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Abstract: Multiplexing of signals enables the usage of same channel for multiple signals at the same time. 

Among multiplexing schemes, Time division multiplexing is one of the fundamental and basic multiplexing 

scheme. TDM was utilized in popular T1 carrier system, which transfers voice signals in a single channel. TDM 

divides the total time scale into serial slots, where these slots are used to carry samples of signals in a round 

robin manner. When the TDM signal is presented to channel, the noise in channel, effects the signal over some 

time, or some frequency with certain effect on amplitude. Hence, when the TDM signal is attacked by noise, few 

samples of few or all the base signals may be effected by noise. The solution to this problem was in many forms. 

But all these forms takes the TDM signal as a base or whole signal as a unit, and run the denoising schemes. But 

the base signals which constitutes the TDM signal may have variety of properties. These signals will be effected 

by noise in a different way from each other. Hence towards this end, the main objective and contribution is to 

perform the denoising after demultiplexing. Here, the denoising of different signals may be done with different 

denoising schemes or with a variety of quantity the denoising may be applied. The other aspect of this research 

work is to find out optimal denoising technique for base signals based on base signal properties. The denoising 

techniques considered are adaptive filtering techniques, wavelet based denoising and wavelet packed based 

denoising. ECG and Audio signals are considered as base signals in this work. Simulation results suggest that the 

proposed structure result in good performance. 
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I. INTRODUCTION 
Multirate systems are building blocks commonly used in digital signal processing (DSP). Their 

function is to alter the rate of the discrete-time signals, which is achieved by adding or deleting a portion of the 

signal samples. Multirate systems play a central role in many areas of signal processing, such as filter bank 

theory and multi-resolution theory. They are essential in various standard signal processing techniques such as 

signal analysis, de-noising, compression and so forth. During the last decade, however, they have increasingly 

found applications in new and emerging areas of signal processing, as well as in several neighboring disciplines 

such as digital communications. Adaptive filtering techniques are used in a wide range of applications, including 

echo cancellation, adaptive equalization, adaptive noise cancellation, and adaptive beam-forming [1][2][3]. 

These applications involve processing of signals that are generated by systems whose characteristics are not 

known a priori. Under this condition, a significant improvement in performance can be achieved by using 

adaptive rather than fixed filters. An adaptive filter is a self-designing filter that uses a recursive algorithm. This 

paper presents wavelet analysis as an adaptive multirate filter. De-noising of TDM signals is considered.   

As shown in the Fig. 1, an Adaptive Noise Canceller (ANC) has two inputs – primary and reference. 

The primary input receives a signal s from the signal source that is corrupted by the presence of noise n 

uncorrelated with the signal. The reference input receives a noise n0 uncorrelated with the signal but correlated 

in some way with the noise n. The noise no passes through a filter to produce an output nˆ that is a close 

estimate of primary input noise [4][5]. This noise estimate is subtracted from the corrupted signal to produce an 

estimate of the signal at ŝ , the ANC system output. In noise canceling systems a practical objective is to 

produce a system output ŝ = s + n – n̂  that is a best fit in the least squares sense to the signal s. This objective is 

accomplished by feeding the system output back to the adaptive filter and adjusting the filter through an LMS 

adaptive algorithm to minimize total system output power. In other words the system output serves as the error 

signal for the adaptive process [6][7]. Assume that s, n0, n1 and y are statistically stationary and have zero 

means. The signal s is uncorrelated with n0 and n1, and n1 is correlated with n0.  

ŝ  = s + n – n̂  
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Taking expectation of both sides and realizing that s is uncorrelated with n0 and n̂  , 

E[ ŝ 2
] = E[s

2
] + E[(n - n̂  )

2
] + 2E[s(n - n̂  )] 
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2
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The signal power E[s
2
] will be unaffected as the filter is adjusted to minimize E[ ŝ 2

]. 

min E[ ŝ 2
] = E[s

2
] + min E[(n - n̂  )

2
] 

 
Fig. 1 Adaptive Noise Canceller 

 

Thus, when the filter is adjusted to minimize the output noise power E[ ŝ 2
], the output noise power 

E[(n - n̂ )
2
] is also minimized. Since the signal in the output remains constant, therefore minimizing the total 

output power maximizes the output signal-to noise ratio. Since ( ŝ - s) = (n – n̂ ). This is equivalent to causing 

the output ŝ to be a best least squares estimate of the signal s. The rest of the paper is organized as follows. In 

the section II, a review of traditional adaptive filters is given. In section III, wavelet and wavelet packet 

decomposition and reconstruction processes along with new wavelet packets are presented. In section IV, the 

simulation results including the ANC performance of traditional adaptive filters, wavelets, existing wavelet 

packets and new wavelet packets are discussed. The section V concludes the paper. 

 

II. TRADITIONAL ADAPTIVE FILTERS 
Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic a desired filter by 

finding the filter coefficients that relate to producing the least mean squares of the error signal (difference 

between the desired and the actual signal). It is a stochastic gradient descent method in that the filter is only 

adapted based on the error at the current time. It was invented in 1960 by Stanford University professor Bernard 

Widrow and his first Ph.D. student, Ted Hoff [4]. The Fig. 2 shows the LMS adaptive filtering. 

 

 
Fig. 2 Lms Adaptive Filtering 

 

The realization of the causal Wiener filter looks a lot like the solution to the least squares estimate, 

except in the signal processing domain. The least squares solution, for input matrix X and output vector Y is 

yXXX TT 1)(ˆ  . The FIR Wiener filter is related to the least mean squares filter, but minimizing its error 

criterion does not rely on cross-correlations or auto-correlations. Its solution converges to the Wiener filter 

solution. Most linear adaptive filtering problems can be formulated using the block diagram above. That is, an 

unknown system h(n) is to be identified and the adaptive filter attempts to adapt the filter )(ˆ nh to make it as 

close as possible to h(n), while using only observable signals x(n), d(n)  and e(n); but y(n), v(n) and h(n) are not 

directly observable. Its solution is closely related to the Wiener filter. The basic idea behind LMS filter is to 

approach the optimum filter weights (R
-1

P) by updating the filter weights in a manner to converge to the 
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optimum filter weight. The algorithm starts by assuming a small weights (zero in most cases), and at each step, 

by finding the gradient of the mean square error, the weights are updated. That is, if the MSE-gradient is 

positive, it implies, the error would keep increasing positively, if the same weight is used for further iterations, 

which means we need to reduce the weights. In the same way, if the gradient is negative, we need to increase the 

weights. So, the basic weight update equation is ],[1 nWW nn 
where   represents the mean-square error. 

The negative sign indicates that, we need to change the weights in a direction opposite to that of the gradient 

slope. The mean-square error, as a function of filter weights is a quadratic function which means it has only one 

extreme that minimizes the mean-square error, which is the optimal weight. The LMS thus, approaches towards 

these optimal weights by ascending/descending down the mean-square-error versus filter weight curve [5][6][7]. 

The LMS algorithm for p
th

 order algorithm can be summarized as 

Parameters: p is the filter order,  

µ is the step size 

Initialization: 0)0(ˆ h  

Computation: For n = 0, 1, 2,…. 
Tpnxnxnxnx )]1(),...,1(),([)(   

)()(ˆ)()( nxnhndne H  

)()()(ˆ)1(ˆ * nxnenhnh   

 

Normalized Least Mean Squares Filter (NLMS) 

The main drawback of the "pure" LMS algorithm is that it is sensitive to the scaling of its input ).(nx

This makes it very hard (if not impossible) to choose a learning rate  that guarantees stability of the algorithm. 

The Normalized least mean squares filter (NLMS) is a variant of the LMS algorithm that solves this problem by 

normalizing with the power of the input [8][9]. The NLMS algorithm can be summarized as: 

Parameters: p - filter order 

 
µ - step size 

Initialization: 0)0(ˆ h  

Computation: For n = 0, 1, 2, …   

 

Tpnxnxnxnx )]1(),....,1(),([)( 

 

 )()(ˆ)()( nxnhndne H  

 )()(

)()(
)(ˆ)1(ˆ

*

nxnx

nxne
nhnh

H


  

III. WAVELET AS A MULTIRATE ADAPTIVE FILTER 
For almost all signals, the low-frequency component is the most important part. It is what gives the 

signal its significance and identity. The high-frequency content, on the other hand, adds flavor. Consider an 

audio signal. If the high frequency components are removed, the audio sounds different, but one can still tell 

what's being said in the audio [10]. However, if enough of the low-frequency components are removed, one 

hears gibberish. 

Wavelet analysis often speaks about approximations and details. The approximations are the low-

frequency, high-scale components of the signal. The details are the high-frequency, low-scale components [11]. 

The filtering process in wavelet analysis, at its basic level, looks like this. 

 
Fig. 3 Filtering Process in Wavelet Analysis 
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The original sequence, S, applied to two complementary filters and emerges as two signals as shown in 

Fig. 3. If a digital sequence of say 512 samples is applied to the filter bank consisting of one low and one high 

pass filter as mentioned above, the length of A will be 512 and that of D will also be 512. Hence the data to 

handle was doubled. But note that in A as well as in D only 256 samples are irredundant. To remove the 

redundant samples, the downsamplers are employed as shown in Fig. 4. The outputs are denoted by cA and cD 

[12][13]. 

 
Fig. 4 Wavelet processing with downsamplers 

 

This process, i.e., the conversion of S into cA and cD is called decomposition; the filters at this stage 

are referred as decomposition low pass and decomposition high pass filters. These filters have direct relation to 

the basis function used in a specific wavelet. The vectors cA and cD constitutes the DWT coefficients. The 

decomposition process can be repeated means iterated, with successive approximations being decomposed in 

turn, so that one signal is broken down into many lower resolution components. This is called the wavelet 

decomposition tree shown in Fig. 5. 

 
Fig. 5 Multistage Decomposition 

 

The maximum number of decomposition stages should be taken so that the length of the sequence in 

the last stage is not less than 1. From the wavelet coefficients the original signal need to be recovered. The 

process of obtaining the original signal by using the wavelet coefficients is called reconstruction or synthesis 

shown in Fig. 6.  

 
Fig. 6 Reconstruction Stage 

 

The downsampling performed at decomposition stage introduces an aliasing effect. The reconstruction 

filters need to be selected so that the aliasing effect introduced at the decomposition stage should be cancelled. 

The overall process of wavelet is depicted in the Fig. 7. 
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Fig. 7 Wavelet as a Multirate Adaptive Filter 

 

The wavelet packet analysis is an extension of wavelet analysis with an inclusion of analysis of both 

approximation (cA) and detail (cD) components. The wavelet packet analysis looks like a complete tree 

structure. The multistage wavelet packet analysis looks like as shown in Fig. 8. 

 
Fig. 8 Wavelet Packet Analysis 

 

 The wavelet packets use the wavelet filters to decompose and reconstruct the signals. The wavelet 

filters corresponds to the perfect reconstruction condition as well as to represent the data to suite different 

applications [14][15]. 

 

IV. PROPOSED SCHEME 
The general structure of TDM signal is shown in Fig 9. 

 
Figure 9. General structure of TDM Denoising 
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Here the base signals which constitutes the TDM signal may have variety of properties. These signals 

will be effected by noise in a different way from each other. Hence there is no choice to use different denoising 

scheme for individual signals. The usage of different denoising scheme will results optimum results. It is 

because the signal characteristics decides how a base signal is affected by noise. Also, the charactersitics of base 

signals decides how the denoising scheme results in denoising. Witht the existing structure there is no chance to 

use specialized or customized deoising scheme on individual signal. Hence a new structure is proposed where 

the denoising takes place after denoising at the receiver end. This enables the application of customized 

denoising schemes to individual signals. The proposed TDM denosing scheme is shown in Fig. 10. 
 

 
Figure 10. Proposed structure of TDM Denoising 

 

V. SIMULATION RESULTS 
In this section the simulation results of Traditional adaptive filters, Wavelets, Wavelets Packets using 

existing structure and proposed structure are presented. Two cases of inputs are considered. One case considers 

two ECG signals as base signals. The second case considers one ECG and one audio signal as base signals. A 

sample MATLAB output is shown in Fig. 11 which depicts the application of existing structure of TDM 

denoising on two ECG signal case. Table 1 and 2 presents the performance of adaptive filters using existing 

TDM desnoising structure in two cases of input. Table 3 and 4 presents the performance of wavelet based 

thresholding denoising scheme using existing TDM desnoising structure in two cases of input. 

 

 
Figure 11. Sample Output Screen Of TDM Denoising In MATLAB 
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Table 1. Performance Of Adaptive Filters With Existing Denoising Structure In Case – I Of Inputs 
 ECG – 1 ECG – 2 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Lms 71.1479 0.005 0.2698 0.8849 69.9318 0.0066 0.2595 0.8583 

Nlms 76.6507 0.0014 0.1652 0.9754 75.045 0.002 0.1523 0.9579 

Rls 74.8156 0.0021 0.2049 1.0361 73.6319 0.0028 0.2346 1.0346 

Dft 74.6653 0.0022 0.2024 1.0269 74.4878 0.0023 0.1941 1.0559 

Dct 75.0906 0.002 0.1889 1.0071 74.5877 0.0023 0.1659 1.0055 

Lsl 74.9682 0.0021 0.171 1.0186 74.0235 0.0026 0.2344 1.0505 
 

 

Table 2. Performance Of Adaptive Filters With Existing Denoising Structure In Case – II Of Inputs 
 ECG Audio 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

lms 67.4405 0.011723 0.43271 0.85787 63.9394 0.02625 0.66104 0.32064 

nlms 70.2938 0.006077 0.32304 1.0215 65.353 0.018958 0.66305 0.47756 

Rls 69.3986 0.007468 0.36256 1.1073 65.5325 0.01819 0.59324 0.56218 

Dft 69.7881 0.006828 0.42941 1.0983 65.5424 0.018149 0.51375 0.60964 

Dct 69.6029 0.007125 0.41589 1.0877 65.4979 0.018335 0.57639 0.60006 

Lsl 69.7207 0.006934 0.41976 1.0772 65.4369 0.018595 0.61023 0.51005 
 

 

 

Table 3. Performance Of Wavelet Based Scheme With Existing Denoising Structure In Case – I Of Inputs 
 ECG – 1 ECG – 2 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Haar 61.6775 0.0442 0.802 0.7795 61.8524 0.0424 0.9391 1.1262 

Db10 61.3701 0.0474 0.7789 0.8797 61.9389 0.0416 0.8225 1.0865 

Db45 61.7597 0.0434 0.7351 0.7536 61.8288 0.0427 0.7645 1.155 

Sym6 62.2917 0.0384 0.7803 0.7076 61.3264 0.0479 0.8078 1.2606 

Coif4 62.4603 0.0369 0.7551 0.7032 61.1901 0.0494 0.8909 1.2592 

bior2.4 62.6396 0.0354 0.7938 0.6445 60.9527 0.0522 0.9742 1.3122 

Dmey 61.8533 0.0424 0.7389 0.7036 61.692 0.044 0.7975 1.1328 

rbio1.3 61.6148 0.0448 0.7381 0.7915 61.7644 0.0433 0.7894 1.1435 

 

Table 4. Performance Of Wavelet Based Scheme With Existing Denoising Structure In Case – II Of Inputs 
 ECG Audio 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Haar 61.3344 0.047823 0.97719 0.80216 61.314 0.048048 0.87929 0.95372 

db10 61.1298 0.05013 0.91588 0.78172 61.1184 0.050262 0.87855 0.72356 

db45 61.382 0.047302 0.8373 0.78162 61.2853 0.048367 0.94247 0.98151 

sym6 62.3472 0.037875 0.86574 0.65364 61.4091 0.047008 1.0054 1.2353 

coif4 62.236 0.038858 0.81524 0.67397 61.4204 0.046886 0.96533 1.2581 

bior2.4 62.7175 0.03478 0.78932 0.54356 61.562 0.045381 0.97887 1.4131 

dmey 61.6966 0.043997 0.90541 0.74007 61.2989 0.048215 0.88991 1.0364 

rbio1.3 61.3386 0.047777 0.94733 0.80462 61.2172 0.049131 0.9735 0.95628 
 

 

Table 5 and 6 presents the performance of wavelet packet based thresholding technique using existing 

TDM desnoising structure in two cases of input. 

 

Table 5. Performance Of Wavelet Packet Based Scheme With Existing Denoising Structure In Case – I Of 

Inputs 
 ECG – 1 ECG - 2 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Haar 62.0427 0.0406 0.8221 1.716 62.3138 0.0382 0.8312 1.9521 

db10 61.5315 0.0457 0.924 0.8405 62.1974 0.0392 0.7756 1.0392 

db45 61.7722 0.0432 0.7732 0.7373 61.8549 0.0424 0.8245 1.1242 

sym6 62.3339 0.038 0.7212 0.6903 61.2024 0.0493 0.8833 1.2558 

coif4 62.1523 0.0396 0.7986 0.7185 61.2493 0.0488 0.7849 1.2766 

bior2.4 61.864 0.0423 0.7921 0.783 61.473 0.0463 0.8536 1.2536 

dmey 61.9565 0.0414 0.8021 0.7569 61.4964 0.0461 0.7803 1.2026 

rbio1.3 62.3539 0.0378 0.8181 1.5839 62.262 0.0386 0.7161 1.9139 
 

 

Table 6. Performance Of Wavelet Packet Based Scheme With Existing Denoising Structure In Case – II Of 

Inputs 
 ECG Audio 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Haar 61.9606 0.041402 0.8434 1.7214 62.0216 0.040825 0.69001 1.8493 

db10 61.2538 0.048719 1.0218 0.84411 60.9011 0.052841 1.0196 0.80964 
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db45 61.4621 0.046438 0.79184 0.74507 61.3805 0.047318 1.0713 0.9388 

sym6 62.0986 0.040107 0.94148 0.6777 61.3838 0.047282 1.0174 1.308 

coif4 62.0062 0.040969 0.91609 0.66529 61.4514 0.046552 0.92223 1.2394 

bior2.4 62.0294 0.040751 0.71833 1.6573 62.2452 0.038776 0.72331 1.7862 

Dmey 61.6728 0.044238 0.91198 0.71727 61.4169 0.046924 0.86963 1.0148 

rbio1.3 62.0031 0.040998 0.77763 1.6847 62.0973 0.040119 0.82023 1.7903 
 

 

Table 7 and 8 presents the performance of adaptive filters using proposed TDM desnoising structure in 

two cases of input. 

 
 

Table 7. Performance Of Adaptive Filters With Proposed Denoising Structure In Case – I Of Inputs 
 ECG – 1 ECG – 2 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Lms 72.5369 0.003626 0.18928 0.91656 72.5294 0.003632 0.2039 0.89324 

Nlms 77.1644 0.001249 0.1267 0.98001 75.5608 0.001807 0.19645 0.95868 

Rls 75.9522 0.001651 0.21142 1.0355 75.129 0.001996 0.22431 1.067 

Dft 75.9105 0.001667 0.20092 1.0435 76.3026 0.001523 0.19407 1.048 

Dct 75.3714 0.001888 0.18569 1.0852 74.5125 0.002301 0.26324 1.043 

Lsl 75.1114 0.002004 0.18701 1.0631 75.1275 0.001997 0.2001 1.0448 

 

Table 8. Performance Of Adaptive Filters With Proposed Denoising Structure In Case – II Of Inputs 

 
ECG Audio 

 
PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Lms 74.7988 0.002154 0.17124 0.92744 66.46 0.014692 0.69136 0.4842 

Nlms 79.1613 0.000789 0.14247 0.98362 68.0482 0.010192 0.61721 0.69021 

Rls 80.716 0.000551 0.11709 1.0229 69.9537 0.006572 0.30298 0.91 

Dft 80.9593 0.000521 0.11691 1.0173 69.7915 0.006822 0.3302 0.92167 

Dct 79.7776 0.000684 0.11159 1.025 69.5399 0.007229 0.36763 0.89543 

Lsl 80.0573 0.000642 0.10086 1.015 70.0688 0.0064 0.32396 0.88573 
 

Table 9 and 10 presents the performance of wavelet based thresholding denoising scheme using 

proposed TDM desnoising structure in two cases of input. 

 
 

Table 9. Performance Of Wavelet Based Scheme With Proposed Denoising Structure In Case – I Of Inputs 
 ECG – 1 ECG – 2 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Haar 74.2244 0.002458 0.16163 1.0331 74.4073 0.002357 0.14979 1.0633 

Db10 74.3383 0.002395 0.18172 1.0596 74.5304 0.002291 0.16214 1.0618 

Db45 74.3763 0.002374 0.15644 1.0537 74.1202 0.002518 0.23188 1.0483 

Sym6 74.1768 0.002485 0.18387 1.0441 74.1447 0.002504 0.18023 1.0712 

Coif4 73.8546 0.002677 0.17066 1.0573 74.1805 0.002483 0.16587 1.0304 

bior2.4 73.9389 0.002625 0.23476 1.0156 74.2227 0.002459 0.19799 1.0527 

Dmey 74.1462 0.002503 0.1928 1.0444 73.9439 0.002622 0.17886 1.0689 

rbio1.3 73.7431 0.002747 0.21595 1.0625 74.4199 0.00235 0.16162 1.069 
 

 

Table 10. Performance Of Wavelet Based Scheme With Proposed Denoising Structure In Case – II Of Inputs 
 ECG Audio 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Haar 77.116 0.001263 0.1258 1.0247 61.1731 0.049633 0.86453 0.054853 

db10 77.4952 0.001158 0.11485 0.9909 61.1024 0.050447 0.83107 0.03746 

db45 77.8391 0.00107 0.10381 1.0157 61.1026 0.050445 0.87981 0.041583 

sym6 76.6917 0.001393 0.12046 1.0239 61.1036 0.050434 0.83457 0.041741 

coif4 76.5337 0.001445 0.13794 1.0364 61.103 0.050441 0.82447 0.04175 

bior2.4 76.7211 0.001384 0.14742 1.0292 61.1067 0.050398 0.86535 0.040639 

dmey 77.5016 0.001156 0.1067 0.99332 61.1069 0.050395 0.83183 0.043193 

rbio1.3 76.5944 0.001424 0.15179 1.0343 61.029 0.051308 0.88936 0.064241 
 

Table 11 and 12 presents the performance of wavelet packet based thresholding technique using 

proposed TDM desnoising structure in two cases of input. 

 
 

Table 11. Performance Of Wavelet Packet Based Scheme With Proposed Denoising Structure In Case – I Of 

Inputs 
 ECG – 1 ECG – 2 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Haar 77.1111 0.001265 0.12466 0.99977 77.0328 0.001288 0.11168 1.037 

db10 77.2816 0.001216 0.13171 1.0176 77.8696 0.001062 0.1283 1.0274 

db45 77.3125 0.001207 0.14558 1.0226 77.1226 0.001261 0.11689 1.0581 
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sym6 76.8887 0.001331 0.17204 1.0198 77.591 0.001132 0.15171 0.99122 

coif4 77.4226 0.001177 0.15342 1.0328 77.2826 0.001216 0.11939 1.0129 

bior2.4 77.0963 0.001269 0.15099 1.0333 76.6641 0.001402 0.1468 0.99143 

dmey 77.1887 0.001242 0.12873 1.0036 76.5195 0.001449 0.15325 1.051 

rbio1.3 76.7639 0.00137 0.12211 1.0294 76.6162 0.001417 0.11751 1.0435 

 

Table 12. Performance Of Wavelet Packet Based Scheme With Proposed Denoising Structure In Case – II Of 

Inputs 
 ECG Audio 

 PSNR MSE MAX ERR L2RAT PSNR MSE MAX ERR L2RAT 

Haar 76.9006 0.001327 0.12252 1.0185 61.1879 0.049465 0.83803 0.048999 

db10 77.2847 0.001215 0.13146 1.0234 61.0982 0.050496 0.8769 0.040875 

db45 76.9484 0.001313 0.16597 1.0189 61.1155 0.050296 0.8628 0.038224 

sym6 77.4308 0.001175 0.13017 1.0327 61.1038 0.050431 0.84827 0.038682 

coif4 76.5847 0.001428 0.14355 1.0426 61.0983 0.050495 0.8717 0.041197 

bior2.4 77.0963 0.001269 0.15099 1.0333 61.0893 0.0506 0.83541 0.044395 

Dmey 77.1887 0.001242 0.12873 1.0036 61.0893 0.050599 0.79144 0.043795 

rbio1.3 76.7639 0.00137 0.12211 1.0294 61.0469 0.051097 0.87136 0.05896 

 

VI. CONCLUSION 
Wavelets, with its powerful strength of adaptive nature, are applicable to many applications where 

adaptive filters are in use. In this paper the de-noising of TDM signal is considered. Two cases of input signals 

are considered. One with two ECG signals, another with one ECG and one audio signal. The resulting TDM 

signal has undergone a noisy channel. The channel is assumed to have uniform noise. In the existing structure of 

TDM denoising, the signal at the output of the channel is given as input to the de-noising unit. The signal from 

the de-noising unit is given to the de-multiplexing section of TDM; two signals are separated and compared with 

the original input signals. This structure does not support individual denoising on signals. Hence In this work, a 

new structure of TDM signal denoising is proposed, where the denoising is done on demultiplexed signals 

separately. This makes the possibility of applying a more suitable technique of denoising to respective signals. 

The simulation results prove that the usage of different schemes on different signals gives the optimum 

performance. 
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