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Abstract: The effect of rotation modulation is analysed in Oldroyd-B liquids subjected to double diffusive 

convection. Both linear and non-linear analysis has been done. A regular perturbation technique has been 

employed to arrive at the thermal Rayleigh number. The results show that stress relaxation destabilises the 

system whereas strain retardation parameter and Lewis number stabilises the system. Truncated Fourier series 

expansion gives a system of Lorentz equations which helps in performing the non-linear analysis. Mean Nusselt 

and Sherwood numbers are used to quantify the heat and mass transfer respectively. It is observed that Lewis 

number and strain retardation parameter decreases heat and mass transfer and stress relaxation parameter 

increases them. It is seen that modulation gives rise to sub-critical motion. 

 

Key words: Double diffusive convection, Oldroyd-B liquids, Rayleigh-Bénard convection, Rotation 

modulation. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 05-05-2018                                                                          Date of acceptance: 21-05-2018 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION 

Convection in non-Newtonian liquids has been widely studied due to its application in various fields. 

Most of the fluids used in industries are non-Newtonian in nature. They show the characteristics of solids and 

liquids (elastic and viscous respectively). They find uses in diverse areas such as geothermal energy modeling, 

crystal growth, chemical industry, bioengineering, petroleum industry, solar receivers etc. The constitutive 

equations that define them include complex differential operators. As they exhibit both elastic and viscous 

behaviors an over stability is observed which is not seen in the case of Newtonian fluids. Oldroyd-B liquid is 

one such fluid which is viscoelastic in nature. This has led to many researchers studying Rayleigh– 

Bénardconvection in a viscoelastic fluid heated from below(Vest and Apaci
[1]

, Sokolov and Tanner
[2]

 , Green
[3]

, 

Siddheshwaret. al.
[4]

. 

 Li and Khayat
[5]

 studied stationary and oscillatory convection in viscoelastic fluids which gave 

information about the formation of pattern in these fluids. An oscillatory convection was set up in a thin layer of 

fluid heated from below. The study of Rayleigh– Bénard convection in a viscoelastic fluid by Siddheshwar and 

Krishna
[6]

established that the ratio of strain retardation parameter to the stress relaxation parameter should be 

less than one for convection to set in.   

 Zhong et. al.
[7]

investigated the vortices arising in a rotating Rayleigh-Benard system and found that 

vortices are formed at higher values of the Rayleigh number. Also, time-dependent heat transport begins for 

Rayleigh numbers at or slightly above the first appearance of vortices. The effect of rotational speed modulation 

on heat transport in a fluid layer with temperature dependent viscosity and internal heat source was studied by 

Bhaduria and Kiran
[8]

.They found that the effect of modulated rotation speed is found to have a stabilizing effect 

for different values of modulation frequency. The destabilizing and stabilizing effects of rotation on Oldroyd-

Bliquids were found by Sharma
[9]

. In spite of these studies not many literaturesexists on non-linear convection 

in Oldroyd-B liquids. 

 The heat transport in Rayleigh - Bénard convection is caused due to a temperature difference between 

the two walls and the resulting temperature gradient. This is not the case in most practical cases. Convection 

may arise due to multiple factors. Double diffusive convection arises when there are two different gradients, 

mostly temperature and concentration (Charrier-Mojtabi
[10]

). Their varying diffusivities make the stability 

patterns unpredictable. The different rates of diffusion lead to the formation of salt fingers or oscillations in the 

fluid layer. Malashetty and Swamy
[11]

found that there is an internal competition between the processes of 

thermal diffusion, solute diffusion and viscoelasticity that causes the convection to set in through oscillatory 

mode rather than stationary. The most common example of this type of diffusion is found in the ocean. 
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Stommel
[12]

noticed that with the decrease in solute quantity causes a large amount of potential energy. Stern
[13], 

[14]
 observed that if there are two diffusing components in a system, then the behavior of the system depends on 

whether the solute component is stabilizing or destabilizing. 

Double diffusive magneto convection in viscoelastic fluids was investigated by Narayana et. al.
[15]

. A stability 

analysis of chaotic and oscillatory magneto-convection in binary viscoelastic fluids with gravity modulation was 

done by Bhadauria  and Kiran
[16]

. A Ginzburg–Landau model was adopted to find the effects of the parameters. 

It was found that gravity modulation can be used to either advance or delay convection by varying its frequency. 

Siddheshwaret. al.
[17]

 analyzed the heat transport by stationary magneto-convection in Newtonian liquids under 

g-gitter and temperature modulation and obtained similar results. 

 In this paper we use linear and non-linear stability analysis to investigate the effects ofrotation 

modulation on double diffusive convection in Oldroyd-B liquid.  

 

II.  MATHEMATICAL FORMULATION 
Consider a layer of Oldroyd-B liquid held between two parallel plates at z = 0 and z = d. The two plates 

are maintained at two different temperatures with the difference in temperatures and solute concentrations T

and S respectively. This causes variable heating of the fluid particles and hence, variable movements. That is, 

a temperature gradient arises and in turn gives rise to convection.  The fluid density is assumed to be a linear 

function of temperature, T, and solute concentration, S. A Cartesian co-ordinate system is taken with origin in 

the lower boundary and z-axis vertically upwards (fig 1). 

 

 

http://www.sciencedirect.com/science/article/pii/S0017931014011405
http://www.sciencedirect.com/science/article/pii/S0017931014011405
http://www.sciencedirect.com/science/article/pii/S0020746211001545
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Thus, the governing equationsof the problem are: 

Continuity Equation: 
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We neglect the convective acceleration term in comparison with the heat advection term since 

we assume that thermally induced instabilities dominate hydrodynamic instabilities. This also means 

that we are considering small scale convective motions. 

Conservation of Energy: 
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Conservation of Species:
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Equation of State: 

 )()(1 000 SSTT st  
        (7)

 

III. BASIC STATE 

Initially we consider the basic state wherein the fluid is at rest. In this situation the parameters are given by the 

following: 
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The basic state solution for temperature and concentration are 

 









d

z
SSb 10

qq


).( 

Tq ).( 




The Study Of Effects Of Rotation Modulation On Double Diffusive Convection In Oldroyd-B Liquids 

International organization of Scientific Research                                                               30 | P a g e  

,10 









d

z
TTb

    (13)   

 

IV. STABILITY ANALYSIS 
In order to study the stability of the system the infinitesimal perturbations on the quiescent basic state is 

superimposed. We assume that the basic state is slightly perturbed as follows, where the prime quantities 

represent infinitesimal perturbations. Therefore,  
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Substituting the above eq. (14) in the governing equations and using the basic state solution wherever necessary, 

the following perturbation equations are obtained 
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We consider only two-dimensional disturbances and restrict to xz plane, that is, all terms are independent of y. 

Writing the y-component of eq. (17) where all the variations with respect to y are assumed to vanish, we get 
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where 
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The stream function ψ is introduced where
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results in the following non-dimensional equations: 
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The non-dimensional parameters that observed in eqns. (20) - (23) are stress relaxation parameter, strain 

retardation parameter, Lewis number, thermal Rayleigh number, solutal Rayleigh number and  Prandtl number 

defined as given in eq. (24). 
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V. LINEAR STABILITY ANALYSIS 
In this section, we neglect the Jacobians in eqns. (20) to (23) in order to discuss the linear stability analysis 

considering over-stable and marginal states. The linear equivalent of these equations are: 
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Eliminating T, S, and V between equations (25) - (28), an equation for ψ is obtained in the form 
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VI. PERTURBATION PROCEDURE 

The Rayleigh number is obtained using a regular perturbation technique where the stream function and thermal 

Rayleigh number are expanded as given in eq. (30)  
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This expression is substituted into eq. (29) and the coefficients of different powers of ε are equated and the 

following system of equations is obtained. 
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Each ψn is required to satisfy the boundary condition 042    at z = 0, 1.  

 

6.1. Solution to the zero
th

 order problem 

The double diffusive problem of Oldroyd-B liquid with no modulation of temperature is the zero
th 

order 

problem. The general solution of eq. (31) obtained at o(ε
0
) is the one used in the Oldroyd-B liquids convection 

under uniform temperature modulation. The marginal stable solutions are  

ψ0 = sin(παx)sin(πz)           (35) 

with the corresponding eigenvalue, Ra0,given by 
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Where,  

6.2. Solution to the first order problem 

Substituting eq. (35) in eq. (32), we get 
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where                                                                   (38)   
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Equation (37) is inhomogeneous and contains a resonance term.  

The time-independent part of the right hand side of eq. (37) is orthogonal to the null operator L and this implies 

that 0....531  RaRaRa . This is obtained from the solvability condition. Therefore, eq. (37) becomes 
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Equation(33) is used to find Ra2, the first non-zero correction to R0. Ra2 subject to eq. (30) gives 
1 and using 

this in eq. (33) with 0  given by eq. (33) and Ra1 = 0, the Venezian approach (1966) yields Ra2 in the form 
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VII. NON-LINEAR THEORY 
A nonlinear analysis is made to know the amount of heat transfer and to find the effect of various viscoelastic 

parameters on the nature of onset of convection.  
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The solution to eqns. (47)– (50) may be represented by an infinite Fourier series, with the amplitudes depending 

on time alone. Only one term in the Fourier representation for the stream function may be retained with two 

terms in the temperature expressions to retain some nonlinearity (Siddheshwaret al. (2013)) 

Equations (47) and (48) are second order equations which is decomposed into two first order equations: 
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The solution to eqns. (49) – (54) may be represented by an infinite Fourier series with time-dependent 

amplitudes. As per Lorenz-Saltzman(1963) only one term for the stream function may be retained with two 

terms in temperature and concentration expressions to retain some nonlinearity. The work done by Chen and 

Price (2006)shows the relation between Rayleigh- Bénard convection and Lorenz system. The stream function, 

the temperature distribution, concentration distribution and M are represented as follows:  
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The above form of M and N are determined by the form of ψ and V respectively. These forms were taken due to 

the fact that the mode sin(παx)sin(πz) always co-exist with the mode cos(παx)sin(πz) and they play similar roles 

in the description of convection The terms C(t)sin(2πz) and F(t)sin(2πz) represent modifications to temperature 

and concentration fields by a small scale convective motions.  

Projecting eqns. (49) -(54) onto the modes (56) –(61) we get the following system: 
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Equations (62) -(70) form a generalized Lorenz model. 

 

VIII.   HEAT TRANSPORT

 

In the study of convection problems, the determination of heat transport across the fluid layer is important. This 

is because; the onset of convection as Rayleigh number is increased is more readily detected by its effect on the 

heat transfer. In the basic state, the heat transfer is by conduction alone. 

If TH is the rate of heat transfer / unit area, then 
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The first term of the RHS of this equation is the temperature distribution of conduction state prevalent before 

convection sets in. The second term on the RHS represents the convective contribution to heat transport. 

The Nusselt number Nu is defined by .
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Alternately, Nu may be directly defined in terms of the non-dimensional quantities as follows: 
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Similarly, the mass transfer is quantified using Sherwood number. 
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On simplifying, we get the following expressions for Nusselt and Sherwood numbers: 
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The amplitudes can be determined from the generalized Lorenz model given in eqns. (62) – (70). It can be 

obtained by solving the system using Runge-Kutta-Fehlberg45 method that uses an adaptive step-size.  

 

 

IX.  RESULTS AND DISCUSSIONS 
The problem addresses the linear and non-linear effects of rotation modulation on double diffusive 

convection in Oldroyd-B liquids for the relevant parameters. The linear stability problem is solved based on 

perturbation method. The parameters of the system are Le, Ra, Rs, Pr, Ta,  ,,, 21   which influence the 

convective heat and mass transfer. The first six parameters are related to the fluid layer and the remaining are 

the external measures of controlling the convection. The influence of various parameters on the correction 

Rayleigh number Ra2c as a function of the frequency of modulation  are discussed.  
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Figure 2 is the plot of Ra2cversus   for different values of Lewis number, Le and the fixed values of

21, , Pr. It is observed that Ra2c increases with Le for moderate values of . The profile consists of the 

steady straight line section and a parabolic profile which oscillates in time. As   increases the parabolic part of 

the profile becomes more and more significant. It is known that the parabolic profile is subject to finite 

amplitude instabilities. Unlike Pr, Le influence Ra0. We find that Ra0 increases with increases in Le. 

Figure 3 is the plot of Ra2c versus  for different values of 1 and fixed values of Le, 
2 and Pr It is found 

that as 1 increases Ra2c decreases but remains negative. A subcritical motion is observed. Figure 4 establishes 

the fact that the effect of 
2 is opposite to that of 1  when Le, 1 and Pr are fixed.  Fig. 5 shows the variation 

in Ra2c with the values of the Taylor’s number. It can be seen that increased values of Ta results in increase in 

Ra2c. Therefore, it causes a stabilizing effect. The values of Ta taken are larger here since the variation is more 

evident for such values.  

Figures 6 – 11 are the graphs of Nu  and Sh versus time. Heat transfer is quantified using Nusselt number and 

mass transfer using Sherwood number. Figures 6 and 7 are graphs of Nu  and Sh  for different values of 1

and 2 . These two parameters have opposing effects on the system. While 1  increases the amount of heat 

and mass transfers, 2 decreases it. This is as observed in figs 3-4, where 1  destabilizes whereas 2
 

stabilizes the system. From fig. 8 it is clear that when Le increases the mean Nusselt and Sherwood numbers 

decrease. This result is in accordance with fig. 2 wherein we find the Le stabilizes the system, therefore reducing 

heat transfer. Figure 9 shows the variation in Nu  and Sh  when the solutal Rayleigh number, Rs, increases. Rs 

is the ratio of solutal expansion to viscous forces. It is seen to cause a decrease in Nu  and Sh . Figures 10 and 

11 shows that both the frequency of modulation, , and the Taylor number, Ta,  reduces the heat and mass 

transfer, in effect stabilizing the system.  

The results of rotation modulation on double diffusive convection in Newtonian fluids and Maxwell fluid can be 

obtained as special cases of this study (see table 1). 

 

Table 1: Values of correction Rayleigh number, R2c, Nusselt number, Nu, and Sherwood number, Sh, for 

Le = 100, Pr = 10, Rs = 20, ω=10, ε=0.1. 

Newtonian fluid  

21   
Maxwell fluid  

02   
Oldroyd-B fluid 

21   

1  

 

R2c Nu Sh 1  R2c Nu Sh 1  
2  R2c Nu Sh 

0.1 657.0 1.3114 1.775

4 

0.1 148.4 1.823

4 

2.596

0 

0.

1 

0.0

5 

180.3

9 

1.621

8 

1.996

3 

0.5 643.2

5 

1.6531 2.134

2 

0.5 145.3

2 

2.276

3 

3.001

5 

0.

1 
0.0

8 

172.5

3 

1.853

4 

2.553

1 

0.8 630.5

9 

1.9672 2.364

1 

0.8 137.3

1 

2.687

4 

3.341

9 

0.

1 
0.0

9 

168.3

8 

2.211

6 

3.016

7 
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From the above table we conclude the following: 

1. 
fluidNewtonian

c

fluidBOldroyd

c

fluidMaxwell

c RRR 222  
 

2. 
fluidNewtonianfluidBOldroydfluidMaxwell NuNuNu  

 

3. 
fluidNewtonianfluidBOldroydfluidMaxwell ShShSh  

 

These results match with those obtained by Siddheshwaret. al.
[17]

 and that of Vanishree and Anjana
[18]

. 
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