ignore the 

other eigen value. Let A be the matrix from fig 1.1. this data has only two dimensions, project the data onto a 

one dimension space that is  we compute. 

    

 
 
 
 
 
 
 
 
 
 

  
 

  
 

  
 

   
 
 
 
 
 
 
 
 

 

The point of A by this projection onto the axis of Fig 2.2 while the first and third point project to the 

same point, as the second and fourth. This representation makes the best possible one dimensional and 

districtions among the point. 

 

Example 

Table 2.1 gives a rank 2 matrix representations rating of subject by the student. In this contrived example there 

are two concepts understanding the subjects: “Science & Engineering” . 

 

 M   P C E D 

   1 1 1 0 0 

   2 2 2 0 0 

   3 3 3 0 0 

   5 5 5 0 0 

   0 0 0 4 4 

   0 0 0 5 5 

   0 0 0 2 2 

 Table 2.1 

M – Maths, P – Physics ,  C –Chemsitry,  E – Engineering Mechanics,  D – Drawing,   

      ,       are boys        ,   are girls 

 

All the boys rate only science subject and all the girls rate only Engineering. It is this existence of two strictly 

adherel to concepts. That gives the matrix a rank of 2. 

The decomposition of the matrix A from table 2.1 into U , D andV   Since the rank of A is 2. 
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A =

 
 
 
 
 
 
 
     
     
     
     
     
     
      

 
 
 
 
 
 

 

 

 
 

 
 

 

 
 

Which is singular value decomposition of matrix A by deleting the zeros of D cooresopoding columns of U and 

   then we get  
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III. INTERPRETATION OF SVD 
Let us think of the rows of A as students  and the column of A are subjects then matrix U connects 

students. For example the    who coorespond to row one of A like only subject of Science the second columnof 

first row of U is zero because    doesnot like Engineering subject at all. 

The matrix V relates to the subjects. The value -0.5774 in each of the first three columns of the first 

rows of    indicate first three subjects.while the zeros in last two columns of the first row indicates  

Engineering subjects are not opt  by boys.the second row of    tells the subjects E and M are exculsivly are 

Engineeering subjects. The matrix D gives strengh of each the concepts. In our example the strengh of Science 

concepts is 10.8167while the strengh of Engineering concepts is 9.4868. Therefore the Science concepts are 

stronger because the data provides more information about the subject of that genereand the students who like 

them. The best way to reduce the dimension of three matrices is to set the smallest of the singular value to zero. 

If we set the smallest singular value to zero, then we can also eliminate the cooresponding column of U and V.  

 

 
 
 
 
 
 
 
     
     
     
     
     
     
      

 
 
 
 
 
 

  

 
 
 
 
 
 
 
       
       
       
       

 
 
  

 
 
 
 
 
 

                                   

 

 
 

IV. CONCLUSION 

This paper is proven thatto reduce the dimension of the large  matrix into two  or more other matrices 

whose sizes are much smaller than the original by using singular values decompositionThe original matrix can 

be appoximately reconstructed by taking three matrices  product. Then we can enhance this process to the large 

data. 
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