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Abstract : We design and assess an algorithm to detect a multi-pixel target of an unknown spatial size, shape 

and position in a sequence of images in the presence of an additive Gaussian background clutter and a channel 

noise. The presence of the target decreases the background plus noise power that hence may be different under 

the null and alternative hypotheses. We use the generalized likelihood ratio (GLR) approach to derive a modified 

multi-pixel matched subspace detector (MMMSD) that is sensitive to both energy in the target subspace and 

reduced energy in the orthogonal subspace. The derived algorithm combines the multi-pixel matched subspace 

detector and multi-pixel background-plus-noise power change detector in a unique scheme. The crucial 

characteristic of the proposed detector is that prior knowledge of the target size, shape and position is not 

required. The designed detector is theoretically proved and numerically evaluated. Numerical simulations attest 

the validity of the theoretical analysis and show that the proposed MMMSD outperforms the known detector in 

the case of unknown spatial parameters of the target. 
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I. INTRODUCTION 
Target detection from optical/infrared images has been considered by many authors [1-25]. A number 

of approaches has been previously developed for the detection of targets in the presence of the dominant 

background clutter and noise. The GLR approach is a well known tool among the signal processing community 

and has been exploited in many detection problems [13], [14]. Reed and Yu [22] considered GLR target 

detection from a sequence of optical images, which are first preprocessed by removing local means so that the 

background clutter and noise will approximately have the Gaussian distribution. Distributed target detectors in 

Gaussian and Compound-Gaussian noise have been developed in [15-19]. In [21, 22, 25], the detector uses one 

pixel in an image sequence even though the target may occupy more than one pixel. It was shown [21] that the 

performance of the multi-pixel detector outperforms the performance of the detector using only one pixel. All 

quoted above detectors exhibit one drawback: they generally fail when the signal-to-background ratio (SBR) is 

low.he introduction of the paper should explain the nature of the problem, previous work, purpose, and the 

contribution of the paper. The contents of each section may be provided to understand easily about the paper. 

In video/infrared systems, the target may completely cover the pixel cells on the fluctuating surface 

and, in this case, the received signal contains only target signal plus channel noise. Hence, the presence of the 

target removes the background clutter from the received signal. In this case, it is more appropriate to use the 

GLR approach with different background plus noise power under the two hypotheses. Specifically, each pixel 

contains the background-plus-noise power under the null hypothesis and the signal-plus-noise power under the 

alternative hypothesis only in the case of the presence of the target in this pixel. A modified GLR approach 

associated with the hypothesis dependent background clutter power has been recently proposed by us for 

subpixel optical/infrared objects [24, 25].In our work, the detection problem of multi-pixel targets is being 

solved using the GLR approach that processes a certain set of pixels (subimage) in a sequence of images. We 

find the GLR test (GLRT) for a partially known deterministic multi-pixel target signal by using a set of 

Ksubimages of the same scene obtained from sequential observation in time. We extend the GLR approach to a 

general case when the possible object is contained within unknown N pixels located in the subimage of size L. 

The object may be partially or completely present within a received K×Lsubimage data matrix. Among the L 

pixels, N (N≤L) pixels are a sum of the deterministic signal and Gaussian channel noise, while the remaining L–

N pixels are a sum of a Gaussian background and Gaussian channel noise. The received subimage data matrix is 

used to estimate the sample background power for each pixel only under the alternative hypothesis. The 

proposed detector (MMMSD) is sensitive to both the SBR and size of the area unoccupied by the target within 
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the subimage. We contrast it with the known detector designed for known spatial parameters of the target. The 

theoretical results and computer simulation show that the detection performance of the proposed detector 

considerably outperforms that of the known detector. 

 

II. MULTI-PIXEL GLRT FOR RANGE DISTRIBUTED TARGETS 

In this section, we derive the GLRT for a multi-pixel range distributed target in the case of unknown a 

priori size, position and shape of the target. We consider the problem of detecting a multi-pixel optical target in 

the sequence of K digital images with a random homogeneous Gaussian background and channel noise. We 

assume that the multi-pixel object of the size N may be present completely or partially anywhere in the 

subimage of the size L. We assume that the subimageis partially covered by the target, and the presence of the 

target changes the background-plus-noise power in the pixels covered by the target. Let l∈Ω≡{1,…,L} be a 

subset of integers indexing the pixels in the subimage. We assume that the homogeneous background vectors cl 

and channel noise vectors nl can be modeled as K-dimensional (for K images) normal random vectors, i.e. 

cl~N(0,𝜎𝑐
2I) (after preprocessing) and nl~N(0,𝜎𝑛

2I). Moreover, suppose that the cland nl are random vectors that 

are independent from pixel to pixel. Finally, let Ω𝑇≡{1,…,N}⊂Ω (N≤L) be the subset of integers indexing the 

pixels, which may contain a partially unknown object under the H1 hypothesis. This partially unknown object is 

modeled assi=H𝜽𝑖  for i∈Ω𝑇 , where the unknown parameter𝜽𝑖  is the amplitude vector that locates the 

deterministic object signal in the signal subspace spanned by the p<K columns of a known target mode 

matrixH= 𝒉1 , … , 𝒉𝑝  = CK×p[13]. H is the Vandermonde matrix with discrete complex exponential elements 

(Fourier components). We develop a hypothesis test that distinguishes the signal-plus-noise hypothesis (H1) 

from the background-plus-noise hypothesis (H0). Consider two hypotheses: 

 

 

𝐻0:      𝒙𝑙 = 𝒄𝑙 + 𝒏𝑙 ,              𝑙 ∈ Ω,

   𝐻1:  
𝒙𝑖 = 𝒔𝑖 + 𝒏𝑖 ,                 𝑖 ∈ Ω𝑇 ,
𝒙𝑗 = 𝒄𝑗 + 𝒏𝑗 ,           𝑗 ∈ Ω ∖ Ω𝑇 ,

 
       (1) 

whereΩ ∖ Ω𝑇 ≡  𝑁 + 1, … , 𝐿  denotes the difference between subsets Ω and Ω𝑇 . We derive two different 
GLRTs based on two different hypotheses about the size, shape, and position of a possible object. First, we 
consider the case when the size, shape, and position of a possible target are a priori known i.e. Ω𝑇 = Ω. 
Then, the joint pdf under H1 and H0may be written as 

 p1(x1,…,xL;𝜽𝑖|𝐻1) =
𝑐

 𝜎𝑛
2𝑰 

𝐿/2 𝑒𝑥𝑝  –
1

2
  𝒙𝑖 − 𝒔𝑖 

𝑇 𝜎𝑛
2𝑰 −1 𝒙𝑖 − 𝒔𝑖 

𝐿
𝑖=1     (2) 

   p0(x1,…,xL;|𝐻0)=
𝑐

 𝜎𝑐+𝑛
2 𝑰 

𝑁/2 𝑒𝑥𝑝  –
1

2
 𝒙𝑖

𝑇 𝜎𝑐+𝑛
2 𝑰 −1𝒙𝑖

𝐿
𝑖=1  ,     (3) 

where .   is the determinant of a matrix, 𝜎𝑐+𝑛
2 = 𝜎𝑐

2 + 𝜎𝑛
2, and c is the pdf normalization constant. According to 

the Neyman-Pearson criterion, the optimum solution to the problem of testing hypotheses (1) is the likelihood 

ratio test (for known parameters) [13] or the GLR (for unknown parameters) [9, 12]. In the case of known size, 

position and shape of the target the GLR statistic can be formulated as 

Λkn= 
𝑚𝑎𝑥 𝜽𝑡 𝑝1(𝒙1 ,…,𝒙𝐿 ;𝜽𝑖|𝐻1)

𝑝0(𝒙1 ,…,𝒙𝐿 ;|𝐻0)
.       (4) 

It is well known that the maximum of  p1 with respect to θtis attained by substituting the true parameter θtwith 

the maximum likelihood estimate (MLE) of the 𝜽𝑡  

𝜽 𝑡 =  𝑯𝐻𝑯 −1𝑯𝐻𝒙𝑡  .        (5) 

Then, using some algebra, the known GLRT-based detector named Tknis given by the following statistical test 

Tkn= {
1

𝜎𝑐+𝑛
2 𝒙𝑖

𝑇𝑷𝑠𝒙𝑖 − 𝑞𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖}
𝑁
𝑖=1

>

<𝐻0

𝐻1
𝜂,      (6) 

where q = 𝜎𝑛
−2 − 𝜎𝑐+𝑛

−2  , 𝑷𝑠 is K×K  orthogonal projection matrix onto the signal subspace, 𝑷𝑠
⊥ = 𝑰 − 𝑷𝑠 is K×K  

orthogonal projection matrix onto the subspace orthogonal to the signal subspace  𝐻  , 𝑰 is K×K  unit matrix,  

and 𝜂 is a threshold.  

 Secondly, we consider the case when the size, shape, and position of a possible target are a priori 

unknown. We introduce the unknown parameter  Ω𝑇 , that denotes the subset of integers indexing the pixels, 

unknown background plus noise variance 𝜎1,𝑖
2  for each pixel-vector under hypothesis H1 and unknown target 

abundance vector θi. The GLR is formulated as 
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Λun=  
𝑚𝑎𝑥

𝜽𝑖 ,Ω𝑇 ,𝜎1,𝑖
2 𝑝1(𝒙1 ,…,𝒙𝐿 ;𝜎1,𝑖

2 ,Ω𝑇 ,𝜽𝑖|𝐻1)

𝑝0(𝒙1 ,…,𝒙𝐿 ;|𝐻0)
,      (7) 

where the numerator is maximized by independent varying 𝜎1,𝑖
2 , θi and Ω𝑇 .The MLE of the 𝜎1,𝑖

2  has two 

solutions: 

𝜎 1,𝑖
2 =

𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖

𝐾−𝑝
and 𝜎 1,𝑖

2 =
𝒙𝑖

𝑇𝒙𝑖

𝐾
,      (8) 

wherep is the rank of the target subspace  𝐻 . Previous assumptions for the homogeneous background with 

known variance 𝜎𝑐+𝑛
2  under null hypothesis and unknown 𝜎 1,𝑖

2  under alternative hypothesis imply that the joint 

pdf under H1 and H0may be written as 

p1(x1,…,xL;Ω𝑇 , 𝜎 1,𝑖
2 , 𝜽 𝑡 |𝐻1) 

= 
𝑐

   𝜎 1,𝑖
2 𝑰 𝐿

𝑖=1  
1

2 
 𝑒𝑥𝑝  –

1

2
 𝒙𝑖 − 𝒔𝑖 

𝑇 𝜎 1,𝑖
2 𝑰 

−1
 𝒙𝑖 − 𝒔𝑖  𝑖∈Ω𝑇

×  𝑒𝑥𝑝  –
1

2
𝒙𝑗

𝑇 𝜎 1,𝑗
2 𝑰 

−1
𝒙𝑗  𝑗 ∈Ω∖Ω𝑇

,   (9) 

p0(x1,…,xL;|𝐻0)=
𝑐

 𝜎𝑐+𝑛
2 𝑰 

𝐿/2 𝑒𝑥𝑝  –
1

2
 𝒙𝑙

𝑇 𝜎𝑐+𝑛
2 𝑰 −1𝒙𝑙

𝐿
𝑙=1  .    (10) 

Substitutions θi(5) and 𝜎 1
2 (8) into the p1 (7) yield 

Λun =  𝑚𝑎𝑥Ω𝑇

 𝜎𝑐+𝑛
2  

𝐾𝐿
2 
𝑒𝑥𝑝    

𝒙𝑖
𝑇𝒙𝑖

2𝜎𝑐+𝑛
2  −  −

 𝐾−𝑝 𝒙𝑗
𝑇𝑷𝑠

⊥𝒙𝑗

2𝒙𝑗
𝑇𝑷𝑠

⊥𝒙𝑗
 𝑁

𝑗 =1 −  −
 𝐾−𝑝 𝒙𝑗

𝑇𝒙𝑗

2𝒙𝑗
𝑇𝑷𝑠

⊥𝒙𝑗
 𝐿

𝑗 =𝑁+1
𝐿
𝑖=1  

  
𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖
𝐾−𝑝

𝐿
𝑖=1  

𝐾
2 

 

= 𝑚𝑎𝑥Ω𝑇

 𝜎𝑐+𝑛
2  

𝐾𝐿
2 
𝑒𝑥𝑝    

𝒙𝑖
𝑇𝒙𝑖

2𝜎𝑐+𝑛
2  −

𝐿𝐾 −𝑝𝑁

2
𝐿
𝑖=1  

  
𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖
𝐾−𝑝

𝐿
𝑖=1  

𝐾
2 

   .       (11)  

Further, we use a straightforward maximization in (11). Since LK>pN, it follows immediately that the maximum 

of Λun with respect to Ω𝑇  (or N) is obtained by replacing the unknown parameter N by known L. Taking the 

logarithm of the K/2-th root of Λun, the proposed GLRT-based detector named MMMSD is given by the 

following statistical test: 

    Tun =   
𝒙𝑖

𝑇𝒙𝑖

𝐾𝜎𝑐+𝑛
2 −

𝐾−𝑝

𝐾
− 𝑙𝑛

𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖

 𝐾−𝑝 𝜎𝑐+𝑛
2  𝐿

𝑖=1 .      (12) 

We can rewrite the proposed statistical test in the following form 

Tun =   
𝒙𝑖

𝑇𝑷𝑆𝒙𝑖

𝐾𝜎𝑐+𝑛
2 −

𝐾−𝑝

𝐾

𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖

(𝐾−𝑝)𝜎𝑐+𝑛
2 −

𝐾−𝑝

𝐾
− 𝑙𝑛

𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖

 𝐾−𝑝 𝜎𝑐+𝑛
2  𝐿

𝑖=1 .    (13) 

Next we assume that p<<K and statistical test Tun can be rewritten as 

Tun ≈   
𝒙𝑖

𝑇𝑷𝑠𝒙𝑖

𝐾𝜎𝑐+𝑛
2 +

𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖

(𝐾−𝑝)𝜎𝑐+𝑛
2 − 𝑙𝑛

𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖

 𝐾−𝑝 𝜎𝑐+𝑛
2 − 1 𝐿

𝑖=1 =    
𝒙𝑖

𝑇𝑷𝑠𝒙𝑖

𝐾𝜎𝑐+𝑛
2 + A(𝒙𝑖) 

𝐿
𝑖=1 ,    (14) 

where A(xi) ≈
1

2
 

𝜎 1,𝑖
2

𝜎𝑐+𝑛
2 − 1 

2

 .       (15) 

We observe that Tun and Tkn (14 and 6) differ in the way they remove the power in the subspace 

orthogonal to signal subspace  𝐻  from the total power.The first terms in both algorithms (Tun and Tkn) are the 

same (matched subspace detector (MSD)) but the second terms are different. The value of the second term for 

each pixel occupied by target depends on hypotheses H0 and H1.The impact of the second term on the detection 

performance depends on ratio between their values under H0 and H1. One can see that  A(xi)>>𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖  

especially in case of a small noise-to-background-plus-noise ratio 𝑑 =
𝜎𝑛

2

𝜎𝑐+𝑛
2 . Since the real target size, position 

and shape are rarely exactly known in practice, it is interesting to consider the performance of the proposed 

statistical test Tun and compare it to known statistical test Tkn. 

III. DETECTION PERFORMANCE ANALYSIS 

In this section, we derive the asymptotic distributions of the test Tununder the both hypotheses with a 

view to evaluate the detection performance of the test in terms of probability of detection. Since xi is drawn from 

a multivariate Gaussian distribution, with zero mean and covariance matrices 𝜎𝑐+𝑛
2 𝑰and 𝜎𝑛

2𝑰, it follows that [13] 
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TMSD =  
𝒙𝑖

𝑇𝑷𝑠𝒙𝑖

𝐾𝜎𝑐+𝑛
2 ~

 
 
 

 
 

1

𝐾
𝜒𝐿𝑝

2  0                                    under𝐻0

 

1

𝐾
𝜒(𝐿−𝑁)𝑝

2  0     for 𝑖 ∈ Ω ∖ Ω𝑇

𝑑

𝐾
𝜒𝑁𝑝

2  𝜆     for 𝑖 ∈ Ω𝑇

 under𝐻1

 𝐿
𝑖=1    (16) 

where sign ~ means distributed as, non-centrality parameter 𝜆 =  
𝑁𝒔𝑇𝒔

𝜎𝑛
2 .  Further we obtain 

 
𝒙𝑖

𝑇𝑷𝑠
⊥𝒙𝑖

(𝐾−𝑝)𝜎𝑐+𝑛
2 ∼𝐿

𝑖=1

 
 
 

 
 

1

𝐾−𝑝
𝜒𝐿(𝐾−𝑝)

2  0                                  under 𝐻0

 

1

𝐾−𝑝
𝜒 𝐿−𝑁 (𝐾−𝑝)

2  0   for 𝑖 ∈ Ω ∖ Ω𝑇

𝑑

𝐾−𝑝
𝜒𝑁(𝐾−𝑝)

2  0            for 𝑖 ∈ Ω𝑇

 under 𝐻1

    (17) 

In order to come up with manageable expressions, we investigate an asymptotic approach, assuming that the 

number of images K is large. As K grows large, it is well known that the chi-square distribution 𝜒𝐾
2  0  

converges to a Gaussian distribution with the mean K and variance 2K. It follows that 

 

𝒙𝑖
𝑇𝑷𝑠

⊥𝒙𝑖

 𝐾−𝑝 𝜎𝑐+𝑛
2 ∼   

 
 
 

 
 𝑁  1,

2

𝐾−𝑝
                                        under H0

 
𝑁  1,

2

𝐾−𝑝
    for 𝑖 ∈ Ω ∖ Ω𝑇

𝑁  𝑑,
2𝑑2

𝐾−𝑝
       for 𝑖 ∈ Ω𝑇

     under H1
 
     (18) 

where∼    means asymptotically distributed. Then, the asymptotic distribution of   A(𝒙𝑖) 𝐿
𝑖=1  is given by 

 A(𝒙𝑖)
𝐿
𝑖=1 ∼   

 
 
 

 
 

1

𝐾−𝑝
𝜒𝐿

2 0                                                        under 𝐻0

 

1

𝐾−𝑝
𝜒𝐿−𝑁

2  0                          for 𝑖 ∈ Ω ∖ Ω𝑇

𝑑2

𝐾−𝑝
𝜒𝑁

2  
𝐾−𝑝

2𝑑2 (1 − 𝑑)2𝑁        for 𝑖 ∈ Ω𝑇

 under 𝐻1

    (19) 

Therefore, the asymptotic distribution of Tunis given by 

Tun∼    

1

𝐾
𝜒𝐿𝑝

2  0 +
1

𝐾−𝑝
𝜒𝐿

2 0  under  𝐻0

𝑑

𝐾
𝜒𝑁𝑝

2  𝜆 +
𝑑2

𝐾−𝑝
𝜒𝑁

2  
𝐾−𝑝

2𝑑2 (1 − 𝑑)2𝑁 +
1

𝐾
𝜒(𝐿−𝑁)𝑝

2  0 +
1

𝐾−𝑝
𝜒𝐿−𝑁

2  0 under 𝐻1

  (20) 

In order to come up with exploitable expressions, we examine a further approximation to (20) 

Tun∼    

1

𝐾
𝜒𝐿(𝑝+1)

2  0 under 𝐻0

𝑑

𝐾
𝜒𝐿(𝑝+1)

2  𝜆 + 𝜆1  under 𝐻1

 ,         (21) 

where 𝜆1 =  
(𝐾−𝑝) 𝑑−1 2𝑁

2𝑑2 . The above expression holds for large K and d≈1. The distribution derived above 

enable one to obtain the receivers operating characteristics (ROC), that is the probability of detection as a 

function of the probability of false alarm. 

IV. NUMERICAL ILLUSTRATIONS 
The aim of this section is twofold. On the one hand, through extensive Monte Carlo simulations, we 

can check that the pdf of (18) matches the exact pdf of Tun. On the other hand, we assess the performance of the 

statistics Tunboth in terms of false alarm probability (Pfa) and detection probability (Pd). We also compare the 

performance of the proposed Tun with the known statistics Tkn. Since closed-form expressions for Pfa and Pd are 

not available for the Tkn and Tun for different parameters variations, we evaluate Pdat fixed Pfa using standard 

Monte Carlo counting techniques based on 100/Pfa and 100/Pd independent trials, respectively. At the analysis 

stage, one must specify the background and target models. The signal model si=Hθi is based on an assumption 

that we have no prior knowledge about the distribution of θi. Therefore, we model θi as a deterministic unknown 

vector. Commonly, the vectors θi, i=1, ..,N, are modeled as vectors drawn from an uniformly distributed 

uncorrelated random sequence. A model of the target mode matrix is a Vandermonde matrix with discrete 

complex exponential elements 
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                             H=  

1 1 ⋯ 1
ℎ1 ℎ2 ⋯ ℎ𝑝

⋮ ⋮ ⋮ ⋮
ℎ1

𝐾−1 ℎ2
𝐾−1 ⋯ ℎ𝑝

𝐾−1

 ,     (22) 

wherehi=exp(j2πi/K), i∈ (0, 𝑝), j= −1. In order to limit the computational burden, the false alarm 

probability is chosen as 10
-3

. Fig.1 illustrates the relation between the detection probability of the MMMSD 

(Tun) and signal-to-noise ratio in each pixel for the different target fill factors (FF=N/L) defined as the 

percentage of a pixel area occupied by the object. We can compare (see Fig.1) the theoretical performance with 

simulation results. We can notice that the theoretical expression (18) gives a relatively precise approximation of 

the real test performance. Fig.2 shows the obtained theoretical receiver operating characteristics (the detection 

vs false alarm probabilities) for the different FF using the approximation (21) to the asymptotic distribution of 

Tun (20). As we see in Figs. 1,2, the detector performance depends on FF. One can see that for FF≈1 the 

performance of the MMMSD is better. In Fig.3, we can compare the performance of the proposed test statistics 

(12) and known (6). The statistical test (6) is obtained using GLRT for known position, shape and size of target 

(the target completely occupies the subimage) but the statistical test (12) for unknown position, shape and size 

of target. An intuitive and qualitative analysis of the difference between Tunand Tknallows to conclude that for 

the FF≈1 the Tknmust be better but in the case of FF<1 the Tun must be better.  

 

 
Fig.1. Detection probability vs SNR for different FF, background-to-noise ratio BNR=1.2, L=20, K=20, 

p=4, Pfa=10
-3

 (Theoretical and simulation results for the MMMSD). 

 

 
Fig.2. Detection probability vs false alarm probability (ROC) for different FF, L=50, K=20, p=4, BNR=2, 

SNR=2 (Theoretical results for the MMMSD, see (21) ). 
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One can see in Fig.3 that the quantitative analysis confirms the qualitative one: in the case of FF<0.8 the 

performance of the Tunoutperforms the performance of the Tkn.  

 
Fig.3. Detection probability vs SNR for different FF, L=10, K=10, p=2, Pfa=10

-3
 (Simulation results for Tun and 

Tkn). 

 
Fig.4. Gain factor vs fill factor for different background-to-noise ratio (BNR=1/d), L=25, K=6, p=2, Pfa=10

-3
 

(Simulation results for Tun and Tkn). 

 

  These results of the comparison (Tun and Tkn) for the small FF and different signal-to-noise ratio (BNR) 

are presented in Fig.4. In this figure we use an important parameter of the detector performance: detector gain 

factor. This factor is defined as the horizontal displacement (at detection probability PD= 0.8) between 

dependences of PD versus SNR for the Tunand Tkn(see Fig.3 for example) [24]. One can see that gain factor 

depends on BNR y can achieve 4 dB. Therefore, the performance of the Tunoutperforms the performance of the 

Tkn in the case of unknown shape, size and position of the target within the subimage. Moreover, its performance 

is robust with respect to the shape and position of the target within the subimage. 

 

II. CONCLUSION 
In contrast to traditional methods, we derive the GLRT using the background power estimation only 

under the alternative hypothesis. This is an interesting novel twist on the usual approach to unstructured multi-

pixel detection. This approach extends well-known existing ones on matched subspace detection in the 

hypothesis dependent multi-pixel model that we consider. The structure of the proposed MMMSD differs from 

the known detector by adding the term proportional to the sum of the logarithms of the ratios between the 

background variances under H1 and H0 . The numerical simulations confirm the validity of the theoretical 
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analysis and show that the novel detector outperforms the classical one considerably. The crucial characteristic 

of the proposed detector is that prior knowledge of the target shape and position is not required, and its 

performance is robust with respect to the shape and position of the target. 
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