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Abstract : - This work deals with the fluid conveying fixed-fixed end conditions of U-shaped  

Polytetrafluoroethylene bellows expansion joint.  A mathematical equation is modeled for calculating the 

transverse natural frequencies. It is assumed that the mass distribution of bellows is uniform and considered for 

influence of different inlet pressures and velocities on the transverse vibrations of various modes of frequencies 

of bellows which covey liquids (water). The equation was derived using the Timoshenko elastic beam theory for 

fixed-fixed beam conditions.  Further the non-homogeneous transcendental equation is solved using the Bi-

section method in FORTRAN compiler to predict the stability and transverse vibrations. The diameter of 3" U-

shaped bellows specimens were chosen to perform experimental investigations for different input pressures and 

velocities measured by suitable pressure gauges and rotameter respectively. The derived equations of pressure 

and velocity inputs are analyzed for critical values. The resulting experimental data have proven that the 

deduced equation predictions are accurate enough to meet standard engineering requirements. 
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I. INTRODUCTION 
In recent times, non-metallic bellows expansion joint has been found to be more compatible with many 

potential industrial applications, particularly in fluid conveying piping systems. This is because of its good 

mechanical, chemical and thermal properties at par with any metallic expansion joint. Several types of 

continuum-based elasticity theories were modeled as an elastic corrugated cylindrical tube representing a 

bellows expansion joint, and the mechanics and dynamic response of bellows expansion joint were studied. The 

bellows expansion joints are thin-walled corrugated tubes designed for high flexibility when subjected to 

longitudinal loads, internal pressure or bending moments. Theoretical and experimental studies on bellows 

published since the first analysis in 1932 are reviewed herein. A bellows, or a closed thin-walled elastic tube 

with corrugated walls, undergoes longitudinal extension when subjected to internal fluid pressure and inlet 

velocity. 

Jakubauskas V. F et al.[1] presents the results of a natural frequencies of  fluid-added mass of fluid-

filled bellows expansion joints. The bellows were modeled using axisymmetric finite elements, while the fluid 

region was discretized using axisymmetric triangular elements. Based on boundary conditions, the potential 

flow model for the fluid and the added mass determined for each bellows mode. This added mass was then used 

to determine the in-fluid bellows natural frequencies. Experiments were conducted to verify the theoretical 

model and agreement was found to be very good. Jakubauskas V. F et al. [2] considered the transverse 

vibrations of fluid-filled double-bellows expansion joints. The bellows are modeled as a Timoshenko beam, the 

fluid added mass includes rotary inertia and bellows convolution distortion effects. The natural frequencies are 

also given in terms of Rayleigh quotient for both lateral and rocking modes of the pipe connecting the bellows. 

The theoretical predictions for the modes are compared with experiments in air and water and the agreement is 

found to be very good. The Strouhal numbers are computed for each of the flow-excited mode resonances. 

Jakubauskas V. F et al.[3] presented the results shows under the influence of the fluid-added mass in bellows 

expansion joints during bending vibrations, one due to transverse rigid-body motion and the other due to 

distortion of the convolutions during bending. The distortion component was determined using finite element 

analysis, and the results are presented in a graphical form for a typical range of bellows geometries. Jakubauskas 

V. F et al[4] developed a theoretical model based on Timoshenko beam theory for the transverse vibrations of 

bellows expansion joints. The author developed in the form of a Rayleigh quotient and is presented in a way for 

hand calculations for bellows natural frequencies. The results for the fundamental modes transverse modes are 
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compared with experiments as well as the predictions of the simplified analysis of the Expansion Joint 

Manufacturers Association (EJMA). While the present analysis agrees well with experiments, the EJMA 

approach can be substantially in error due to neglect the effect of rotary inertia and the convolution distortion 

component. Jakubauskas V. F et al[5] presented the results of investigation of the fluid added mass in axial 

vibrations of bellows expansion joints. The added mass is shown to consist of three parts, one due to 

convolution translation in axial direction, due to distortion of the convolution during vibration and the due to the 

return flow in central section of bellows. The distortion component for a half-convolution has been determined 

using finite element analysis and the results are presented in graphical form for a typical range of bellows 

geometry. The total added mass is given in a form suitable for hand calculations. 

Radhakrishna M et al. [6] presented paper aims at finding out the effect of elastically restrained ends on 

the axial natural frequencies. The analysis considers finite stiffness axial restraints on the bellows, i.e. solving 

the set of equations with non-homogeneous boundary conditions. Two bellow specimens are considered for 

comparison having the same dimensions. The transcendental frequency equation deduced is accurate as the first, 

second and third mode frequencies computed are in close agreement to the ones obtained. Watanabe M et al. [7] 

dealt with the theoretical stability analysis and experimental study of flexible bellows at fixed at both ends 

rigidly subjected to periodic internal fluid pressure excitation. The basic equation of the bellows derived as a 

Mathieu's equation subjected to periodic internal fluid pressure excitation. Natural frequencies of the bellows are 

examined and stability maps tire presented for parametric instability, computed by Bolotin's method. Author 

presented that the buckling occurs due to high internal fluid pressure and transverse natural frequencies of the 

bellows decrease with increasing the static internal fluid pressure. Parametric instability regions are clarified and 

the theoretical and experimental are evaluated and parametric instability regions are clarified. Faraji .G et.al. 

[8]proposed for manufacturing of the metal bellows based on the influencing parameters such as initial length of 

tube, internal pressure, axial feeding and velocity, mechanical properties and the type of materials were 

investigated using finite element (FE) analysis (LS-Dyna) and experimental tests. The results of the work used 

as a basis of designing a new type of the metal bellows. Price DM et al.[9]using an instrumented thermal 

conductivity apparatus (Lees' disk) and by DSC the thermal conductivity of Polytetrafluoroethylene (PTFE) was 

studied. The effect of crystallinity on thermal conductivity was investigated and compared with different 

methods. The incorporation of metal (Aluminum) flakes raised heat transport through the composites and 

thermal conductivity of PTFE with different levels of crystallinity was measured at 2320C and shown to increase 

linearly with this parameter. Rae PJ et al.[10] were tested Samples of DuPont 7A and 7C Teflon, PTFE in 

compression at strain-rates between 10 -4 and 1 s -1 and temperatures between -198 and 2000C. The strain 

gauges were used to measure and quantified axial and transverse strain. The affected of strain-rate and 

temperature on mechanical properties were found. Several techniques were adapted for finding physical 

properties of the sintered PTFE. Wilson JF[11] summarized the key results dealt with load-deflection behavior.  

Non- dimensional material parameters and corrugation geometries were used for results, comparison and 

evolution. In experimental results the classical beam, plate, and shell theories were used for mechanical 

behavior of polyethylene bellows. Wilson JF[12] Investigated the mechanical behavior of several pressurized 

bellows, which are subjected to compression longitudinally, designed to bend and twist. Bellows in clusters in a 

cylindrical helix whose angle is chosen to predict mechanical (load-displacement relationships for given 

bending and torsional input) behavior and compared with experimental results. Becht C[13]suggested and 

predicted the fatigue behavior of the bellows expansion joint based on the combination of analysis because one 

of the reasons for the unreliability is plastic strain concentration in number of convolutions. The author 

predicted and compared that the difference of strain concentration between reinforced and unreinforced bellows 

and better predicted by fatigue life of the bellows fatigue data based on a geometry parameter. Tingxin L et 

al.[14]presented experimental results and analysis of toroidal bellows behavior compared with U-shaped 

bellows. Based on the analysis toroidal bellows expansion joint have exhibited better results and is more suited 

for higher internal pressure situations due to smaller internal pressure-induced stress, longer fatigue life, 

stronger ability to resist internal pressure instability. Shaikh H et al.[15]presented the failure of an AM 350 steel 

bellows, which are used in the control mechanism of the fast breeder test reactor (FBTR). The leak test was 

carried due to visual inspection of the leak area did not indicate defects. A few of pits had propagated through 

the thickness of bellows and corrosion products revealed the presence of chlorides. Suspected to have caused the 

pitting in marine atmosphere during a storage period of 13 years was found. Nishiguchi. I et al.[16]investigated 

in plane squirm of rectangular bellows and proposed a simplified evaluation technique based on the half pitch 

model and compared with that of circular bellows. The elastic squirm is governing with a relatively high length-

to-diameter ratio for the bellows with a lower number of convolutions. Broman.G.I[17]presented the analysis to 

determine dynamic characteristics of in  finite elements of I-DEAS Master Series 6. This is advantageous that 

system to be optimized with respect to design parameters. Stress in the bellows can be predicted by this known 

dynamic behavior. This method has the potential of considering axial, bending and torsion degrees of freedom 

simultaneously, also modeled by beam or shell finite elements. Li T.X et al. [18] deduced the equations for 
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calculating the longitudinal and transverse natural frequencies of U-shaped bellows with different end 

conditions, on the basis of mass distribution of bellows is uniform. Author also discussed the influence of 

different axial extension and compression on the natural frequencies of bellows which either contain gas or are 

filled with liquids. Eleven U-shaped bellows specimens were chosen to perform experiments, applying the 

'shock' method and the 'resonance' method respectively. The resulting experimental data have proven that the 

deduced equations are accurate enough to meet standard engineering requirements. 

 

II. MATHEMATICAL MODEL AND ANALYSIS 

 A schematic diagram of a PTFE bellows expansion joint embedded in elastic medium with the two 

ends fixed for conveying fluid, is considered as a hollow corrugated tube as shown in Fig. 1.  The transverse 

displacement ‘w’ of the PTFE bellows expansion joint is dependent on time- ‘t’ and the spatial coordinate-‘s’. 

 

 
Figure.1. Geometry of bellows expansion joint 

 

 
Figure.2. Bending of the beam element 

 

 
Figure.3. Beam elements with (a) shear, (b) bending and (c) total deformation 
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Here 𝛽𝑖 =
𝜕𝑤𝑠

𝜕𝑥
 is shear deformation or shear angle in Fig. (3)(a). The fibers are located in an element at distance 

at a ‘z from the centerline. The shear deformation has no effect to cause any axial displacement. Hence, the 

components of displacement can be expressed as  

u = -z (
𝜕𝑤

𝜕𝑥
− 𝛽𝑖) =  −𝑧𝜙(𝑥, 𝑡), 𝑣 = 0 𝑎𝑛𝑑 𝑤 = 𝑤(𝑥, 𝑡)      (1) 

 The PTFE bellows expansion joint has an equivalent bending rigidity EI and length L with the crown 

and root radii of R1 and R2 and a thickness, t [3-5]. The governing equation of motion for free vibration of the 

fluid-conveying pipe is derived by applying the Timoshenko elastic theory.  

The components of stress and strain are represented using the displacements as given in equation 1. 

𝜎𝑥𝑥 = −𝐸𝑍
𝜕∅

𝜕𝑥
 ;  휀𝑥𝑥 = −𝑍

𝜕∅

𝜕𝑥
         (2) 

𝜎𝑧𝑥 = 𝐾𝐺 (
𝜕𝑤

𝜕𝑥
− ∅) ;  휀𝑧𝑥 = −∅ +

𝜕𝑤

𝜕𝑥
        (3) 

휀𝑦𝑧 = 휀𝑥𝑦 = 휀𝑦𝑦 =  휀𝑧𝑧 =   𝜎𝑦𝑦 =  𝜎𝑧𝑧 =  𝜎𝑥𝑦 =  𝜎𝑦𝑧 = 0      (4) 

The strain energy of the system is expressed as 

𝜋1 =
1

2
∭ (𝜎𝑥𝑥휀𝑥𝑥 + 𝜎𝑦𝑦 휀𝑦𝑦  + 𝜎𝑧𝑧 휀𝑧𝑧+𝜎𝑥𝑦휀𝑥𝑦 + 𝜎𝑦𝑧휀𝑦𝑧 + 𝜎𝑧𝑥휀𝑧𝑥) 𝑑𝑣

 

𝑉
    (5) 

𝜋1 =
1

2
∫ ∬ (𝜎𝑥𝑥휀𝑥𝑥 + 𝜎𝑧𝑥휀𝑧𝑥)𝑑𝐴. 𝑑𝑥

 

𝐴

𝑙

0
  

On the substitution of equations 2, 3 and 4  

𝜋1 =
1

2
∫ ∬ [𝐸𝑍2 (

𝜕∅

𝜕𝑥
)

2

+ 𝐾𝐺 (
𝜕𝑤

𝜕𝑥
− ∅)

2

]
 

𝐴

𝑙

0
𝑑𝐴. 𝑑𝑥  

𝜋1 =
1

2
∫ ∬ [𝐸𝐴𝑍2 (

𝜕∅

𝜕𝑥
)

2

+ 𝐾𝐴𝐺 (
𝜕𝑤

𝜕𝑥
− ∅)

2

]
 

𝐴

𝑙

0
𝑑𝐴. 𝑑𝑥       (6) 

Equation 6 is written as A𝑍2= I, where I is the moment of inertia of bellow 

𝜋1 =
1

2
∫ [𝐸𝐼 (

𝜕∅

𝜕𝑥
)

2

+ 𝐾𝐴𝐺 (
𝜕𝑤

𝜕𝑥
− ∅)

2

]
𝑙

0
𝑑𝑥        (7) 

Strain energy due to Pressure,  

𝜋2 =
1

2
∫ [𝑃𝜋𝑅𝑚

2 (
𝜕𝑤

𝜕𝑥
)

2

]
𝑙

0
𝑑𝑥         (8) 

The Stain energy due to temperature 

On addition of equations 6, 7, 8 and 9 the total strain energy equation 

𝜋 = 𝜋1 + 𝜋2 

𝜋 =
1

2
∫ [𝐸𝐼 (

𝜕∅

𝜕𝑥
)

2

+ 𝐾𝐴𝐺 (
𝜕𝑤

𝜕𝑥
− ∅)

2

]
𝑙

0
𝑑𝑥 +

1

2
∫ [𝑃𝜋𝑅𝑚

2]
𝑙

0
(

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥     (9) 

The Kinetic energy is 

𝑇 =
1

2
∫ [(𝑚𝑝 + 𝑚𝑓) (

𝜕𝑢

𝜕𝑡
)

2

− 2𝑚𝑓𝑈𝑠𝑖𝑛휃
𝜕𝑤

𝜕𝑡
] 𝑑𝑥 +

𝜌𝑝𝐼

2
∫ (

𝜕∅

𝜕𝑡
)

2𝑙

0

𝑙

0
𝑑𝑥 +

1

2
∫ [(𝑚𝑝 + 𝑚𝑓) (

𝜕𝑤

𝜕𝑡
)

2

+
𝑙

0

2𝑚𝑓𝑈𝑐𝑜𝑠휃
𝜕𝑢

𝜕𝑡
] 𝑑𝑥 +

𝑚𝑓

2
∫ 𝑈2𝑑𝑥 +

𝑙 

0

𝜌𝑓𝐼

2
∫ (

𝜕2∅

𝜕𝑥𝜕𝑡
)

2
𝑙

0
𝑑𝑥     (10) 

Now eliminating non-linear terms and  𝑠𝑖𝑛휃 =
𝜕𝑤

𝜕𝑥
    

𝑇 =
1

2
∫ [−2𝑚𝑓𝑈

𝜕𝑤

𝜕𝑡

𝜕𝑤

𝜕𝑡
] 𝑑𝑥 +

𝜌𝑝𝐼

2
∫ (

𝜕∅

𝜕𝑡
)

2𝑙

0

𝑙

0
𝑑𝑥 +

1

2
∫ [(𝑚𝑝 + 𝑚𝑓) (

𝜕𝑤

𝜕𝑡
)

2

]
𝑙

0
𝑑𝑥 +

𝜌𝑓𝐼

2
∫ (

𝜕2∅

𝜕𝑥𝜕𝑡
)

2
𝑙

0
 𝑑𝑥  

                  (11) 

Applying the virtual work principle, we have  

𝑉𝑊 = ∫ 𝑓𝑤 
𝑙

0
𝑑𝑥 − ∫ 𝑚𝑓𝑈2 (

𝜕𝑤

𝜕𝑥
) 𝑐𝑜𝑠휃𝑑𝑥 

𝑙

0
− ∫ 𝑚𝑓𝑈2 (

𝜕𝑤

𝜕𝑥
) 𝑠𝑖𝑛휃𝑑𝑥

𝑙

0
  (12)  

And elimination of non-linear terms and  𝑐𝑜𝑠휃 𝑎𝑛𝑑 𝑠𝑖𝑛휃 

𝑉𝑊 = − ∫ 𝑚𝑓𝑈2 (
𝜕𝑤

𝜕𝑡
)

2

𝑑𝑥 
𝑙

0
                    (13) 

Substituting in Hamilton Principle gives 

𝛿 ∫ [𝜋 − 𝑇 − 𝑉𝑊]𝑑𝑡 = 0
𝑡2

𝑡1
                    (14) 

∫ [𝛿𝜋 − 𝛿𝑇 − 𝛿(𝑉𝑊)]𝑑𝑡 = 0
𝑡2

𝑡1
         (15) 

Consider 

∫ 𝛿𝜋 𝑑𝑡
𝑡2

𝑡1

= ∫ ∫ [𝐸𝐼 (
𝜕∅

𝜕𝑥
) 𝛿 (

𝜕∅

𝜕𝑥
)]

𝑙

0

𝑑𝑥 𝑑𝑡 +
𝑡2

𝑡1

∫ ∫ 𝑘𝐴𝐺 (
𝜕𝑤

𝜕𝑥
− ∅) 𝛿 (

𝜕𝑤

𝜕𝑥
− ∅) 𝑑𝑥 

𝑙

0

𝑑𝑡
𝑡2

𝑡1

+ ∫ ∫ [𝑃𝜋𝑅𝑚
2]

𝑙

0

(
𝜕𝑤

𝜕𝑥
) 𝛿 (

𝜕𝑤

𝜕𝑥
)  𝑑𝑡

𝑡2

𝑡1
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∫ 𝛿𝜋 𝑑𝑡
𝑡2

𝑡1
= ∫ [{𝐸𝐼 (

𝜕∅

𝜕𝑥
) 𝛿∅}

0

𝑙

− ∫ 𝐸𝐼
𝜕2∅

𝜕𝑥2

𝑙

0
𝛿∅𝑑𝑥]  𝑑𝑡

𝑡2

𝑡1
+ ∫ [{𝑘𝐴𝐺 (

𝜕𝑤

𝜕𝑥
− ∅) 𝛿∅}

0

𝑙

− ∫ 𝑘𝐴𝐺 (
𝜕2𝑊

𝜕𝑥2 −
𝑙

0

𝑡2

𝑡1

𝜕∅

𝜕𝑥
) 𝛿𝑤 𝑑𝑥]  𝑑𝑡 + ∫ ∫ 𝑘𝐴𝐺 (

𝜕𝑤

𝜕𝑥
− ∅) 𝛿∅𝑑𝑥 

𝑙

0
𝑑𝑡

𝑡2

𝑡1
+ ∫ [{[𝑃𝜋𝑅𝑚

2] (
𝜕𝑤

𝜕𝑥
) 𝛿𝑤}

0

𝑙

− ∫ [𝑃𝜋𝑅𝑚
2]

𝜕2𝑤

𝜕𝑥2

𝑙

0
𝛿𝑤𝑑𝑥]  𝑑𝑡

𝑡2

𝑡1
 

            (16)

  

The Kinetic Energy term is 

∫ 𝛿𝑇
𝑡2

𝑡1
𝑑𝑡 = − ∫ [∫ 2𝑚𝑓𝑈

𝜕𝑤

𝜕𝑡

𝑙

0
𝛿

𝜕𝑤

𝜕𝑡
𝑑𝑥]  𝑑𝑡

𝑡2

𝑡1
+ 𝜌𝑝𝐼 ∫ [∫

𝜕∅

𝜕𝑡

𝑙

0
𝛿

𝜕∅

𝜕𝑡
𝑑𝑥]  𝑑𝑡

𝑡2

𝑡1
+ (𝑚𝑝 + 𝑚𝑓) ∫ [∫

𝜕𝑤

𝜕𝑡

𝑙

0
𝛿

𝜕𝑤

𝜕𝑡
𝑑𝑥]  𝑑𝑡

𝑡2

𝑡1
+

𝜌𝑓𝐼 ∫ [∫ (
𝜕2∅

𝜕𝑥𝜕𝑡
)

𝑙

0
𝛿 (

𝜕2∅

𝜕𝑥𝜕𝑡
) 𝑑𝑥]  𝑑𝑡

𝑡2

𝑡1
  

∫ 𝛿𝑇
𝑡2

𝑡1
𝑑𝑡 = − ∫ [{2𝑚𝑓𝑈

𝜕𝑤

𝜕𝑡
𝛿𝑤}

0

𝑙

− ∫ 2𝑚𝑓
𝜕2𝑤

𝜕𝑥𝜕𝑡

𝑙

0
𝛿𝑤𝑑𝑥]  𝑑𝑡 + 𝜌𝑝𝐼 ∫ [{

𝜕∅

𝜕𝑡
𝛿∅}

0

𝑙

− ∫
𝜕2∅

𝜕𝑡2

𝑙

0
𝛿∅𝑑𝑥]  𝑑𝑡 +

𝑡2

𝑡1

𝑡2

𝑡1

(𝑚𝑝 + 𝑚𝑓) ∫ [{
𝜕𝑤

𝜕𝑡
𝛿𝑤}

0

𝑙

− ∫
𝜕2𝑤

𝜕𝑡2

𝑙

0
𝛿𝑤𝑑𝑥]  𝑑𝑡

𝑡2

𝑡1
+ 𝜌𝑝𝐼 ∫ [{(

𝜕2∅

𝜕𝑥𝜕𝑡
)

𝜕∅

𝜕𝑡
𝛿∅}

0

𝑙𝑙

− ∫
𝜕3∅

𝜕𝑥2𝜕𝑡

𝑙

0
𝛿∅𝑑𝑥]  𝑑𝑡

𝑡2

𝑡1
  (17) 

Consider the virtual work 

∫  𝛿(𝑉𝑊)𝑑𝑡 = − ∫ [∫ 𝑚𝑓𝑈2 (
𝜕𝑤

𝜕𝑥
)

𝑙

0

𝛿 (
𝜕𝑤

𝜕𝑥
) 𝑑𝑥] 𝑑𝑡

𝑡2

𝑡1

𝑡2

𝑡1

 

 =− ∫ [{𝑚𝑓𝑈2 𝜕𝑤

𝜕𝑥
𝛿𝑤}

0

𝑙

− ∫ 𝑚𝑓𝑈2 𝜕2𝑤

𝜕𝑥2

𝑙

0
𝛿𝑤𝑑𝑥] 𝑑𝑡

𝑡2

𝑡1
     (18) 

On substitution of 17, 18, and 19 in 16 gives  

∫ [{𝐸𝐼 (
𝜕∅

𝜕𝑥
) 𝛿∅}

0

𝑙

− ∫ 𝐸𝐼
𝜕2∅

𝜕𝑥2

𝑙

0
𝛿∅𝑑𝑥]  𝑑𝑡

𝑡2

𝑡1
+ ∫ [{𝑘𝐴𝐺 (

𝜕𝑤

𝜕𝑥
− ∅) 𝛿∅}

0

𝑙

− ∫ 𝑘𝐴𝐺 (
𝜕2𝑊

𝜕𝑥2 −
𝜕∅

𝜕𝑥
) 𝛿𝑤

𝑙

0
𝑑𝑥]  𝑑𝑡 +

𝑡2

𝑡1

∫ ∫ 𝑘𝐴𝐺 (
𝜕𝑤

𝜕𝑥
− ∅) 𝛿∅𝑑𝑥 

𝑙

0
𝑑𝑡

𝑡2

𝑡1
+ ∫ [{[𝑃𝜋𝑅𝑚

2] (
𝜕𝑤

𝜕𝑥
) 𝛿𝑤}

0

𝑙

− ∫ [𝑃𝜋𝑅𝑚
2]

𝜕2𝑤

𝜕𝑥2

𝑙

0
𝛿𝑤𝑑𝑥]  𝑑𝑡 +

𝑡2

𝑡1

∫ [{2𝑚𝑓𝑈
𝜕𝑤

𝜕𝑡
𝛿𝑤}

0

𝑙

− ∫ 2𝑚𝑓
𝜕2𝑤

𝜕𝑥𝜕𝑡

𝑙

0
𝛿𝑤𝑑𝑥]  𝑑𝑡  + 𝜌𝑝𝐼 ∫ [{

𝜕∅

𝜕𝑡
𝛿∅}

0

𝑙

− ∫
𝜕2∅

𝜕𝑡2

𝑙

0
𝛿∅𝑑𝑥]  𝑑𝑡 + (𝑚𝑝 +

𝑡2

𝑡1

𝑡2

𝑡1

𝑚𝑓) ∫ [{
𝜕𝑤

𝜕𝑡
𝛿𝑤}

0

𝑙

− ∫
𝜕2𝑤

𝜕𝑡2

𝑙

0
𝛿𝑤𝑑𝑥]  𝑑𝑡

𝑡2

𝑡1
+ 𝜌𝑝𝐼 ∫ [{(

𝜕2∅

𝜕𝑥𝜕𝑡
)

𝜕∅

𝜕𝑡
𝛿∅}

0

𝑙𝑙

− ∫
𝜕3∅

𝜕𝑥2𝜕𝑡

𝑙

0
𝛿∅𝑑𝑥]  𝑑𝑡 +

𝑡2

𝑡1

∫ [{𝑚𝑓𝑈2 𝜕𝑤

𝜕𝑥
𝛿𝑤}

0

𝑙

− ∫ 𝑚𝑓𝑈2 𝜕2𝑤

𝜕𝑥2

𝑙

0
𝛿𝑤𝑑𝑥] 𝑑𝑡

𝑡2

𝑡1
= 0       (19) 

Now considering terms 𝛿𝑤𝑑𝑥𝑑𝑡 

𝑘𝐴𝐺 (
𝜕2𝑊

𝜕𝑥2 −
𝜕∅

𝜕𝑥
) − [𝑃𝜋𝑅𝑚

2]
𝜕2𝑤

𝜕𝑥2 − 2𝑚𝑓
𝜕2𝑤

𝜕𝑥𝜕𝑡
− (𝑚𝑡𝑜𝑡)

𝜕2𝑤

𝜕𝑡2 + 𝑚𝑓𝑈2 𝜕2𝑤

𝜕𝑥2 = 0    (20) 

-(𝑘𝐴𝐺 + 𝑃𝜋𝑅𝑚
2 + 𝑚𝑓𝑈2)

𝜕2𝑤

𝜕𝑥2 +𝑘𝐴𝐺
𝜕∅

𝜕𝑥
− 2𝑚𝑓

𝜕2𝑤

𝜕𝑥𝜕𝑡
− (𝑚𝑡𝑜𝑡)

𝜕2𝑤

𝜕𝑡2 = 0  

𝑘𝐴𝐺
𝜕∅

𝜕𝑥
= ( 𝑘𝐴𝐺 + 𝑃𝜋𝑅𝑚

2 + 𝑚𝑓𝑈2)
𝜕2𝑤

𝜕𝑥2
+ 2𝑚𝑓

𝜕2𝑤

𝜕𝑥𝜕𝑡
+ (𝑚𝑡𝑜𝑡)

𝜕2𝑤

𝜕𝑡2
 

Divide with kAG 
𝜕∅

𝜕𝑥
= (1 +

𝑃𝜋𝑅𝑚
2+𝑚𝑓𝑈2

𝑘𝐴𝐺
)

𝜕2𝑤

𝜕𝑥2 +
2𝑚𝑓

𝑘𝐴𝐺

𝜕2𝑤

𝜕𝑥𝜕𝑡
+

𝑚𝑡𝑜𝑡

𝑘𝐴𝐺

𝜕2𝑤

𝜕𝑡2         (21) 

Now consider term 𝛿∅𝑑𝑥𝑑𝑡 

𝐸𝐼
𝜕2∅

𝜕𝑥2 − 𝑘𝐴𝐺
𝜕𝑤

𝜕𝑥
+ 𝑘𝐴𝐺∅ + 𝜌𝑝𝐼

𝜕2∅

𝜕𝑡2 − 𝜌𝑝𝐼
𝜕3∅

𝜕𝑥2𝜕𝑡
= 0       (22) 

The equation. 23, on differentiation with respect to dx 

𝐸𝐼
𝜕2

𝜕𝑥2 (
𝜕∅

𝜕𝑥
) − 𝑘𝐴𝐺

𝜕2𝑤

𝜕𝑥2 + 𝑘𝐴𝐺 (
𝜕∅

𝜕𝑥
) + 𝜌𝑝𝐼

𝜕2

𝜕𝑡2 (
𝜕∅

𝜕𝑥
) − 𝜌𝑝𝐼

𝜕3

𝜕𝑥2𝜕𝑡
(

𝜕∅

𝜕𝑥
) = 0    (23) 

On substitution of 
𝜕∅

𝜕𝑥
 in equation. 24, we get  

𝐸𝐼 (+
𝑃𝜋𝑅𝑚

2+𝑚𝑓𝑈2

𝑘𝐴𝐺
)

𝜕4𝑤

𝜕𝑥4 − 𝐸𝐼
𝑚𝑡𝑜𝑡

𝑘𝐴𝐺

𝜕4𝑤

𝜕𝑥2𝜕𝑡2 − 𝑘𝐴𝐺
𝜕2𝑤

𝜕𝑥2 + 𝑘𝐴𝐺
𝜕2𝑤

𝜕𝑥2 + (𝑃𝜋𝑅𝑚
2 + 𝑚𝑓𝑈2)

𝜕2𝑤

𝜕𝑥2 − +2𝑚𝑓𝑈
𝜕2𝑤

𝜕𝑥𝜕𝑡
+

(𝑚𝑝 + 𝑚𝑓)
𝜕2𝑤

𝜕𝑡2 − 𝜌𝑝𝐼
𝜕4𝑤

𝜕𝑥2𝜕𝑡2 − 𝜌𝑝𝐼
𝑚𝑡𝑜𝑡

𝑘𝐴𝐺

𝜕4𝑤

𝜕𝑡4 = 0       (24) 

Eliminating non-linear terms  

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 − (𝜌𝑝𝐼 + 𝐸𝐼
𝑚𝑡𝑜𝑡

𝑘𝐴𝐺
)

𝜕4𝑤

𝜕𝑥2𝜕𝑡2 + (𝑚𝑝 + 𝑚𝑓)
𝜕2𝑤

𝜕𝑡2 + (𝑃𝜋𝑅𝑚
2 + 𝑚𝑓𝑈2)

𝜕2𝑤

𝜕𝑥2 − +2𝑚𝑓𝑈
𝜕2𝑤

𝜕𝑥𝜕𝑡
− 𝜌𝑝𝐼

𝑚𝑡𝑜𝑡

𝑘𝐴𝐺

𝜕4𝑤

𝜕𝑡4 = 0

           (25) 

Now, boundary conditions with respect to 𝛿𝑤 

𝑘𝐴𝐺 (
𝜕𝑤

𝜕𝑥
− ∅) − [𝑃𝜋𝑅𝑚

2 + 𝑚𝑓𝑈2]
𝜕𝑤

𝜕𝑥
+ 2𝑚𝑓𝑈

𝜕𝑤

𝜕𝑡
= 0      (26) 

𝑘𝐴𝐺 (
𝜕𝑤

𝜕𝑥
) − 𝑘𝐴𝐺∅ − [𝑃𝜋𝑅𝑚

2 + 𝑚𝑓𝑈2]
𝜕𝑤

𝜕𝑥
+ 2𝑚𝑓𝑈

𝜕𝑤

𝜕𝑡
= 0      (27) 

In equation. 26 the rotary inertia and shear is calculated as 5.2508e-11 and 0.7615e-3 respectively. As shear 

component is very negligible and it has been neglected.  
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The equation.25 can be rewritten as- 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + (𝑃𝜋𝑅𝑚
2 + 𝑚𝑓𝑈2)

𝜕2𝑤

𝜕𝑥2 − 𝐽
𝜕4𝑤

𝜕𝑥2𝜕𝑡2 + (𝑚𝑝 + 𝑚𝑓)
𝜕2𝑤

𝜕𝑡2 = 0     (28) 

Where EI, P, T, E, J, w, x, mp, mf are bending stiffness, pressure, temperature, modulus of elasticity, total mass 

moment of inertia per unit length, deflection, axial coordinate, the mass of bellow and the mass of the fluid  

The dimensionless parameters are defined as  

𝑥 =
𝑋

𝐿
, 𝑦 =

𝑤

𝐿
, 𝑚 =

𝑚𝑓

𝑚𝑏+𝑚𝑓
, 휂 =

𝑃𝐴𝐿2

𝐸𝐼
, 휁 =

𝑚𝑓𝑈2𝐿

𝐸𝐼
, 𝜙 =

𝐽𝜔2𝐿2

𝐸𝐼
 𝑎𝑛𝑑 𝜆 =

𝑚𝑡𝑜𝑡𝜔2

𝐸𝐼
    (29) 

Using the Equation. 29 and 30, the governing differential equation of motion can be reduced to the following 

dimensionless form 
𝜕4𝑤

𝜕𝑥4 + (휂 + 휁)
𝜕2𝑤

𝜕𝑥2 + 𝜙
𝜕2𝑤

𝜕𝑥2 − 𝜆4𝑤 = 0        (30) 

Using the technique of separation of variables, the lateral deflection of the bellows axis ‘w’ can be expressed as  

𝑤(𝑥, 𝑡) = 𝑋(𝑥). 𝑇(𝑡) 𝑎𝑛𝑑  𝑇(𝑡) = 𝐴 𝑒𝑖𝜔𝑡        (31) 

Differentiating the above equation (31) and substituting into the differential equation. 30 we get, 
𝜕4𝑋

𝜕𝑥4+(휂 + 휁 + 𝜙) ×
𝜕2𝑋

𝜕𝑥2 − 𝜔2 𝑚𝑡𝑜𝑡

𝐸𝐼
𝑋= 0           (32) 

If c =√(휂 + 휁 + 𝜙),          (33) 

Then equation. 32 can be written as 
𝑑4𝑋

𝑑𝑥4+ 2c2𝑑2𝑋

𝑑𝑥2 – 𝜆4X=0          (34) 

Assuming a general solution of equation. 34 is given by 

X(x) =A sinh 𝛼𝑥 + B cosh αx + C sinβx + D cosβx        (35) 

Where A, B, C, D are arbitrary constants respectively.  The first derivatives of the equation. 35 are as follows  
𝑑𝑋(𝑥)

𝑑𝑥
=A.α cosh αx + B. sinh αx + C.β cos βx + D. β sin βx      (36) 

Let the roots of the equation. 36 be α & β 

α = √−𝑐2 + √𝑐4 + 𝜆4          (37) 

β = √𝑐2 + √𝑐4 + 𝜆4          (38) 

And 

𝜆 =  √
𝑚𝑡𝑜𝑡.𝜔2

𝐸𝐼

4
           (39) 

The fixed-fixed boundary conditions are 

𝑤(0, 𝑡) = 𝑤(𝑙, 𝑡) =
𝜕𝑤(0,𝑡)

𝜕𝑥
=

𝜕𝑤(𝐿,𝑡)

𝜕𝑥
= 0        (40) 

The boundary conditions given by the Equation. 40) corresponding to conditions of zero displacement and zero 

slope at x = 0 and x = L respectively. 

The solution of the differential equation. 34 can be expressed as  

𝑊(𝑋) = 𝐶𝑒𝑖𝜔𝑡            (41) 

Where 𝜔 𝑖𝑠 circular frequency and C is arbitrary constant 

On substitution of Equation. 41 in Equation. 37 the following equation is obtained 

A = 0            (42) 

𝛼𝐵 + 𝛽𝐷 = 0           (43) 

A cosh 𝛼𝑙+Bsinh 𝛼𝑙+Ccos 𝛽𝑙+Dsin 𝛽𝑙 = 0        (44) 

A 𝛼sinh 𝛼𝑙+B𝛼𝑐𝑜𝑠ℎ 𝛼𝑙- C 𝛽sin 𝛽𝑙+ D𝛽cos 𝛽𝑙 = 0       (45) 

Determinate for the above four equations 43, 44, 45 and 46 

|

1 0 1 0
0 𝛼 0 𝛽

𝑐𝑜𝑠ℎ𝛼𝑙 𝑠𝑖𝑛ℎ𝛼𝑙 𝑐𝑜𝑠𝛽𝒍 𝑠𝑖𝑛𝛽𝑙
𝛼𝑠𝑖𝑛ℎ𝛼𝑙 𝛼𝑐𝑜𝑠ℎ𝛼𝑙 −𝛽𝑠𝑖𝑛𝛽𝑙 𝛽𝑐𝑜𝑠𝛽𝑙

| = 0       (46) 

2𝛼𝛽[1 − cosh(𝛼𝑙) . cos(𝛽𝑙)] + [(𝛼2 − 𝛽2)] sinh(𝛼𝑙). sin(𝛽𝑙) = 0     (47) 

 Equation. 47 is closed from the transcendental equation for finding the natural frequencies of transverse 

vibration of single bellow expansion joint. Using the Muller’s bisection method, the characteristic equation. 47 

is solved for four modes of vibration. 

III. RESULT AND DISCUSSION 
 In this paper, the free vibration equation of the fluid conveying PTFE bellows expansion joint is 

derived by using Timoshenko elastic theory. The results are obtained by analyzing the effect of pressure and 

combined effect of pressure and temperature of the fluid (water) on the frequencies at different modes.  
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a. Frequency with change of inlet pressure 

 Table 1 presents the influence of pressure variation on the four modes of vibration. The frequencies are 

obtained in non-dimensional form. Table 1 and Fig 4 represent the change of frequency with respect to inlet 

pressure. Bellows become unstable at critical pressure when the non-dimensional frequency becomes zero. It is 

found that the critical pressure of bellows approaches 13 for first mode, 26 for second mode, 49 for third mode 

and 73 for fourth respectively. It is found that the bellows are instable 

 

Table 1: Fundamental natural frequencies for varying inlet pressure 

S 

No 

Non-

dimensional 

Pressure (휂 ) 

Non- dimensional frequency 

Mode-1 Mode-2 Mode-3 Mode-4 

1 0.0 3.06E+01 8.45E+01 1.66E+02 2.74E+02 

2 5.0 2.34E+01 7.54E+01 1.56E+02 2.64E+02 

3 10.0 1.21E+01 6.50E+01 1.46E+02 2.53E+02 

4 12.6 0.00E+00 5.77E+01 1.39E+02 2.47E+02 

5 14.0 
 

5.51E+01 1.37E+02 2.45E+02 

6 15.0 
 

5.24E+01 1.35E+02 2.42E+02 

7 20.0 
 

3.53E+01 1.22E+02 2.31E+02 

8 25.0 
 

5.90E+00 1.09E+02 2.19E+02 

9 26.0 
 

0.00E+00 1.06E+02 2.17E+02 

10 30.0 
  

9.40E+01 2.06E+02 

11 35.0 
  

7.66E+01 1.93E+02 

12 40.0 
  

5.57E+01 1.79E+02 

13 45.0 
  

2.80E+01 1.63E+02 

14 49.0 
  

0.00E+00 1.50E+02 

15 73.0 
   

0.00E+00 

 

 
Figure 4: Frequency for combined effect of pressure and temperature 

 

b.  Frequency with change of inlet velocity 

 Table 2 presents the influence of velocity variation on the four modes of vibrations. The frequencies 

are obtained in non-dimensional form. Table 2 and Fig 5 represent the change of frequency with respect to inlet 

velocity. Bellows become unstable at critical velocity when the non-dimensional frequency becomes zero. It is 

found that critical velocity of bellows approaches 15 for first mode, 22 for second mode, 30 for third mode and 

37 for fourth respectively. It is found that the bellows are instable 
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Table 2: Fundamental natural frequencies for varying inlet pressure 

S.No 

Non-

dimensional 

Velocity (휁) 

Non- dimensional frequency 

Mode 1 Mode 2 Mode 3 Mode 4 

1 0.0 3.06E+01 8.45E+01 1.65E+02 2.74E+02 

2 1.0 3.06E+01 8.44E+01 1.66E+02 2.74E+02 

3 5.0 2.89E+01 8.48E+01 1.63E+02 2.71E+02 

4 10.0 2.29E+01 7.48E+01 1.55E+02 2.63E+02 

5 14.0 1.07E+01 6.41E+01 1.45E+02 2.52E+02 

6 14.8 0.00E+00 6.04E+01 1.41E+02 2.49E+02 

7 20.0 
 

2.96E+01 1.19E+02 2.28E+02 

8 21.0 
 

1.48E+01 1.14E+02 2.23E+02 

9 22.0 
 

0.00E+00 1.07E+02 2.19E+02 

10 25.0 
  

8.34E+01 1.98E+02 

11 29.0 
  

3.06E+01 1.66E+02 

12 30.0 
  

0.00E+00 1.54E+02 

13 36.0 
   

4.82E+01 

14 37.0 
   

0.00E+00 

 

 
Figure 5: non- dimensional frequency for effect of non-dimensional velocity 

 

 Fig 6 represents the comparison of Non- dimensional pressure and non-dimensional velocity on the 

non-dimensional frequency. The critical pressure and critical velocity of the bellows found as non-dimensional 

pressure and non-dimensional velocity at 15. 

 

 
Figure 6: non- dimensional frequency for effect of non-dimensional velocity and pressure 
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c. Comparison of theoretical and experimental results 

 The properties and the geometry of the PTFE bellows expansion joint consider as that the density of 

Polytetrafluoroethylene bellows expansion joint (PTFEBEJ) is 2300 kg/m3; bending rigidity 4.4692 Nm; the 

mass of the fluid in bellow per unit length of PTFEBEJ is 2.859 kg and the mass per unit length of the PTFEBEJ 

is 3.7718 kg. Geometric and material parameters: diameter of bellow, Dm = 80.0mm; thickness of bellow, tp =

2mm; Pitch of bellow, q = 5mm; length of bellow, L = 32.1mm; convolution height of bellow, h = 5.71 mm; 

Young’s modulus of the bellow, EPTFE = 1.5x109 N/m2; Root and crown radiusR1 = R2 = 12.5mm. 

 The experimental setup in Fig 7 consists of 80mm outer diameter PTFE bellow which is fixed at both 

ends and connected with pipes for fluid flow. A globe valve is used to regulate inlet pressure and pressure 

gauges and thermocouples are mounted to measure the inlet and outlet pressures and temperatures. A 

piezoelectric transducer (Accelerometer) is installed on the bellow at different positions to obtain frequencies in 

terms of velocity and displacement. The Vibration analyzer, signal records the waveform in Fig 8. Properties of 

PTFE bellow for comparing theoretical results are given below. The fig 8 represents the wave foe experimental 

result in mode 2 at non- dimensional velocity 5.0 

 

 
Figure 7: Experimental setup of PTFE bellows 

 

 
Figure 8: Experimental result for Mode 2 at Non- dimensional velocity 5.0 

 

 Table 3 and fig 9 represents a comparison and validation of results found by theory and experiments. It 

is observed that at 휂 = 5.0 the frequency at Mode 1 is obtained as 23.43 by exact solution and 25.12 from 

experiment with percentage error of 3%.  
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Table 3: Comparison of theoretical and experimental results 

 

S.No 

Non-

dimensional 

Pressure (휂 ) 

Non- dimensional Frequency at different modes 

Modes Theoretical 

 

Experimental 

 

Percentage 

of error 

(%) 

1 5.0 

1 23.43 27.12 3 

2 75.49 81.23 7 

3 156.58 165.76 5 

4 264.65 278.29 4 

 

 
Figure 9: Comparison of theoretical and experimental results in non-dimensional pressure 5.0 

 

 Table 4 and fig 10 represents a comparison and validation of results found by theory and experiments. 

It is observed that at 휁 = 5.0 the frequency at Mode 1 is obtained as 28.54 by exact solution and 30.83 from 

experiment with percentage error of 4%.  

 

Table 4: Comparison of theoretical and experimental results 

 

S.No 

Non-

dimensional 

Velocity (휁) 

Non- dimensional Frequency at different modes 

Modes Theoretical 

 

Experimental 

 

Percentage 

of error 

(%) 

1 5.0 

1 28.54 30.83 4 

2 84.85 91.7 7 

3 163.85 172.19 4 

4 271.63 286.57 5 

 

 
Figure 10: Comparison of theoretical and experimental results under change of non-dimensional velocity 5.0. 

 

IV. CONCLUSION 
 The transverse vibration analysis of a fluid conveying PTFE bellows expansion joint under the effect of 

pressure and velocity change with fixed ends was studied. Based on the analysis it was observed that the 
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influence of pressure on the fundamental frequency of the fixed PTFE bellows expansion joint is significant and 

recorded as non-dimensional critical pressure is 12.6 and the critical velocity recorded as 14.8. Results show that 

the pressures and velocity under effect on the frequency becomes significant with increase in pressure and 

velocity parameters individually thereon leads to a decrease in the frequency. The experimental results have 

confirmed that the transcendental frequency equation derived is exact, within the engineering accuracy of less 

than 10%. It was studied that any change in each pressure and velocity individually will significantly affect the 

performance of the bellow, and might lead to a failure even before the design conditions are attained. 
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