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I. INTRODUCTION 
Boundary-layer behavior over a moving continuous solid surface is an important type of flow occurring 

in several engineering processes. Such processes include heat-treated materials travelling between a feed roll 

and a wind-up roll or materials manufactured by extrusion and many others. Since the pioneering work of 

Sakiadis [1], various aspects of the problem have been investigated by many authors. Crane [2], Gupta and 

Gupta [3] have analyzed the stretching problem with constant surface temperature, while Soundalgekar [4] 

investigated the Stokes problem for a viscoelastic fluid. This flow was examined by Siddappa and Khapate [5] 

for a special class of non-Newtonian fluids known as second-order fluids, which are viscoelastic in nature. 

Danberg and Fansler [6] studied the solution for the boundary layer flow past a wall that is stretched with a 

speed proportional to the distance along the wall. 

 Rajagopal et al. [7] independently examined the same flow as in [5] and obtained similarity solutions 

of the boundary-layer equations numerically for the case of small viscoelastic parameter k1. It is shown that 

skin-friction decreases with increase in k1.  Dandapat and Gupta [8] examined the same problem with heat 

transfer. In [8], an exact analytical solution of the non-linear equation governing this self-similar flow which is 

consistent with the numerical results in [7] is given and the solutions for the temperature for various values of k1 

are presented. Later, Cortell [9] extended the work of Dandapat and Gupta [8] to study the heat transfer in an 

incompressible second-order fluid caused by a stretching sheet with a view to examining the influence of the 

viscoelastic parameter on that flow. It is found that the temperature distribution depends on k1, in accordance 

with the results in [8]. 

 In the case of fluids of differential type (see Ref. [10]), the equations of motion are in general one 

order higher than the Navier–Stokes equations and, they need additional boundary conditions to determine the 

solution completely. These important issues were studied in detail by Rajagopal [10], [11] and Rajagopal and 

Gupta [12]. On the other hand, Abel and Veena [13] investigated a viscoelastic fluid flow and heat transfer in a 

porous medium over a stretching sheet and observed that the dimensionless surface temperature profiles 

increases with an increase in viscoelastic parameter k1; however, later, Abel et al. [14] studied the effect of heat 

transfer on MHD viscoelastic fluid over a stretching surface and an important finding was that the effect of 

visco-elasticity is to decrease the dimensionless surface temperature profiles in that flow. Furthermore, Char 

[15] studied MHD flow of a viscoelastic fluid over a stretching sheet; however, only the thermal diffusion is 

considered in the energy equation. Vajravelu and Rollins [16] obtained analytical solution for heat transfer 

characteristics in viscoelastic second order fluid over a stretching sheet with frictional heating and internal heat 

generation. Later, Sarma and Rao [17] extended the work of 

 Vajravelu and Rollins [16] and studied the effect of work due to deformation in the energy equation.  

Vajravelu and Roper [18] and Cortell [19] analyzed the effects of work due to deformation in viscoelastic 

second grade fluid over a stretching sheet. Another effect which bears great importance on heat transfer is the 

viscous dissipation. When the viscosity of the fluid and/or velocity gradient is high, the dissipation term 

becomes important. Consequently, the effects of viscous dissipation are also included in the energy equation 

In the present paper, the flow and heat transfer of an incompressible MHD viscoelastic fluid past 

stretching sheet with viscous dissipation and work due to deformation terms in the energy equation are 

considered. Non linear boundary layer equations are solved using quasilinearization technique with two thermal 

boundary conditions, namely, (i) the sheet with Constant Surface Temperature (CST case) (ii) the sheet with 

Prescribed Surface Temperature (PST case). Results are in good agreement with available studies. This paper 

highlights the effect of work due to deformation on heat transfer characteristics of the fluid. 
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II. MATHEMATICAL FORMULATION 
 

Following the postulates of gradually fading memory, Coleman and Noll [20] derived the constitutive equation 

of second-order fluid flow in the form 

      (1) 

       where  is the Cauchy stress tensor,  is the spherical stress due to constraint of incompressibility, 

 is the dynamics viscosity,  are the material constants and  and  are the first two Rivlin–

Ericken tensors [21] defined as 

  

       (2) 

     (3) 

Here, denotes the velocity field and d/dt is the material time derivative. If the fluid of second grade modeled 

by (1) is to be compatible with thermodynamics and is to satisfy the Clausius-Duhem inequality for all motions 

and the assumption that the specific Helmholtz free energy of the fluid is a minimum when it is locally at rest, 

Dunn and Fosdick [22] found that the material moduli must satisfy 

 

       (4) 

  

But later on Fosdick and Rajagopal [23] have reported, by using the data reduction from experiments, that in the 

case of a second order fluid the material constants should satisfy the relation 

 

       (5) 

 

They also reported that that the fluids modeled by (1) with the relationship (5) exhibit some anomalous 

behavior. A critical review on this controversial issue can be found in the work of Dunn and Rajagopal [24].  It 

was mentioned that second-order fluid, obeying model equation (1) with  although exhibits 

some undesirable instability characteristics, the second order approximations are valid at low shear rate. Now in 

literature the fluid satisfying the model equation (1) with  is termed as second-order fluid and with 

is termed as second grade fluid. 

 In present study, it is considered a laminar steady flow of an incompressible MHD viscoelastic 

(Walters’ liquid B model) fluid over a wall coinciding with the plane y = 0, the flow being confined to y > 

0.Two equal and opposite forces are applied along the x-axis, so that a sheet is stretched with a velocity 

proportional to the distance from the origin. The resulting motion of the quiescent fluid is thus caused solely by 

the moving surface. The flow satisfies the rheological equation of state derived by Beard and Walters [25].  

The governing boundary layer equations for momentum, in the usual form, are 

 

                                                                                           (6) 

                (7)   

 

  where and  are the velocity components along the x and y directions respectively,  are the kinematic 

viscosity,   is the co-efficient of elasticity, and  is the density. Hence, in the case second order 

fluid flow takes positive value as takes negative value and other quantities have their usual meanings. In 
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deriving (7) it is assumed that the normal stress is of the same order of magnitude as that of the shear stress, in 

addition to usual boundary layer approximations. 

The boundary conditions for the velocity field are:  

 

                               (8) 

            

           The condition  is the augmented condition since the flow is in an unbounded 

domain, which has been discussed by Rajgopal [10]. In this case, the flow is caused solely by the stretching of 

the sheet, since the free stream velocity is zero.  

 

Defining new variables: 

 

                              (9) 

   where  denotes differentiation with respect to η. Clearly u and v defined above satisfy the continuity 

equation (6), and equation (7) is transformed as 

 

                                         (10) 

where is the viscoelastic parameter, is magnetic parameter. 

The boundary conditions (8) become 

 

           (11a) 

   

                                                     (11b) 

 

III. HEAT TRANSFER ANALYSIS 
 

By using boundary layer approximations, and taken into account both viscous dissipation and work due to 

deformation, the equation of energy for temperature  is given by 

                (12) 

 

where  is the thermal diffusivity and the specific heat of a fluid at constant pressure.  Two thermal 

boundary conditions are considered, namely, (i). Constant Surface Temperature (CST case) 

(ii). Prescribed Surface Temperature (PST case) 

The heat transfer analysis for these two processes is carried out in the following sections. 

 

3.1   Constant Surface Temperature (CST case) 

In this circumstance, the boundary conditions are  

 at y = 0,  as      (13)  

Where  and are constants.   

Defining non-dimensional temperature and Prandtl number (Pr) as  

           (14) 

Using (9), equation (12) reduces to   
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     (15) 

With boundary conditions  

       (16) 

 Here  represents local Eckert number for this problem. It is worth mentioning 

that the x-coordinate cannot be eliminated from (15), whereby, the temperature profiles always depend on x. 

 

3.2   Prescribed Surface Temperature (PST case) 

 

       For this circumstance, the boundary conditions are 

    at y=0       (17a)

                        (17b) 

where  is the characteristic length.  

Using (9), equation (12) reduces to 

 

      (18) 

with boundary conditions 

              
 

 

IV. NUMERICAL SOLUTION OF THE PROBLEM 
The flow equation (10) coupled with energy equation (15) or (18) become set of nonlinear differential equations.  

A numerical method, quasilinearization technique [26], is in most cases directly applicable to computer aided 

solutions of non-linear two-point boundary value problems. So this method is used to solve this system.  

For convenience equations (10), (15) and (18) are rearranged as 

     (19) 

 (CST case)   (20a) 

                        (OR) 

 (PST case)  (20b) 

 

           In order to implement the quasilinearization method, the equations (19) and (20) are converted to a 

system of first order differential equations by substituting  

 
 

Then equations (19) and (20) give 

 

 

 

 

       (21) 
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                                   (CST case) 

         (OR) 

                   (PST case) 

 Using Quasilinearization technique, the system (21) can be linearized as 

 

 

                                                 

         (22) 

           
          

   
 

             (OR) 

 

 
 

The above system of equations (22) is linear in  and general solution can be obtained by using 

the principle of superposition. 

The boundary conditions reduce to 
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 The initial values are chosen as follows: 

 

For the homogeneous solution: 

 

 

                                                   

   

   

 (23) 

  
 

For particular solution: 

 

         (24) 

      

 

 The general solution of system of equations is given by 

 

                                                (25) 

 

  where C1, C2, C3 are the unknown constants and are determined by considering the boundary 

conditions as η → ∞. This solution  is then compared with solution at the previous step 

 and next iteration is performed if the convergence has not been achieved or greater accuracy is 

desired.  

 

V. RESULTS AND DISCUSSIONS 
Here, a study is presented on flow and heat transfer of an incompressible second order fluid past a 

stretching sheet. The non linear differential equations of flow and heat transfer were solved by quasilinearization 

technique. The energy equation includes both the viscous dissipation and the work due to deformation. This 

later effect doesn’t appear, if a viscous flow (i.e., =0) takes place. 

 

Case 1.Constant Surface Temperature (CST case):  

In Fig1, values of dimensionless temperature  and temperature gradient   for selected values of 

Prandtl number (Pr) with =0.3, Ec = 0 are given. Since thermal boundary layer thickness decreases with 

increasing Prandtl number, temperature  at a point decreases with an increase in the Prandtl number. 

 

In Fig2, temperature  and temperature gradient  are drawn for various values of Eckert number (Ec). 

Temperature  increases with increase in viscous dissipation, because heat energy is stored in the fluid due 

to frictional heating. The values  decrease with increase in viscous dissipation, which yields augment 

in fluid’s temperature. 
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Case 2. Prescribed Surface Temperature (PST case  

In Fig3, Values of non-dimensional temperature  for various values of Prandtl number (Pr) are shown. In 

Fig 4, effect of viscous dissipation on temperature  and temperature gradient  is depicted. The 

reasons are same as in CST case.  

In Fig 5, the effect of work due to deformation term in the energy equation on temperature profiles for 

various values of Eckert number (Ec) is shown. It can be seen that, the presence of work due to deformation 

term in the energy equation reduces the temperature, which is in contrast to the case α1 > 0 [19] (i.e., second 

grade fluids). This effect is more significant for moderate and higher values of Eckert number (Ec). 

Fig 6 depicts the effect of magnetic field parameter (Mn) on the horizontal velocity profile (fη (η)). 

Horizontal velocity profile decreases with increase in Magnetic field parameter, since increase of Magnetic field 

parameter signifies the increase of Lorentz force, which opposes the horizontal flow in the reverse direction.  

Fig 7(a) and Fig 7(b) depict the effect of viscoelastic parameter k1 on longitudinal and transverse 

velocity components. It can be seen, for a fixed value of η, both f’(η ) and f(η ) decrease with increasing values 

of viscoelastic parameter k1. This can be explained by the fact that, as the viscoelastic parameter k1 increases, 

the boundary layer adheres strongly to the surface, which in turn retards the flow in longitudinal and transverse 

directions. 

Fig 8(a) and 8(b) show the effect of Magnetic field parameter on temperature distribution in PST and 

PHF cases respectively. Temperature profile increases with increase in Magnetic field. Since increase of 

magnetic field increases the thermal boundary layer thickness. The increasing frictional drag due to Lorentz 

force is responsible for increasing the thermal boundary layer thickness. 

 

VI. CONCLUSIONS: 
From our numerical results, it can be concluded that:  

i. Horizontal velocity profile decreases with increase in magnetic field parameter (Mn). 

ii. Temperature profiles increases with increase in magnetic field parameter (Mn). 

iii. Thermal boundary layer thickness decreases with increase in Prandtl number (Pr). 

iv. Work done deformation term in energy equation reduces the temperature profiles, this is in contrast to the 

second grade fluids. 
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Fig.1. Effect of Prandtl number (Pr) on (a) Temperature θ(η) (b) Temperature gradient θ̒(η) in CST case 

with k1=0.3, Ec=0 
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Fig 2. Effect of Eckert number (Ec) on  (a) Temperature θ(η)  (b) Temperature gradient θ’(η) in CST case 

with Pr=3, k1=0.3 

 

 
Fig 3.Effect of Prandtl number on Temperature profiles . 
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Fig 4. Effect of Eckert number (Ec) on  (a) Temperature θ(η)  (b) Temperature gradient θ’(η) in PST case 

with Pr=3, k1=0.3 
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Fig 5. Temperature profiles for various values of Eckert number in PST case  (a) without work due to 

deformation (b) with work due to deformation. 

 

 
Fig6: Plot of velocity (fη(η)) vs ƞ for different values of Magnetic parameter (Mn) 
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Fig7: Effect of viscoelasticity (k1) on (a) transverse velocity component, (b) longitudinal component 
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Fig 8. Effect of Magnetic field parameter (Mn) on temperature distribution θ(η) 
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