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Abstract: A theoretical investigation of thermal convection of an electrically non-conducting, incompressible 

MHD micropolar fluid layer heated from below in the presence of  porous medium has been worked out . Using 

a linear stability analysis theory and normal mode analysis a dispersion relation is obtained for a flat fluid layer 

confined between two free boundaries. The influence of various parameters like medium permeability magnetic 

field, coupling parameter, micropolar heat conduction parameter and micropolar coefficient has been analyzed 

on the onset of stationary convection and results are depicted graphically. The principle of exchange of stability 

( PES ) is found valid.  
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I. INTRODUCTION 
The onset of convective instability of a fluid layer heated from below has been studied by many 

researchers. Bénard[3] in 1900 did an experiment of a fluid layer heated from below and observed a thermal 

instability. The theoretical analysis of Bénard’s experiment has been given by Rayleigh[4] and this analysis has 

also received a considerable importance due to its relevance in various fields such as chemical and industrial 

engineering, soil mechanics, geophysics etc. The main objectives of the various studies related to the convective 

instability, in particular, is to determine the critical Rayleigh number at which the onset of instability sets in 

either as stationary convection or through oscillations. 

The Rayleigh-Bénard convection in micropolar fluids heated from below has been extensively studied 

by Ahmadi[2], Datta and Sastry[1], Bhattacharyya and Jena[9], L.E. Payne and B. Straughan[5]. The 

common results of all these studies are found that the stationary convection is the preferred mode of instability 

and the microrotation has a stability effect on the onset of Rayleigh-Bénard convection. Chandrasekhar[8] 

gave an excellent review as well as large number of new developments in his celebrated book on hydrodynamic 

and hydromagnetic stability. In these methods of stability study a linear theory is usually employed i.e., the 

equations governing the disturbances are linearized and then the grow or decay of the disturbances is studied. 

The effect of a magnetic field on the onset of convection in a horizontal micropolar fluid layer heated from 

below has also been investigated by several researchers. The extension of micropolar flows to include magneto-

hydrodynamics effects is of interest in regard to various engineering applications such as in the design of the 

cooling systems for nuclear reactors, MHD electrical power generation, shock tubes, pump, flow meters etc. The 

effects of throughflow and magnetic field on the onset of Bénard convection in a horizontal layer of micropolar 

fluid confined between two rigid, isothermal and microrotation, free boundaries have been studied by 

Narasimha Murty[10]. Z Alloui and P. Vasseur[11] studied onset of Rayleigh-Bénard MHD convection in a 

micropolar fluid. 

 Sharma and Kumar[6, 7] also studied the effect of magnetic field on the micropolar fluids heated 

from below in a non-porous and porous medium, they found that in the presence of various coupling parameters, 

the magnetic field has a stabilizing effect whereas the medium permeability has destabilizing effect on 

stationary convection. 

 

II. MATHEMATICAL FORMULATION: 
Consider an infinite, horizontal, electrically non-conducting, incompressible micropolar fluid layer of 

thickness d. This layer is heated from below such that the lower boundary is held at constant temperature 

0T T  and the upper boundary is held at fixed temperature 1T T  therefore, a uniform temperature gradient 
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dT

dz
   is maintained. The physical configuration is one of infinite extent in x and y directions bounded by the 

planes 0z   and z d . The whole system is acted on by gravity force (0, 0, )gg .  

 

 
                                                                    fig. 1  

A uniform magnetic field 𝐻   = ( 0 , 0 ,𝐻0  ) is applied along z-direction. The magnetic Reynolds number is 

assumed to be small, so that the induced magnetic field can be neglected in comparison with the applied 

magnetic field. 

The governing equations, which describe the system behavior following Boussinesq approximation, are as 

follows 

The equation of continuity for an incompressible fluid is 

 ∇. 𝑞 = 0                                                    ..(1) 

The equation of momentum, following Darcy law, is given by 
𝜌0

∈
  
𝜕𝑞  

𝜕𝑡
+

1

∈
 𝑞.    ∇ 𝑞      = −∇𝑝 − 𝜌𝑔𝑒𝑧 +   𝜇 + 𝜁 ∇2𝑞     −  

𝜁+𝜇

𝜅
  𝑞     +  𝜁 ∇ × 𝑁   +

𝜇𝑒

4𝜋
   ∇  ×  𝐻        × 𝐻                        

..(2) 

The equation of internal momentum is given by 

𝜌0𝑗   
𝜕𝑁   

𝜕𝑡
+

1

∈
  𝑞 .∇  𝑁     =   𝛼 + 𝛽   ∇  ∇.𝑁    +  𝛾  ∇2𝑁   + 𝜁 ( 

1

∈
 ∇ × 𝑞 − 2𝑁    )                                                          

...( 3) 

The equation of energy is given by 

  𝜌0𝐶𝑣 ∈ +𝜌𝑠𝐶𝑠 1−∈  
𝜕𝑇

𝜕𝑡
+ 𝜌0𝐶𝑣 𝑞.    ∇ 𝑇 = 𝜒𝑇∇

2𝑇 + 𝛿 ∇ × 𝑁    .∇𝑇                                                                        

...(4) 

And the equation of state is 

𝜌 = 𝜌0[ 1 − 𝛼 𝑇 − 𝑇0 ]                                                                                                                                           
...(5) 

Where , , , , , , , , , , , , , , , , , , , , ,o s e T o v sp j T t T C C              q N


 and ˆze  denote respectively 

fluid velocity, microrotation, pressure, fluid density, reference density, fluid viscosity, coupling viscosity 

coefficient, magnetic permeability, microinertia coefficient, micropolar viscosity coefficients, specific heat at 

constant volume, temperature, time, thermal conductivity, micropolar heat conduction coefficient, coefficient of 

thermal expansion, reference temperature and unit vector along z-direction. 

The Maxwell’s equations become 

∈
𝜕𝐻   

𝜕𝑡
= ∇ ×  𝑞 × 𝐻    +∈ 𝛾𝑚∇

2𝐻                                                                                                                               

...(6) 

∇.𝐻   = 0                                                                                                                                                                  
...(7) 

Where  𝛾𝑚   is the magnetic viscosity. 
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III. BASIC STATE OF THE PROBLEM 
The basic state of the problem is assumed to be 

𝑞 = 𝑞𝑏     =  0,0,0  ,𝑁   = 𝑁𝑏
     =  0,0,0 ,𝐻   = 𝐻𝑏

     =   0, 0,𝐻0   , 𝑝 = 𝑝𝑏 𝑧 ,𝜌 = 𝜌𝑏(𝑧) 
Using above equations the equations (1)-(7) yield 
𝑑𝑝𝑏

𝑑𝑧
+ 𝜌𝑏𝑔 = 0                                                                                                                                                      

...(8) 

𝑇 = −𝛽𝑧 + 𝑇0                                                                                                                                                                       
...(9) 

𝜌 = 𝜌0( 1 + 𝛼𝛽𝑧 )                                                                                                                                                             

...(10) 

IV. PERTURBATION EQUATIONS: 

Let  𝑞   ,𝑁     ,𝜌  ,𝜃 , ℎ    be represent the perturbations in 𝑞  ,𝑁    ,𝜌 ,𝑇 ,𝐻     then the new variables become 

𝑞 = 𝑞𝑏     + 𝑞   ,𝑁   = 𝑁𝑏
     + 𝑁     ,𝜌 = 𝜌𝑏 + 𝜌  ,𝑇 = 𝑇𝑏 + 𝜃 ,𝐻   = 𝐻𝑏

     + ℎ    

Using these new variables and using equations (8) , (9) , (10) the equations (1)-(7) become  

∇. 𝑞  = 0                                                                                                                                                                                       
...(11) 

𝜌0

∈
 
𝜕𝑞   

𝜕𝑡
+

1

∈
 𝑞  .∇ 𝑞   = −∇𝑝 +  𝜇 + 𝜁 ∇2𝑞  −

 𝜇+𝜁 

𝜅
𝑞  − 𝜌 𝑔𝑒𝑧 + 𝜁∇ × 𝑁    +

𝜇𝑒

4𝜋
 ∇ × ℎ   × 𝐻𝑏

     +
𝜇𝑒

4𝜋
 ∇ × ℎ   × ℎ      

...(12) 

𝜌0𝑗   
𝜕𝑁    

𝜕𝑡
+

1

∈
 q   .∇ N      =  α + β  ∇  ∇. N     + γ ∇2N    + δ(

1

∈
∇ × q   − 2N    )                                                                          

...(13) 

  𝜌0𝐶𝑣 ∈ +𝜌𝑠𝐶𝑠 1−∈  
𝜕𝜃

𝜕𝑡
+ 𝜌0𝐶𝑣 𝑞  .∇ 𝜃 + 𝜌0𝐶𝑣 𝑞  .∇ 𝑇𝑏 = 𝜒𝑇∇

2𝜃 + 𝛿  ∇ × 𝑁     .∇𝜃 + 𝛿  ∇ × 𝑁     .∇𝑇𝑏         

...(14) 

𝜌 = −𝜌0𝛼𝜃                                                                                                                                                                                
...(15) 

∈
𝜕ℎ   

𝜕𝑡
=  𝐻𝑏

     .∇ 𝑞  +∈ 𝛾𝑚∇
2ℎ                                                                                                                                                     

...(16) 

∇. ℎ  = 0                                                                                                                                                                                      

...(17) 

Using the following non-dimensional variables 

𝑥 = 𝑥∗𝑑 , 𝑦 = 𝑦∗𝑑 , 𝑧 = 𝑧∗𝑑 , 𝑞  =
𝐾𝑇

𝑑
𝑞∗     ,𝑁    =

𝐾𝑇

𝑑2
𝑁∗       , 𝑡 =

𝜌0𝑑
2

𝜇
𝑡∗ ,𝜃 = 𝛽𝑑𝜃∗, 𝑝 =

𝜇𝐾𝑇

𝑑2
𝑝∗ , ℎ  = 𝐻0ℎ

∗     ,𝐾𝑇

=
𝜒𝑇
𝜌0𝐶𝑣

 

and dropping the stars , the equations (11)-(17) become 

∇. 𝑞 = 0                                                                                                                                                                                     
...(18) 
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1

∈

𝜕𝑞  

𝜕𝑡
= −∇𝑝 + 𝑅𝜃𝑒𝑧 +  1 + 𝐾 ∇2𝑞 −

(1+𝐾)

𝐾1
𝑞 + 𝐾∇ × 𝑁   + 𝑄(∇ × ℎ  ) × 𝑒𝑧                                                                  

...(19) 

𝑗 
𝜕𝑁   

𝜕𝑡
= 𝐶 ∇ ∇.𝑁    − 𝐶∇ ×  ∇ × 𝑁    + 𝐾(

1

∈
∇ × 𝑞 − 2𝑁   )                                                                                                 

...(20) 

𝐸𝑃𝑟
𝜕𝜃

𝜕𝑡
= ∇2𝜃 + 𝑊 − 𝛿 𝜉                                                                                                                                                       

...(21) 

∈ 𝑃𝑟
𝜕ℎ   

𝜕𝑡
=

𝜕𝑞  

𝜕𝑧
+

∈𝑃𝑟

𝑃𝑚
∇2ℎ                                                                                                                                                             

...(22) 

∇. ℎ  = 0                                                                                                                                                                                     

...(23) 

Where 𝑅 =
𝜌0𝑔𝛼𝛽 𝑑

4

𝜇𝐾𝑇
  is the thermal Rayleigh number , 𝑄 =

𝜇𝑒  𝐻0
2𝑑2

4𝜋𝜇 𝐾𝑇
   is the Chandrasekhar  number ,    

𝐾 =
𝜁

𝜇
 , 𝑗 =

𝑗

𝑑2  ,𝐶 =
𝛼 +𝛽 +𝛾 

𝜇𝑑2  ,𝐶 =
𝛾 

𝜇𝑑2  ,𝑃𝑟 =
𝜇

𝜌0𝐾𝑇
    is the Prandtl number 𝑃𝑚 =

𝜇

𝜌0𝛾𝑚
   is the magnetic   

Prandtl number,     𝛿 =
𝛿

𝜌0𝐶𝑣𝑑
2  , 𝜉 = (∇ × 𝑁   )𝑧  , 𝑊 = 𝑞 . 𝑒𝑧  ,𝐸 = [ ∈ +

𝜌𝑠𝐶𝑣 1−∈ 

𝜌0𝐶𝑣
]     

 

V. BOUNDARY CONDITIONS: 
We consider that both the boundaries of the problem are free and perfectly heat conducting, thus 

𝑊 = 0 =
𝜕2𝑊

𝜕𝑧2  ,𝜃 = 0 ,𝑁   = 0 , 𝜉 = 0  at  z =0 and z =1                                                                                      

...(24) 

 

VI. DISPERSION RELATIONS: 
Using curl operator on equations (18) to (23) and applying normal mode given by 

  𝑊 , 𝜉 ,𝜃 , ℎ𝑧   = [ 𝑊 𝑧 ,𝐺 𝑧 , Θ 𝑧 ,𝐵 𝑧 ]𝑒(𝑖𝑘𝑥+𝑗 𝑘𝑦+𝜍𝑡 ) and eliminating Θ ,𝐺 ,𝐵, we have 

 
𝜍

∈
 𝐷2 − 𝑎2 −  1 + 𝐾  𝐷2 − 𝑎2 2 +  

1+𝐾

𝐾1
  𝐷2 − 𝑎2   𝑗 𝜍 − 𝐶 𝐷2 − 𝑎2 + 2𝐾  𝐸𝑃𝑟𝜍 −  𝐷2 − 𝑎2   ∈

𝑃𝑟𝜍−∈𝑃𝑟𝑃𝑚𝐷2−𝑎2𝑊   

 +𝑅𝑎2  ∈ 𝑃𝑟𝜍 −
∈𝑃𝑟

𝑃𝑚
 𝐷2 − 𝑎2   𝑗 𝜍 − 𝐶 𝐷2 − 𝑎2 + 2𝐾 +

𝛿 𝐾

∈
 𝐷2 − 𝑎2  𝑊 +

𝐾2

∈
(𝐷2 − 𝑎2)2  ∈ 𝑃𝑟𝜍 −

∈𝑃𝑟𝑃𝑚𝐷2−𝑎2𝐸𝑃𝑟𝜍−𝐷2−𝑎2𝑊   

   +𝑄𝐷2 𝐷2 − 𝑎2  𝐸𝑃𝑟𝜍 −  𝐷2 − 𝑎2   𝑗 𝜍 − 𝐶 𝐷2 − 𝑎2 + 2𝐾 𝑊 = 0                                                                                               

...(25)  

where 𝑎 =  𝑘𝑥
2 + 𝑘𝑦

2
  and  𝐷 =

𝑑

𝑑𝑧
 

Boundary conditions (24) become 

𝑊 = 0 = 𝐷2𝑊  at z=0 and z=1 therefore 𝐷2𝑛𝑊 = 0  at z=0 and z=1 , where n is a positive integer. 

Thus, 𝑊 = 𝑊0 sin𝜋𝑧 , where 𝑊0  is a constant. 
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Substituting for W  in equation (25), we have 

 
𝜍𝑏

∈
+  1 + 𝐾 𝑏2 +  

1+𝐾

𝐾1
 𝑏  𝑗 𝜍 + 𝐶𝑏 + 2𝐾  𝐸𝑃𝑟𝜍 + 𝑏 [∈ 𝑃𝑟𝜍 +

∈𝑃𝑟𝑏

𝑃𝑚
]                                                                                                    

 −𝑅𝑎2  ∈ 𝑃𝑟𝜍 +
∈𝑃𝑟𝑏

𝑃𝑚
  𝑗 𝜍 + 𝐶𝑏 + 2𝐾 −

𝛿 𝐾𝑏

∈
 −

𝐾2𝑏2

∈
 ∈ 𝑃𝑟𝜍 +

∈𝑃𝑟𝑏

𝑃𝑚
  𝐸𝑃𝑟𝜍 + 𝑏 + 𝑄𝑏𝜋2 𝐸𝑃𝑟𝜍 + 𝑏  𝑗 𝜍 + 𝐶𝑏 +

2𝐾=0 ..(26) 

where 𝑏 = 𝑎2 + 𝜋2  

VII. STATIONARY CONVECTION: 
For the stationary marginal state we set 0  in (26) and we obtain 

  𝑅 =
𝑏2 𝑏+

1

𝐾1
  1+𝐾  𝐶𝑏+2𝐾 −

𝐾2𝑏3

∈
+
𝑄𝜋2𝑏𝑃𝑚

∈𝑃𝑟
(𝐶𝑏+2𝐾)

𝑎2(𝐶𝑏+2𝐾−
𝛿 𝐾𝑏

∈
)

                                                                                ...(27)  

In the non-porous medium and in the absence of magnetic field and coupling parameter equation (27) reduces to 

                               𝑅 =
𝑏3

𝑎2 [
𝑏 1+𝐾 𝐶+2𝐾+𝐾2

 𝐶𝑏+2𝐾 
]  

Which is the same as given by Goodarz Ahmadi[2]. 

In the absence of magnetic field and in non-porous medium equation (27) reduces to  

                              𝑅 =
𝑏3

𝑎2 [
𝐶 1+𝐾 𝑏+2𝐾+𝑏2

 𝐶−𝛿 𝐾 𝑏+2𝐾
] 

Which is the same as proposed by C.E. Payne and B. Straughan and Y. Qin and P.N. Kaloni. 

In order to investigate the effect of medium permeability 𝐾1 , coupling parameter K , heat conduction parameter 

𝛿  and magnetic field Q , we examine the behavior of 
𝑑𝑅

𝑑𝐾1
 ,
𝑑𝑅

𝑑𝐾
  ,

𝑑𝑅

𝑑𝛿 
  and 

𝑑𝑅

𝑑𝑄
 . 

From equation (27), we have 
𝑑𝑅

𝑑𝐾1
= −

𝑏2 1+𝐾  2𝐾+𝐶𝑏 

𝐾1
2𝑎2 2𝐾+𝑏 𝐶−

𝛿 𝐾

∈
  
⟹

𝑑𝑅

𝑑𝐾1
< 0 when 𝛿 <

𝐶∈

𝐾
 

Thus, R decreases as 𝐾1 increases when 𝛿 <
𝐶∈

𝐾
  hence the medium permeability has destabilizing effect 

when 𝛿 <
𝐶∈

𝐾
 . 

From equation (27), we have 

𝑑𝑅

𝑑𝐾
=

𝑏5 𝐶2+
𝛿 𝐶

∈
 +𝑏4 4𝐶𝐾+

𝑐2

𝐾1
−

2𝐶𝐾

∈
−

2𝛿 𝐾2

∈
+

𝛿 𝐶

∈𝐾1
+
𝐾2𝛿 

∈2  +𝑏3 4𝐾2+
4𝐾𝐶

𝐾1
−

2𝐾2

∈
−

2𝛿 𝐾2

∈𝐾1
+
𝑄𝛿 𝜋2𝐶𝑃𝑚

∈2𝑃𝑟
 +

4𝑏2𝐾2

𝐾1

𝑎2[𝐶𝑏+2𝐾−
𝛿 𝐾𝑏

∈
]2

                  ...(28) 

⟹
𝑑𝑅

𝑑𝐾
> 0 when ∈>

1

2
 , 𝛿 <

𝐶∈

𝐾
 ,  and 𝐾2 <

𝐶

2𝐾1
 

thus, R increases as K increases when ∈>
1

2
 ,𝛿 <

𝐶∈

𝐾
 , 𝑎𝑛𝑑 𝐾2 <

𝐶

2𝐾1
 , hence the coupling parameter has 

stabilizing effect when ∈>
1

2
 , 𝛿 <

𝐶∈

𝐾
 , 𝑎𝑛𝑑 𝐾2 <

𝐶

2𝐾1
 

From equation (27), we have 

 

𝑑𝑅

𝑑𝛿 
=

𝐾𝑏 [𝑏2 𝑏+
1

𝐾1
  1+𝐾  𝐶𝑏+2𝐾 −

𝐾2𝑏3

∈
+
𝑄𝜋2𝑏𝑃𝑚  𝐶𝑏+2𝐾 

∈𝑃𝑟
]

∈𝑎2[𝐶𝑏+2𝐾−
𝛿 𝐾𝑏

∈
]2

  

⟹
𝑑𝑅

𝑑𝛿 
> 0  when ∈>

1

2
  

Thus, R  increases as 𝛿   increases when ∈>
1

2
  and hence the heat conduction parameter has stabilizing effect 

when ∈>
1

2
   

From equation (27), we have 
𝑑𝑅

𝑑𝑄
=

𝜋2𝑏𝑃𝑚 (𝐶𝑏+2𝐾)

𝑎2[𝐶𝑏+2𝐾−
𝛿 𝐾𝑏

∈
]
  

⟹
𝑑𝑅

𝑑𝑄
> 0 when 𝛿 <

𝐶∈

𝐾
. 

Thus, R increases as Q increases when when 𝛿 <
𝐶∈

𝐾
 , hence the magnetic field has stabilizing effect when 

𝛿 <
𝐶∈

𝐾
. 
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VIII. CASE OF OVERSTABILITY: 
Equation (26) may be written as  

 
𝐸𝑗  𝑏𝑃𝑟

∈
 𝜍4 +  

𝑗  𝑏2

∈
 
𝐸𝑃𝑟

𝑃𝑚
+ 1 + 𝐸𝑃𝑟  

𝑏𝑎2

∈
+ 𝑎1𝑗   𝜍

3 +  
𝑗  𝑏2

∈𝑃𝑟
+  

𝑏2𝑎2

∈
+ 𝑎1𝑗   

𝐸𝑃𝑟

𝑃𝑚
+ 1 + 𝑎1𝑎2𝐸𝑃𝑟 − 𝑅𝑎2𝑗 −

𝐾2𝑏2𝐸𝑃𝑟∈+𝑄𝜋2𝐸𝑏𝑗∈𝜍2+𝑏2𝑃𝑚𝑏𝑎2∈+𝑎1𝑗+𝑎1𝑎2𝑏𝐸𝑃𝑟𝑃𝑚+1−𝑅𝑎2𝑎2+𝑗𝑏𝑃𝑚−𝐾2𝑏3∈𝐸𝑃𝑟𝑃𝑚+1+𝑄𝜋2𝑏∈
𝑃𝑟𝐸𝑃𝑟𝑎2+𝑏𝑗𝜍+𝑎1𝑎2𝑏2𝑃𝑚−𝑅𝑎2𝑏𝑎2𝑃𝑚−𝐾2𝑏4∈𝑃𝑚+𝑄𝜋2𝑏2𝑎2∈𝑃𝑚=0                                                ...(28) 

where 𝑎1 =  1 + 𝐾  𝑏2 +
𝑏

𝐾1
    and 𝑎2 = (𝐶𝑏 + 2𝐾)    

Putting 𝜍 = 𝑖𝜍𝑖  in equation (28) and separating real and imaginary parts and then eliminating 𝑅𝑎2, we have 

                                                     𝐴0𝑠
2 + 𝐴1𝑠 + 𝐴2 = 0                                                                                      

..(29) 

where 𝜍𝑖
2 = 𝑠 and 𝐴0 ,𝐴1 ,𝐴2  are the coefficients which are given as 

𝐴0 = −𝑗 2  
𝑏2

∈
+ 𝐸𝑃𝑟𝑎1  

𝐴1 =
𝑗 𝑏3𝑎2

∈ 𝑃𝑚
−
𝑗 𝐾2𝑏3

∈
+
𝑄𝜋2𝑏2𝑗 2

∈ 𝑃𝑟
−
𝑗 𝑏3𝑎2

∈ 𝑃𝑟
−

𝑗 2𝑏4

∈ 𝑃𝑟𝑃𝑚
−
𝐸𝑃𝑟 𝑗 

2𝑏2𝑎1

𝑃𝑚
2 −

𝑏2𝑎2
2

∈
− 𝑎1𝑎2

2𝐸𝑃𝑟 +
𝐾2𝑏2𝐸𝑃𝑟𝑎2

∈

−
𝑄𝜋2𝐸𝑏2𝑗 2

∈ 𝑃𝑚
 

𝐴2 = −
𝑏4𝑎2

2

∈ 𝑃𝑚
2 −

𝑎1𝑎2
2𝑏2𝐸𝑃𝑟

𝑃𝑚
2 +

𝐾2𝑏4𝑎2𝐸𝑃𝑟

∈ 𝑃𝑚
2 +

𝐾2𝑏4𝑎2

∈ 𝑃𝑚
−
𝑄𝜋2𝑏2𝑎2

2𝐸

∈ 𝑃𝑚
−
𝐾2𝑏4𝑎2

∈ 𝑃𝑟
−
𝐾2𝑏5𝑗 

∈ 𝑃𝑟𝑃𝑚
+
𝑄𝜋2𝑏2𝑎2

2

∈ 𝑃𝑟
 

As  𝑠 = 𝜍𝑖
2 which is always positive, therefore both the roots of equation (29) must be positive so that the sum 

of the roots will be positive. But from equation (29), the sum of the roots is −(
𝐴1

𝐴0
) thus, the sufficient conditions 

for non-existence of over-stability are given by  

𝑃𝑟 < 𝑃𝑚  , 𝐶 <
𝑗  

𝑃𝑟
  and ∈>

1

4
. 

Hence PES is valid.  

 

 

IX. CONCLUSION: 

1.  The medium permeability has destabilizing effect when 𝛿 <
𝐶∈

𝐾
 ( Fig.2) 

2. The coupling parameter has stabilizing effect when ∈>
1

2
 , 𝛿 <

𝐶∈

𝐾
 , 𝑎𝑛𝑑 𝐾2 <

𝐶

2𝐾1
 (Fig.3) 

3. The heat conduction parameter has stabilizing effect when ∈>
1

2
  (Fig.4) 

4. The magnetic field has stabilizing effect when 𝛿 <
𝐶∈

𝐾
 (Fig.5) 

 

X. FIGURES: 

 
Figure 2:  Marginal curve between Rayleigh Number R and medium permeability𝑲𝟏with  ∈=  𝟎.𝟓,   

Q=10,  𝑷𝒎 = 𝟒,𝑷𝒓 = 𝟐, a=0.5, K=1, C=2 
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Figure 3:  Marginal curve between Rayleigh Number R and Coupling parameter with   ∈=  𝟎.𝟔,   Q=0.73,  

𝑷𝒎 = 𝟒,𝑷𝒓 = 𝟐, 𝜹 = 𝟎.𝟓, 𝑲𝟏 = 𝟎.𝟎𝟎𝟓, C=2 

 

 
Figure 4:  Marginal curve between Rayleigh Number R and Heat Conduction Parameter with  ∈=  𝟎.𝟔, 

Q=0.73,  𝑷𝒎 = 𝟒,𝑷𝒓 = 𝟐,  𝑲𝟏 = 𝟎.𝟎𝟎𝟓, C=2, K=1 
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Figure 5:  Marginal curve between Rayleigh Number R and Magnetic Field Q with ∈=  𝟎.𝟎𝟓,   𝑷𝒎 =

𝟒,𝑷𝒓 = 𝟐,  𝑲𝟏 = 𝟎.𝟎𝟎𝟓, C=2, K=1,𝜹 = 𝟎.𝟗 
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