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Abstract: In this paper, combined influence of magnetic field and dissipation on connective heat and mass 

transfer flow of a viscous chemically reacting fluid through a porous medium in the concentric cylindrical 

annulus with inner cylinder maintained at constant temperature and concentration on the other cylinder 

maintained constant heat flux. The equations governing the flow, heat. Mass and micro rotation are solved by 

employing Galerkin finite element analysis with quadratic approximation functions. The temperature, 

concentration and micro concentration distributions are analyzed for different values of G, M, D
-1

, R, S and Ec. 

The rate of heat and mass transfer and couple stress are numerically evaluated for different variations of the 

governing parameters.  
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I. INTRODUCTION: 
An enclosed cylindrical annular cavity formed by three vertical, concentric cylinders, containing a fluid 

through which heat is transferred by natural convection, is a simplified representation of a number of practical 

and experimental situations. Also, the annulus represents a common geometry employed in a variety of heat 

transfer systems ranging from simple heat exchangers to the most complicated nuclear reactors. Since, the flow 

and heat transfer in a cylindrical annular configuration contains all the essential physics that are common to all 

confined natural convective flows, a complete understanding of the flow in such geometry is very essential. In 

addition, from a computational stand point, the annular configuration allows investigation of a wide range of 

geometrical effects. 

There have been widespread interests in the study of effect of magnetic field on natural convection in 

fluid saturated cylindrical porous annulus/annuli. Most of the studies found in literature on the effect of 

magnetic field on natural convection are mainly confined to rectangular enclosures or single cylindrical annulus 

in the presence and absence of porous medium. Sankar and Venkatachalappa [21] have investigated the effect of 

direction of magnetic field in a vertical cylindrical annulus. They showed that the radial magnetic field is more 

effective in suppressing the convection in tall cavities, while the axial magnetic field is more effective in 

suppressing the convection in tall cavities, while the axial magnetic field is effective in shallow cavities. Prasad 

and Kulacki [20] have studied the effect of free convection heat transfer in a liquid-filled vertical annulus. 

Shivakumara [22] have numerically investigated the natural convection in a vertical porous annulus using 

Darcy-Brinkmann model. Prasad et al. [18] have reported numerical results using Darcy equation for the case 

when a constant bottom portions are being insulated. Oreper and Szekely [17] reported the numerical 

computation of natural convection in a rectangular duct with electrically insulated walls in the presence of 

variable magnetic study to understand the effect of direction of magnetic field in cubical enclosure heated from 

one side wall and cooled from the opposite wall with all other walls are insulated. Later, Okada and Ozoe [16] 

studied the same problem experimentally using molten gallium (Pr = 0.024). They obtained the results under 

three different directions of magnetic field. They found that the external magnetic field, the vertical direction 

was found to be effective than the magnetic field applied parallel to the heated vertical wall. Also this 

observation is consistent with their numerical work. 

Recently, Barletta et al. [2] studied mixed and forced convection Darcy flow in a vertical porous 

annulus around a straight electric cable by assuming fully developed parallel flow. The effect of magnetic field 

and internal heat generation on the free convection in a rectangular cavity filled with a porous medium is 

numerically investigated by Grosan et al. [8] for a wide range of physical parameters.  

 



Mhd Double Diffusive Convective Heat Transfer Flow Of Micropolar Fluid In Cylindrical Annulus 

International organization of Scientific Research                                                               2 | P a g e  

The theory of micropolar fluids initiated by Erigen [5] exhibits some microscopic effects arising from 

the local structure and micro motion of the fluid elements. Further, they can sustain couple stress and include 

classical Newtonian fluid as a special case. The model of micropolar fluid represents fluids consisting of rigid 

randomly oriented (or sphenical) particles suspended in a viscous medium where the deformation of the 

particles is ignored. The fluid containing certain additives, some polymeric fluids and animal blood are 

examples of micropolar fluids. The mathematical theory of equations of micropolar fluids and application of 

these fluids in the theory of lubrication and porous media is presented by Lukaszewics [12]. Agarwal and 

Dhanpal [1] obtained numerical solution of micropolar fluid flow and heat transfer between two co-axial porous 

circular cylinders. 

Verma and Singh [27] have analyzed the behaviour of parametric fluid flow in a porous annulus in the 

presence of external magnetic field acting parallel to the common axis of the long co axial porous cylindrical 

tubes. Panja et al. [19] studied the flow of electrically conducting Reiner – Rivlin fluid between two non-

conducting co axial circular cylinders with porous walls in the presence of uniform magnetic field. Shivashankar 

et al. [23] have obtained numerical solution to the MHD flow of micropolar fluid between two concentric 

porous cylinders; Murthy et al. [14] have considered study flow of micropolar fluid through a circular pipe and 

transverse with constant suction and injection. 

All the above mentioned studies are based on the hypothesis that the effect of dissipation is neglected. 

This is possible in case of ordinary fluid flow like air and water under gravitational force. But this effect is 

expected to the relevant for fluids with high values of the dynamic viscosity flows. Moreover, Gebhart [10], 

Gebhart and Mollendorf [11] have shown that viscous dissipation heat in the natural convective flow is 

important when the flow field is of extreme size at extremely low temperature or in high gravitational field. On 

the other hand Barletta [3] have pointed out that relevant effects of viscous dissipation on the temperature 

profiles and on Nusselt number my occur in the fully developed forced convection in tubes. In view of this 

several authors notably Soundalgekar and Pop [26]. Soundalgekar et al. [24], Barletta and Zandhicn [4], 

Sreevani [25], El-Hakein [6] and Barletta [3] have studied the effect of viscous dissipation on the convective 

flows past an infinite vertical plate and through vertical channels and ducts. The effect of viscous dissipation on 

natural convection has been studied for some different cases including the natural convection from horizontal 

cylinder embedded in a porous media by Fand and Brucker [7], Giampietrao Fabbn [9] and Sreevani [25]. They 

reported that the viscous dissipation may not be neglected in all cases of natural convection from horizontal 

cylinders and further that the inclusion of a viscous dissipation term in a porous medium may lead to more 

accurate correlation equations, the effect of viscous dissipation has been studied by Nakayama and Pop [15] for 

steady free convection boundary layer over a non-isothermal body of arbitrary shape embedded in porous 

media. They used the integral method to show that the viscous dissipation results in lowering the level of the 

heat transfer rate from the body. This observation has been pointed also by Murthy and Singh [13] for the 

natural connection flow along an isothermal wall embedded in a porous medium. They concluded that that the 

effect of viscous dissipation increases as we move from Non-Darcy regime to Darcy regime.  

 

II. FORMULATION OF THE PROBLEM: 
We consider the steady flow of an incompressible, viscous, electrically conducting micropolar fluid through a 

porous medium in an annulus region between the concentric porous cylinders r = a and r = b (b > a) under the 

influence of a radial magnetic field
2

0

r

H
.  

The fluid is injected through the inner cylinder with radial velocity ub and flows outward through the outer 

cylinder with a radial velocity ua. We also take the viscous, Darcy and Ohmic dissipation into account 

 The velocity and micro rotation are taken in the form 

 vr = u(r), v = v = 0, vz = w(r) 

 r = 0,   = (r), z = 0               (3.1) 

The equations governing the flow and heat and mass transfer (3.1) 
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where u, w are the velocity components along 0(r, z) directions, T is the temperature,  is the micro rotation, p 

is the pressure,  is the density,  is the dynamic viscosity, Cp is the specific heat at constant pressure, kf is the 

thermal conductivity, k1 is the permeability of the porous permeability,  is the electrical conductivity  is the 

magnetic permeability and k, r,  are the material constants. 

The boundary conditions are 

  u = ub,    w = 0,      = 0,  T = T0 + A0 z  , C = C0 + B0 z   on   r = a   

  u = ua,    w = 0,      = 0,  T = T1 + A0 z   , C =C1 + B0 z      on  r = b  

From the equation of continuity we obtain 

 ru = c,  constant  ru = aua = bub 

       
r
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u a  

In view of the boundary condition on temperature and concentration, we may write 

 T = T0 + A0 (z) + (r) , C =C0 + B0(z) + (r)      

On introducing the non-dimensional variables r, w, , p  and N as 
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The equations (3.2) – (3.4) reduces to (on dropping the dashes) 
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The non-dimensional boundary conditions are 

 w = 0,   = 1,   =1 N = 0  on r = 1 

 w = 0,   = 0,  =0 N = 0   on r = s          (3.10) 

 

 

III. METHOD OF SOLUTION: 
Finite Element Analysis: 

The finite element analysis with quadratic polynomial approximation functions is carried out along the 

radial distance across the circular cylindrical annulus. The behavior of the velocity, temperature and 

concentration profiles has been discussed computationally for different variations in governing parameters. The 

Gelarkin method has been adopted in the variation formulation in each element to obtain the global coupled 

matrices for the velocity, temperature and concentration in course of the finite element analysis. Choose an 

arbitrary element ek and let w
k
, 

k
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k
 be the values of w,  and N in the element ek. 

We define the error residuals as 
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 are values of w,  and   in the arbitrary element ek. These are expressed as linear 

combinations in terms of respective local nodal values.  
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Where ,....., 21

kk   etc are Lagrange’s quadratic polynomials. 

Following the Gelarkin weighted residual method and integrating by parts (3.11) – (3.13) we obtain 
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Expressing w
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, 
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, N
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 in terms of local nodal values in (3.14) – (3.16) we obtain 
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Choosing different
k

j ’s corresponding to each element ek in the equation (3.17) yields a local stiffness matrix 

of order 33 in the form 
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Likewise the equation (3.18) and (3.19) gives rise to stiffness matrices 
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J SSRRQQ 121212   and  ,,,,  are 31 column matrices and such stiffness (3.20) – (3.22) in 

terms of local nodes in each element are assembled using inter element continuity and equilibrium conditions to 

obtain the coupled global matrices in terms of the global nodal values of w, ,  and  . In case we choose n-

quadratic elements then the global matrices are of order 2n+1. The ultimate coupled global matrices are solved 

to determine the unknown global nodal values of the velocity, temperature and concentration in fluid region. In 

solving these global matrices an iteration procedure has been adopted to include the boundary and effects in the 

porous region. 

 In fact, the non-linear term arises in the modified Brinkman Linear momentum equation (3.14) of the 

porous medium. The iteration procedure in taking the global matrices as follows, we split the square term into a 

product term and keeping one of them say ui’s under integration. The other is expanded in terms of local nodal 

values as in (3.16), resulting in the corresponding coefficient matrix )'( Snk

iJ in (3.18), whose coefficients 

involve the in known ui’s To evaluate (3.19) to begin with choose the initial global nodal values of wi’s as zeros 

in the zeroth approximation, we evaluate wi’s, i's, i’s and i’s in the usual procedure mentioned earlier. Later 

choosing these values of wi’s as first order approximation calculate i’s i’s and i’s. In the second iteration, we 

substitute for wi’s the first order approximation. This procedure is repeated till the consecutive values of wi’s, 

i's, i’s and i’s differ by a pre-assigned percentage. For computational purpose we choose five elements in 

flow region. 

 

IV. STIFFNESS MATRICES: 

The global matrix for  is  

A1 X1 = B1                (3.23) 

The global matrix for N is  

A2 X2 = B2                (3.24) 

The global matrix w is 

A3 X3 = B3                (3.25) 

The global matrix a is 

A4 X4 = B4                (3.26) 

 

The shear stress () is evaluated using the formula 

Srdr

du

,1









  

The rate of heat transfer (Nusselt number) is evaluated using the formula 

Srdr

d
Nu

,












 

The couple stress at the inner and outer cylinder are evaluated by 

Srdr

dN
M

,

*








  

For M=0 the results are in good agreement with Agarwal and Dhanpal [1]. 

 

V. RESULTS AND DISCUSSION: 
In this analysis we investigate the effect of dissipation and chemical reaction  on mixed convective heat 

and mass transfer flow of a micro polar fluid through a porous medium in circular annulus between the cylinders 

r=a and r=b which are maintained at constant temperature and concentration. The non-linear coupled equations 
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governing the flow heat and mass transfer are solved by Galerkine finite element analysis with quadratic appro 

functions. The Prandtl number Pr, material constants A and A1 are taken to be constant at 0.733, 1 and 1 

respectively where as the effect of other important parameters namely micro polar parameter Δ, the suction 

Reynolds number λ, Grashof number G, buoyancy ratio N, Inverse Darcy parameter D
-1

 and Schmidt number Sc 

has been studied for these functions and corresponding profiles are shown in Figs.  

Fig. 1 represents w with Darcy parameter D
-1

. It is found that lesser the permeability of porous medium 

larger |w| in the flow region. Fig represents w with chemical reaction parameter γ. It is found that the magnitude 

of w enhances in both the degenerating and generating chemical reaction cases. The non-dimensional 

temperature (θ) is exhibited in Figs for different parametric values. It is found that the non-dimensional 

temperature is always positive for all variations. This indicates the actual temperature is always greater than T0. 

Fig. 2 represents θ with D
-1

. It can be seen from the profiles that the actual temperature reduces with increase in 

D
-1

. Fig.6 represents θ with chemical reaction parameter γ. It is found that the actual temperature enhances with 

γ in both degenerating and generating cases.  The variation of θ with Eckert number Ec is shown in the Fig. 9. It 

is found that the actual temperature reduces with Ec in the region 1.2-1.5 and enhances in the region 1.6-1.9. 

The concentration distribution (C) is exhibited in Figs. We follow the convention that the non-dimensional 

concentration distribution is positive or negative according as the actual concentration is greater/lesser than C0. 

Fig. 3 represents C with D
-1

. Lesser the permeability of the porous medium smaller the actual concentration in 

the flow region. Fig.7 represents C with chemical reaction parameter γ. It is found that the actual concentration 

reduces in the degenerating chemical reaction case and enhances in the generating chemical reaction case. The 

micro rotation (ω) is shown in Figs for different parametric values. Fig. 4 represents ω with D
-1

. It is found that 

lesser the permeability of the porous medium (D
-1

 ≤ 5 x 10
2
) smaller the micro rotation ω and for further 

lowering of the permeability (D
-1

 ≥ 7 x 10
2
) micro rotation depreciates in the entire flow region except in narrow 

adjacent to r=1. Fig. 5 represents the micro rotation (ω) with Hartmann number M. It can be seen from the 

profiles that higher the Lorentz force smaller the micro rotation ω. Fig. 8 represents ω with chemical reaction 

parameter γ. It is found that the micro rotation the magnitude of ω enhances in both the degenerating and 

generating cases.  

The rate of heat transfer (Nusselt number) (Nu) at r=1 and r=2 is shown in Tables 1-4 for different 

parametric values. It can be seen from the profiles that an increase in G enhances |Nu| at r=1 and reduces at r=2. 

The variation of Nu with M and D
-1

 shows that higher the Lorentz force/lesser the permeability of the porous 

medium smaller the rate of heat transfer from both the cylinders. Also |Nu| enhances with increase in |N| at r=1 

and reduces exponentially at both the cylinders. An increase in suction parameter S reduces |Nu| at the outer 

cylinder at r=1. The variation of Nu with micro rotation parameter λ and viscosity ratio parameter Δ shows that 

|Nu| enhances with λ and depreciates with Δ at r=1 and 2. The variation of Nu with Ec shows that higher the 

dissipative heat smaller |Nu| and for further dissipative heat Ec ≥ 0.5 larger |Nu| at both the cylinders. Also |Nu| 

experiences and enhances at r=1 and 2, with increase in the chemical reaction parameter γ. 

 The rate of mass transfer (Sherwood number) at r=1 and 2 is exhibited in Tables 5-8 for different parametric 

values. It is found that the rate of mass transfer enhances at both the cylinders with increase in |G|. Higher the Lorentz 

force/lesser the permeability of the porous medium larger |Sh| at r=1 and smaller at r=2. The variation of Sh with 

buoyancy ratio N shows that when the molecular buoyancy force dominates over the thermal buoyancy force |Sh| 

enhances when the buoyancy forces are in the same direction and for the forces acting in opposite direction it 

depreciates at both the cylinders. We find that the rate of mass transfer enhances with λ and Ec and reduces with Δ at 

r=1 and 2. The variation of Sh with Schmidt number Sc shows that lesser the molecular permeability larger |Sh| at r=1 

and 2. Higher the porosity of the boundary (s) smaller the rate of mass transfer at r=1 and 2. With respect to γ we find 

that |Sh| enhances at both the cylinders in degenerating and generating chemical reaction cases.  

 The couple stress (Cw) at the inner and outer cylinders is exhibited in Tables 9-12 for different 

parametric values. It is found that Cw enhances with increase in |G| at r=1 and 2. Lesser the permeability of the 

porous medium larger the Cw of both the cylinders. The variation of Cw with magnetic parameter M shows  that 

|Cw| depreciates with increase in M ≤ 5 and enhances with higher M ≥ 10.With respect to buoyancy ratio N we 

find that |Cw| enhances at r=1 and reduces at r= 2 with increase in N>0 and for an increase in |N| (<0) we notice 

a depreciation |Cw| at both the cylinders. Also higher the porosity of the boundary larger |Cw| at r=1 and 2. An 

increase in micro rotation parameter λ results in an enhancement in |Cw| at both the cylinders. With respect to 

viscosity ratio parameter Δ we find that |Cw| enhances at r=1 and 2 with increase in Δ ≤ 3 and for higher Δ ≥ 5 

|Cw| enhances at r=1 and reduces at r=2. With reference to Eckert number Ec it can be seen that |Cw| enhances 

with increase in Ec ≤ 0.3 and reduces with higher Ec ≥ 0.5. The variation of Cw with chemical reaction 

parameter γ shows that |Cw| at r=1 enhances with γ ≤ 0.5 and depreciates with higher γ ≥ 1.5 at r=2 and reduces 

with γ for all G. 
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 Table 1: Nusselt number (Nu) AT r = 1 

 
 

Table 2: Nusselt number (Nu) AT r = 1  

G I II III IV V VI VII VIII IX 

10
2
 2771.43 2863.69 2961.39 1778.82 1035.82 1835.57 2863.69 2875.62 2885.52 

2 x 10
2
 10997.3 11365.3 11754.9 7027.17 4062.09 7252.83 11365.3 11412.8 11452.2 

-10
2
 2736.66 2827.85 2924.41 1744.34 1008.24 1799.74 2827.85 2839.61 2849.28 

-2 x 10
2
 10927.8 11293.6 11681.0 6958.22 4006.92 7181.16 11293.6 11340.8 11379.7 

Λ 0.01 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.03 

Δ 1 1 1 3 5 1 1 1 1 

Ec 0.1 0.1 0.1 0.1 0.1 0.3 0.5 0.1 0.1 

Γ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 1.5 

 

  Table 3:  Nusselt number (Nu) AT r = 2 

    

G I II III IV V VI VII VIII IX X 

10
2
 -

5123.67 

-5092.03 -

5066.95 

-

8963.87 

-

2674.82 

-

11548.9 

-150.12 -

1.63865 

-

4061.96 

-

5123.67 

2 x 

10
2
 

-

20422.0 

-20295.7 -

20195.6 

-

35755.2 

-

10649.6 

-

46088.6 

-

1242.77 

-189.09 -

16186.4 

-

20422.0 

-

10
2
 

-

5055.93 

-

5024.566 

-4999.7 -

8868.49 

-

2630.03 

-

11447.0 

-

432.603 

-

1.63865 

-

4005.99 

-

5055.93 

-2 

x 

10
2
 

-

20286.6 

-20160.8 -

20061.1 

-

35564.4 

-

10560.0 

-

45884.8 

-

1209.77 

-

176.575 

-

16074.4 

-

20286.6 

D
-1

 20 30 50 20 20 20 20 20 20 20 

M 5 5 5 3 10 5 5 5 5 5 

N 1 1 1 1 1 2 -0.5 -0.8 1 1 

S 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.8 
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Table 4: Nusselt number (Nu) AT r = 2                 

G I II III IV V VI VII VIII IX 

10
2
 -4958.15 -5123.67 -5299.09 -4083.63 -2805.2 -3307.2 -5123.67 -5177.78 -5227.3 

2 x 10
2
 -19762.4 -20422.0 -21121.1 -16279.2 -11179.3 -13156.1 -20422.0 -20638.0 -20835.5 

-10
2
 -4892.89 -5055.93 -5228.72 -4033.28 -2769.11 -3239.47 -5055.93 -5109.55 -5158.56 

-2 x 10
2
 -19631.9 -20286.6 -20980.3 -16178.6 -11107.4 -13020.7 -20286.6 -20501.5 -20698.1 

Λ 0.01 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.03 

Δ 1 1 1 3 5 1 1 1 1 

Ec 0.1 0.1 0.1 0.1 0.1 0.3 0.5 0.1 0.1 

Γ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 1.5 

 

Table 5: Sherwood number (Sh) AT r = 1 

G I II III IV V VI VII VIII 

10
2
 4.20652 4.19081 4.17831 7.86719 2.18338 6.77591 1.70382 -0.909843 

2 x 10
2
 9.32288 9.29145 9.26646 16.6442 5.27661 14.4617 1.6147 0.0730681 

-10
2
 -6.0262 -6.01044 -5.99799 -9.68688 -4.00307 -8.5956 -2.42457 -0.909843 

-2 x 10
2
 -11.1426 -11.1111 -11.0861 -18.4639 -7.0963 -16.2813 -3.43439 -1.89276 

D
-1

 20 30 50 20 20 20 20 20 

M 5 5 5 3 10 5 5 5 

N 1 1 1 1 1 2 -0.5 -0.8 

 

Table 6: Sherwood number (Sh) AT r = 1  

G I II III IV V VI VII 

10
2
 4.07671 4.20652 4.34306 4.05888 3.08103 4.20583 4.20652 

2 x 10
2
 9.06309 9.32288 9.5962 9.02761 7.0719 9.32151 9.32288 

-10
2
 -5.89604 -6.0262 -6.16322 -5.87857 -4.90072 -6.02552 -6.0262 

-2 x 10
2
 -10.8824 -11.1426 -11.4164 -10.8473 -8.89159 -11.1412 -11.1426 

Λ 0.01 0.03 0.05 0.03 0.03 0.03 0.03 

Δ 1 1 1 3 5 1 1 

Ec 0.1 0.1 0.1 0.1 0.1 0.3 0.5 

 

Table 7: Sherwood number (Sh) AT r = 1 

G I II III IV V VI VII IX 

10
2
 4.20652 11.8811 26.8038 41.9397 3.2232 1.5148 3.40474 2.96652 

2 x 10
2
 9.32288 24.672 54.5174 84.7892 7.40534 4.12826 7.88184 6.30228 

-10
2
 -6.0262 -13.7007 -28.6235 -43.7594 -5.14106 -3.71214 -5.54946 -2.9602 

-2 x 10
2
 -11.1426 -26.4916 -56.3371 -86.6089 -9.32319 -6.3256 -10.0260 -6.3026 

Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 1.3 

Γ 0.2 0.2 0.2 0.2 0.5 1.5 0.2 0.2 

S 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.8 

 

Table.8: Sherwood number (Sh) AT r = 2 

G I II III IV V VI VII VIII 

10
2
 -10.7802 -10.744 -10.7154 -14.591 -7.65431 -15.4088 -3.60985 -1.59979 

2 x 10
2
 -19.9605 -19.8883 -19.8309 -27.5822 -13.7088 -29.2177 -6.07476 -3.2976 

-10
2
 7.58058 7.54447 7.51578 11.3914 4.45473 12.2092 1.08519 -1.59979 

-2 x 

10
2
 

16.761 16.6887 16.6313 24.3826 10.5092 26.0181 2.87518 0.0980265 

D
-1

 20 30 50 20 20 20 20 20 

M 5 5 5 3 10 5 5 5 

N 1 1 1 1 1 2 -0.5 -0.8 

 

 



Mhd Double Diffusive Convective Heat Transfer Flow Of Micropolar Fluid In Cylindrical Annulus 

International organization of Scientific Research                                                               12 | P a g e  

Table 9: Sherwood number (Sh) AT r = 2  

G I II III IV V VI VII 

10
2
 -10.4996 -10.7802 -11.0741 -8.46992 -6.51564 -10.7794 -10.8802 

2 x 10
2
 -19.399 -19.9605 -20.5489 -15.34 -11.4315 -19.959 -19.9865 

-10
2
 7.29926 7.58058 7.87546 5.27034 3.31607 7.5798 7.62058 

-2 x 10
2
 16.1987 16.761 17.3503 12.1405 8023192 16.7594 16.8268 

Λ 0.01 0.03 0.05 0.03 0.03 0.03 0.03 

Δ 1 1 1 3 5 1 1 

Ec 0.1 0.1 0.1 0.1 0.1 0.3 0.5 

 

Table.10: Sherwood number (Sh) AT r = 2  

G I II III IV V VI VII IX 

10
2
 -10.7802 -24.5507 -51.3268 -78.4854 -8.70407 -5.59123 -9.50985 -8.7802 

2 x 10
2
 -19.9605 -47.5016 -101.054 -155.371 -15.8496 -9.70594 -17.2259 -12.9605 

-10
2
 7.58058 21.3511 48.1272 75.1272 5.58693 2.63819 5.92232 8.68258 

-2 x 

10
2
 

16.761 44.3021 97.8542 152.171 12.7324 6.7529 13.6384 12.7668 

Sc 0.24 0.6 1.3 2.01 1.3 1.3 1.3 1.3 

Γ 0.2 0.2 0.2 0.2 0.5 1.5 0.2 0.2 

S 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.8 

 

Table11: Micro Rotation (Cw) AT r = 1 

G I II III IV V VI VII VIII IX X 

10
2
 -

2.36265 

-

2.41396 

-

2.45481 

13.6062 -

10.0714 

-

3.51208 

10.7405 8.4906 -

3.23332 

-

3.36265 

2 x 

10
2
 

-4.7253 -

4.82793 

-

4.90962 

27.2123 -

20.1428 

-

7.02416 

-1.2770 -

0.587347 

-

6.46664 

-1.6253 

-

10
2
 

2.36265 2.41396 2.45481 -

13.6062 

10.0714 3.51208 0.766203 -8.4906 3.23322 3.36065 

-2 

x 

10
2
 

4.7253 4.82793 4.90962 -

27.2123 

20.1428 7.02416 1.27701 0.587347 6.46664 7.6253 

D
-1

 20 30 50 20 20 20 20 20 20 20 

M 5 5 5 3 10 5 5 5 5 5 

N 1 1 1 1 1 2 -0.5 -0.8 1 1 

S 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.8 

 

Table 12: Micro Rotation (Cw) AT r = 1 

G I II III IV V VI VII VIII IX 

10
2
 -2.28418 -2.36265 -2.43565 15.4633 19.6606 -2.36553 -2.36265 -2.28804 -2.15174 

2 x 10
2
 -4.56835 -4.7253 -4.87131 30.9266 39.3213 -4.73106 -4.7253 -4.57607 -4.30348 

-10
2
 2.28418 2.36265 2.43565 -15.4633 -19.6606 2.36553 2.3265 2.28804 2.15174 

-2 x 10
2
 4.56835 4.7253 4.87131 -30.9266 -39.3213 4.73106 4.7253 4.57607 4.30348 

Λ 0.01 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.03 

Δ 1 1 1 3 5 1 1 1 1 

Ec 0.1 0.1 0.1 0.1 0.1 0.3 0.5 0.1 0.1 

Γ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 1.5 

 

Table 13: Micro Rotation (Cw) AT r = 2  

G I II III IV V VI VII VIII IX X 

10
2
 

0.52456

1 

0.57960

6 

0.62334

7 

-

7.6798

2 

5.8893 0.72608

5 

-2.7248 -

2.46984 

0.99150

6 

1.0456

1 

2 

x 

10
2
 

1.04912 1.15921 1.24669 -

15.359

6 

11.778

6 

1.45217 0.44454

9 

0.32363

4 

1.98301 2.0491

2 

- - - - 7.6798 - - -2.7248 2.46984 - -
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10
2
 

0.52456

1 

0.57960

6 

0.62334

7 

2 5.8893 0.72608

5 

0.99150

6 

1.0245

9 

-2 

x 

10
2
 

-

1.04912 

-

1.15921 

-

1.24669 

15.359

6 

-

11.778

6 

-

1.45217 

-

0.44454

9 

-

0.32363

4 

-

1.98301 

-

2.0491

2 

D
-

1
 

20 30 50 20 20 20 20 20 20 20 

M 5 5 5 3 10 5 5 5 5 5 

N 1 1 1 1 1 2 -0.5 -0.8 1 1 

S 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.8 

 

Table 14: Micro Rotation (Cw) AT r = 2 

 G I II III IV V VI VII VIII IX 

10
2
 0.511065 0.524561 0.534492 -

2.62255 

-

0.944216 

0.526132 0.524561 0.407475 0.232278 

2 x 

10
2
 

1.02213 1.04912 1.06898 -5.2451 -1.88843 1.05226 1.04912 0.81495 0.464555 

-10
2
 -

0.511065 

-

0.524561 

-

0.534492 

2.62255 0.944216 -

0.526132 

-

0.524561 

-

0.4.7475 

-

0.232278 

-2 x 

10
2
 

-1.02213 -1.04912 -1.06898 -5.2451 1.88843 -1.05226 -1.04912 -0.81495 -

0.464555 

λ 0.01 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.03 

Δ 1 1 1 3 5 1 1 1 1 

Ec 0.1 0.1 0.1 0.1 0.1 0.3 0.5 0.1 0.1 

γ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 1.5 

 

VI. CONCLUSIONS: 
 An increasing in |G| enhances the axial velocity |w|, temperature, concentration C and angular velocity ω 

an entire flow region. 

 Lesser the permeability of porous medium Lorentz force reduces w, , C and ω in the flow region. 

 The velocity, the temperature and micro rotation enhances in both generating and degenerating chemical 

reaction cases. 

 While the concentration reduces in the degenerating chemical reaction case and enhances in the generating 

case. 

 An increasing Eckert number Ec enhances in the velocity and reduces the actual temperature. The 

concentration reduces with increasing Sc. 

 An increasing |G| enhances the rate of heat transfer, mass transfer and couple stress at both the cylinders. 

An increasing M and D
-1 

enhances |Nu| at both cylinders. They enhances |Sh| at r=1, and reduce at r=2. 

Where |Cw| enhances with D
-1

 at r=1, and 2. 

 An increasing N>0 enhances |Nu| at r=1, |Sh| at r=1 and 2, |Cw| at r=1 and reduces |Nu| at r=2, |Cw| at r=2. 

While an increasing |N| enhance |Nu| at r=1 and reduces at r=2, |sh|, |Cw| at r=1 and 2. 

 |Nu|, |Sh| and |Cw| at r=1 and r=2 both degenerating and generating chemical reaction cases. 

 An increasing the micropolar parameter λ enhances |Nu|, |Sh| and |Cw| at both the cylinders. 

 An increasing viscosity ratio parameter Δ reduces |Nu|, |Sh| and enhances |Cw| at both the cylinders. 

 Higher the dissipative heat larger |Sh|, |Cw| and smaller |Nu| at r=1 and 2.           An increasing suction 

parameter S reduces |Cw| and enhances |Nu|, |Sh| at both the cylinders. 

 

REFERENCES: 
[1]. Agarwal R.S. and Dhanpal C.: Numerical solution of micropolar fluid flow and heat transfer between two 

co-axial porous circular cylinders. Int. J. Eng. Sci., 26(11) pp. 1133-1142 (1988). 

[2]. Barletta A., Magyari E., Lazzari S. and Pop I.: Closed from solutions for mixed convection with magneto 

hydro dynamic effect in a vertical porous annulus surrounding an electric cable. J. Heat Transfer, 131, 6, 

(2009). 

[3]. Barletta A.: Int. J. Heat Mass Transfer, Vol. 40, pp. 15-26 (1997). 

[4]. Barletta A.: Int. J. Heat Mass Transfer, Vol. 42, pp. 2243-2253, (1999). 

[5]. Eringen A.C.: The theory of micropolar fluids – theory and application. Birkhauser, Bostan (1966). 

[6]. El-Hakein M.A.: Int. Comns. Heat Mass Transfer, Vol. 27, pp. 581-590 (2000). 



Mhd Double Diffusive Convective Heat Transfer Flow Of Micropolar Fluid In Cylindrical Annulus 

International organization of Scientific Research                                                               14 | P a g e  

[7]. Fand R.M. and Brucker J.: Int. J. Heat and Mass Transfer. p. 723 (1986). 

[8]. Grosan T., Revnic C., Pop I. and Ham D.B.: Magnetic field and internal heat generation effects on the 

free convection in a rectangular cavity filled with a porous medium. Int. J. Heat Mass Transfer, 52 (5-6). 

pp. 1525-1533(2009). 

[9]. GiampietroI Fabbri: Int. J. Heat and Mass Transfer, p. 3003 (2004). 

[10]. Gebhart B.J.: Fluid Mech., Vol. 14, pp. 225-232, (1962). 

[11]. Gebhart B. and Mollendorf J.: Fluid Mech., Vol. 38, pp. 107 (1969). 

[12]. Lukaszewicz G.: Micropolar fluids, theory and applications, Birkhauser, Bostan (1999). 

[13]. Murthy D.V.S. and Singh P.: Int. J. Heat and Mass Transfer, (1997). 

[14]. Murthy J.V.R. and Bahali N.K.: Steady flow of micropolar fluid through a circular pipe under a 

transverse magnetic field with constant suction/injection, (2009).  

[15]. Nakayama A. and Pop I.: Int. Communications in Heat and Mass Transfer, (1989). 

[16]. Okada K. and Ozoe H.: Experimental heat transfer rates of natural convection of molten Gallium 

suppressed under an external magnetic field in Either the x, y or z Direction. J. Heat Transfer, 14 (1) pp. 

107-114(1992). 

[17]. Oreper G.M. and Szekely J.: The effect of an externally imposed magnetic field on buoyancy driven flow 

in a rectangular cavity. J. Crystal Growth,          64 (3), pp. 505-515, (1983). 

[18]. Prasad V., Kulacki F.A. and Kulakarni A.V.: Free convection in a vertical, porous annulus with constant 

heat flux on the inner wall-experimental results. Int. J. Heat Mass Transfer, 29, pp. 713-723 (1986). 

[19]. Panja S., Sengupta P.R. and Debnath L.: Hydro magnetic flow of Reiner – Rivlin fluid between two 

coaxial circular in cylinders with porous walls. Computers Math. Applic. 32 (2). pp. 1-4, (1986). 

[20]. Prasad V. and Kulacki F.A.: Free convection heat transfer in a liquid-filled vertical annulus. ASME J. 

Heat Transfer, 107, pp. 596 (1985). 

[21]. Sankar M., Venkatachalappa M. and Shivakumara I.S.: Effect of magnetic field on natural convection in 

a vertical cylindrical annulus. Int. J. Eng. Science, 44, pp. 1556-1570 (2006). 

[22]. Shivakumara I.S., Prasanna B.M.R., Rudraiah N. and Venkatachalappa M.: Numerical study of natural 

convection in a vertical cylindrical Annulus using a Non-Darcy equation, J. porous Media, 5(2). pp. 87-1-

2 (2002). 

[23]. Shivashankar H.S., Prasanna B.M.R., Sankar M. and Sreedhara S.: Numerical study of natural convection 

in vertical porous Annuli in the presence of magnetic field, (2009). 

[24]. Soundalgekar V.M. and Jaisawal B.S.D., Uplekar A.G. and Takhar H.S.: Appl. Mech and Engg, Vol. 4, 

pp. 203-218 (1999). 

[25]. Sreevani M.: Mixed convective heat and mass transfer through a porous medium in channels with 

dissipative effects Ph.D. Thesis, S.K. University, Anantapur (A.P.), (2003). 

[26]. Soundalgekar V.M. and Pop I.: Int. J. Heat Mass Transfer, Vol. 17, pp. 85-90 (1974). 

[27]. Verma P.D.S. and Singh M.: Magnetic fluid flow through porous annulus. Int. J. Non-linear Mech., 

16(314), pp. 371-37 (1981). 

 

 

Dr.K.Gnanaprasunamba "MHD Double Diffusive Convective Heat Transfer Flow Of 

Micropolar Fluid In Cylindrical Annulus .IOSR Journal of Engineering (IOSRJEN), vol. 08, no. 

6, 2018, pp. 01-14. 

 

 

IOSR Journal of Engineering (IOSRJEN) is UGC approved Journal with Sl. No. 3240, Journal 

no. 48995. 


