
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org

ISSN (e): 2250-3021, ISSN (p): 2278-8719

Vol. 08, Issue 7 (July. 2018), ||V (II) || PP 80-86

International organization of Scientific Research 80 | P a g e

Application of Ann to Ensure Software Reliability and Quality

T. Ravi Kumar
1
, Dr. T. Srinivasa Rao

2
, Dr.Ch.V.M.K.Hari

3

1
Sr.Asst professor, Department of CSE, AITAM Engineering College, Tekkali, (AP), India,

2
Associate professor, Department of CSE, GIT, GITAM University, Visakhapatnam, (AP), India,

3
Sr.Asstprofessor, Dr.V.S.KrishnaGovtCollege, Visakhapatnam,(AP),India.

Corresponding Author: T. Ravi Kumar

Abstract: To ensure Software life and reliability software Quality analysis is one of the significant criteria.

Software quality is been characterized under various parameters. Software risk analysis is one such basis

required to distinguish the software reliability. At the point when software is arranged or being created by the

sort of software and in addition the endeavors required to build up the software by and large characterizes the

software hazard. For example, the accessibility of the required software, equipment, man power all are the

prescient hazard factors.There can be errors introduced knowingly or unknowingly at different levels of the

software design cycle (SDLC). Irrespective of this we can predict the software defects before the product makes

into market it will be a value add on the businesses In this work, these all hazard factors are characterized under

the fuzzy outing the demonstration. However conventional metrics approaches, numerouspredictable

methodologies are inadequate in this regard as well as on a very basic level conflicting. Other than this the paper

additionally legitimizes Neural Networks as a superior contrasting option to formal techniques in initiating times

of software improvement lifecycle. A fuzzy logic reputable paradigm is proposed for predicting software defect

density on individual phases of the SDLC.Theperceptive precision of the proposed model is applicable utilizing

fivereal software projectdata,BMRE and MMRE are the industrial accepted models to ensure software quality.

Widely accepted results observed for BMRE, MMRE by using ANN method of Software defect density.

Keywords: ANN, Software quality, Design Metrics, Software fault prediction, SDLC, ANN, Fuzzy logic.

--- ------------------------------

Date of Submission: 28-06-2018 Date of acceptance: 13-07-2018

--- ----------

I. INTRODUCTION

 A software defect prediction is a most dynamic research are in software engineering. SDLC is a

process used to predict the deformities in the software. It is desirable to predict the defect at early stages of life

cycle. Hence to predict the defect before testing the SDP is done at the end phase of software development life

cycle.It helps to reduce cost as well as time.Software metric is a standard to assess a computation to which a

software framework or process has some possessions. It gives a computableapproach to the advancement and

approval of models of the software improvement process. Software metrics can expand software profitability

and quality. Presently a-days clients are indicating software as well as quality metrics scope as a major aspect of

their prerequisites. Global guidelines like ISO 9000 [1] and industry models like the Software Engineering

Institute's Capability Maturity Model Integrated incorporate quality estimation. The term software metrics

implies diverse things to various individual. The significance of software metrics to a software advancement

process and to a created software Product is an intricate errand that requires study and teach, which passes on

learning of the status of the procedure and/or result of software. The essential point of software designing is to

deliver great effective software requiring little to no effort. With development in size and multifaceted nature of

software, administration issues started ruling. An ideal plan system with no bargains e.g. cost and time, for the

framework does not build up an ideal plan. [2] The explanation behind this is the adjustments in prerequisites

that may happen in later advancement cycles. Such changes may cause plan choices taken before to be less

ideal. [3]Design disintegration is unavoidable with the present method for creating software. Refined strategies

just contribute by postponing the minute that a framework should be pulled back or resigned. These

methodologies don't address the essential issues that reason Design disintegration and makes framework

inconsistent [4]. Due to the effortlessness, the software improvement accelerates. The shorter improvement time

brings about decreased expenses. The extensibility and resolvability of software frameworks is enhanced, on the

grounds that segments can adaptably be substituted by another segment that fulfills the necessities. Software

segments upgrade the reliability of the software [5]. Software Reliability Engineering (SRE) is a training that

encourages one create software that is more solid, and create it speedier and substantially less expensive. It is a

demonstrated standard and best practice that is for the most part pertinent to frameworks that incorporate

Application of Ann to Ensure Software Reliability and Quality

International organization of Scientific Research 81 | P a g e

software [6]. Software Reliability Engineering works by quantitatively portraying and applying two things about

the Product: i) the anticipated relative utilization of its capacities and ii) its required significant quality

attributes. In applying software reliability designing, one can shift the relative accentuation on these elements.

[7]

II. RELATED WORK
The developing complexities of software and expanding interest of dependable software have prompted

the advance of persistent research in the territories of viable software reliability evaluation. In this segment,

some imperative commitments around there are displayed.

There are so many industrial model to identify the software defect density. Old classic techniques

include software defect density using the prediction based classification techinques. Karunanithi et.al [8]

exhibited the neural system display for software reliability prediction and found that neural system models are

preferable at endpoint prediction over investigative models. They utilized distinctive systems like bolster

forward NN Jordan, intermittent neural systems. Later in utilization of the neural system as a tool for defining

software quality of a substantial media transmission system, characterizing modules into blame or non-blame

inclined by Khoshgaftaar et.al [9]. These two models are contrasted the Artificial Neural Network show and a

non-parametric discriminant model, and found that Neural Network demonstrate has better prescient precision.

Blame prediction models utilizing object arranged metrics and contrasted the outcomes and two measurable

models utilizing five quality traits and inferred that neural systems improve.

Need of software reliability driven different techniques to evaluate the software defects. In this process

clustering techniques were more popular. This technique enhanced the chances of finding defects from 32.8% to

97.5% comparing with review based models and also with comparison to prediction based models % of the

accuracy increased from 72.9 to 94.3. In the paper [11], creators proposed a novel software defect prediction

technique in view of useful groups of projects to enhance the execution. Until at that point, most techniques

proposed toward this path anticipate absconds by class or record. In the paper [12], k-implies based bunching

approach has been utilized for finding the blame inclination of the Object arranged systems and found that k-

implies based grouping techniques indicates 62.4% exactness. It likewise demonstrated high estimation of

likelihood of location and low estimation of likelihood of false cautions. This investigation affirms the

achievability and value of k implies based software blame prediction models.

Association control mining is another area where the lot of work went in, as in current generation most

of the process are data intensive. In [13], analysts proposed prediction of imperfection affiliation and defect

adjustment technique in light of affiliation control mining strategies. The proposed strategies were connected to

abscond data comprising of more than 200 undertakings more than 15 years. It was finished up from trial comes

about that exactness accomplished is high for both defect affiliation prediction and imperfection adjustment

prediction. The outcomes got were likewise contrasted and PART, C4.5 and Naive Bayes technique and

demonstrated the precision change by 23 percent.

This proposed demonstrate was assessed on open source datasets and contrasted with comparable

existing methodologies and found that this model over performed for the majority of the current machine

learning based techniques for imperfection prediction.

One sole techniques is not enough to predict software defects where projects are becoming more

complex. To solve complex projects defects issue industry moved towards hybrid models.

In the paper[14], a cross breed approach in light of K-Means Clustering and bolster forward neural

system has been proposed and it was discovered that execution is better if there should be an occurrence of this

half and half approach as contrasted and the current methodologies as far as exactness , mean total blunder and

root mean square mistake esteems. Mixture blame inclined module prediction technique was presented that

consolidates affiliation control mining with calculated relapse investigation [15], [16]. On the off chance that a

module fulfills the preface of one of the chose rules, the module is arranged by run as either blame inclined or

not. Something else, the module is characterized by the strategic relapse. The three other blame inclined

modules in view of strategic relapse demonstrate, straight discriminant model and characterization tree. The trial

comes about indicated change in execution when contrasted with regular strategies. [17, 18]

III. SOFTWARE RELIABILITY
 Software Reliability is characterized as the likelihood of the disappointment free software operation for

a predefined timeframe in a predetermined situation. Unreliability of any Product comes because of the

disappointments or nearness of issues in the framework. The unreliability of software is essentially because of

bugs or configuration Faults in the software. It happens just when framework is being used and are not gone

before by notices. [19, 20]

Application of Ann to Ensure Software Reliability and Quality

International organization of Scientific Research 82 | P a g e

Software Reliability Measurement Techniques

 Measuring the software reliability is a troublesome issue. It is hard to locate a reasonable approach to

gauge software reliability, and the vast majority of the perspectives identified with software reliability.Some

reliability metrics which can be utilized to measure the reliability of the software Product are:-

Product Metrics

 Product metrics are those which are utilized to construct the ancient rarities i.e. prerequisite detail

archives, framework configuration reports and so forth. These metrics help in evaluation if the Productis

sufficient through reports on characteristics like ease of use, reliability, practicality and convenience.

▪Software Size:

 Software estimate is believed to be intelligent of multifaceted nature, improvement exertion and

reliability. Lines of Code (LOC), or LOC in thousands (KLOC), is an instinctive starting way to deal with

measuring software estimate. The premise of LOC is that program length can be utilized as an indicator of

program qualities, for example, exertion &ease of upkeep.

▪Review & Records:

 Function point metric is a strategy to quantify the usefulness of a proposed software improvement in

view of the tally of data sources, yields, ace records, asks, and interfaces.

▪Test scope:

 Test scope metric gauge Fault and reliability by performing tests on software Products, expecting that

software reliability is a component of the bit of software that is effectively checked or tried.

▪Software complexity:

 Complexity is straightforwardly identified with software reliability, so speaking to multifaceted nature

is critical. Many-sided quality arranged metrics is a technique for deciding the multifaceted nature of a

program's control structure, by disentangling the code into a graphical portrayal. Agent metric is McCabe's

Complexity Metric.

▪Quality metrics measures the quality at different phases of software Product advancement. DRE gives a

measure of quality due to different quality confirmation and control exercises connected all through the

advancement procedure. [21, 22]

Project Management Metrics

 Project metrics portray the project attributes and execution. In the event that there is great

administration of project by the software engineer then this assistance us to accomplish better Products.

Relationship exists between the advancement procedure and the capacity to finish extends on time and inside the

coveted quality destinations. Cost increment when engineers utilize deficient procedures. Higher reliability can

be accomplished by utilizing better advancement process, chance administration process, arrangement

administration process. These metrics tells about:-

▪Number of software designers

▪Staffing design over the life-cycle of the software

▪ Cost and timetable

▪ Productivity

Process Metrics

 Process metrics evaluate helpful traits of the software improvement process and its condition. They tell

if the procedure is working ideally as they provide details regarding qualities like process duration and revise

time. The objective of process metric is to do the correct employment on first time through the procedure.

Process metrics portray the adequacy and quality of the procedures that deliver the software Product.

Illustrations are:

▪Effort required simultaneously

▪Time to deliver the Product

▪Effectiveness of deformity evacuation amid improvement

▪Number of deformities found amid testing

▪Development of the procedure

Application of Ann to Ensure Software Reliability and Quality

International organization of Scientific Research 83 | P a g e

Fault and Failure Metrics

 A Fault is a deformity in a program which emerges when software engineer makes a mistake and

causes disappointment when executed under specific conditions. These metrics are utilized to decide the

disappointment free execution software.

 To accomplish this objective, number of shortcomings found amid testing and the disappointments or

different issues which are accounted for by the client after conveyance are gathered, condensed and dissected.

Disappointment metrics depend on client data in regards to disappointments found after arrival of the software.

The disappointment information gathered is in this manner used to compute disappointment thickness, Mean

Time between Failures (MTBF) or different parameters to quantify or anticipate software reliability. [23, 24]

The Metrics are utilized to enhance the reliability of the framework by distinguishing the ranges of prerequisites.

The diverse sorts of software metrics that are utilized are:-

Prerequisite Reliability Metric

 Prerequisites demonstrate what highlights the software must contain. It determine the usefulness that

must be incorporated into the software. The necessities must be composed with the end goal that is no

misconception between the designer and the customer. The necessities must contain legitimate structure to stay

away from the loss of important data. The prerequisites ought to be careful and in a nitty gritty way so it is

simple for the plan stage. Necessity Reliability metrics assesses the above said quality elements of the required

record.

Design and Code Reliability Metric The quality calculates that exists Design and coding design are intricacy,

size and seclusion. happen. The reliability will diminish if modules have a blend of high multifaceted nature and

expansive size or high many-sided quality and little size. These metrics are likewise relevant to question

arranged code, however in this, extra metrics are required to assess the quality.

Testing Reliability Metric

 These metrics utilize two ways to deal with assess the reliability. In the first place it guarantees that the

framework is outfitted with the capacities that are determined in the prerequisites. Along these lines, the

mistakes because of the absence of usefulness diminishes. Second approach is assessing the code, finding the

errors and settling them. To guarantee that the framework contains the usefulness determined, test designs are

composed that contain different experiments.

Testing stage software metrics

i. Staff Experience (SE): Testing staff having a sound specialized foundation and experience greatly affects the

test quality. Staffs engaged with software testing are damaging in nature and attempt their best to discover

software deformity.

ii. Quality of Documented Test Cases (QDT): Software testing is exorbitant and tedious, in this manner

powerful experiments are should have been produced. Software test cases are particulars of the contributions to

the test and the normal yield from the framework in addition to an announcement of what is being tried. The

experiments are intended to uncover deserts. A decent experiment is one that has a high likelihood to uncover

software abandons. [23,24]

IV. PROPOSED WORK

Fig 2. Proposed Architecture Design

Application of Ann to Ensure Software Reliability and Quality

International organization of Scientific Research 84 | P a g e

 Neural network is a layer based approached where each layer drives the consecutive layer behavior.

SDLC and ANN are more similar in operation as one stage output is more closely driving the next stage outputs.

In the proposed work, ANN is divided into three layers naming Input layer, Hidden layer and output layer. Input

layer is given all software meters data which will be processed and generated required data for the Hidden layer.

Hidden layer processing will take care of the different stages interoperability and produces a normalized output

to the output stage. Output stage deformalizes the output to get the exact defect density.

 Guaranteeing the reliability of a software extend is imperative to all gatherings included including

Managers, Marketing, Programmers, and Customers. Untrustworthy frameworks can affect software designers

and customers by basically being an inconvenience, by costing time and cash, or most dire outcome imaginable,

by costing single or numerous lives

 Utilization of ANN enhanced affiliation mining to anticipate software reliability has been proposed.

Software reliability appraisal has been a crucial factor to portray the quality of any software item quantitatively

amid testing stage. The work depends on the software disappointments or the imperfections and on which the

diagnostic choice will be drawn utilizing ANN. It just takes disappointment history as information and Predicts

future disappointments. The contribution to the proposed technique is software execution time, while yield of

the framework is anticipated as number of disappointments. The disappointments or the errors will be

characterized with various weights. In this way, here we investigate the materialness of ANN for better

expectation of reliability in a practical situation and present an evaluation strategy for software reliability

development utilizing connectionist demonstrate.

V. ANALYSIS AND RESULTS
Results:

 Real time data sets are extracted from promise database and processed through weka tool to generate

the exact data corresponds to each metric of the SDLC. Results are produces for 20 real time data sets to ensure

the model reliability. As listed in the table, these same inputs are applied to the fuzzy based approach to

compare the model efficiency.

To approve the prediction exactness of the proposed display regularly utilized

Evaluation measures

 To approve the prediction exactness of the proposed display regularly utilized and

recommendedassessment measures have been taken which are as per the following.[23,24]

i. Mean Magnitude of Relative Error (MMRE): MMRE is the meanofcomplete calculation errors and a measure

of the spread ofthe variable Z, where Z = estimate/actual

Case

study RPDDI DPDDI CPDDI TPDDI

Actual

Defects

Defects prediction using

fuzzy

Defects prediction using

ANN

1 0.0047 0.0391 0.0062 0.0783 89 93 91

2 0.0142 0.0168 0.0228 0.0265 100 106 107

3 0.0064 0.0357 0.0091 0.00737 51 49 50

4 0.0171 0.0228 0.028 0.0356 225 231 225

5 0.0036 0.009 0.0083 0.0066 230 240 228

6 0.0025 0.0078 0.0065 0.0055 400 393 398

7 0.0044 0.0085 0.0072 0.0047 1076 1052 1073

8 0.0468 0.0333 0.0283 0.0126 536 528 537

9 0.00389 0.012 0.0145 0.0115 478 476 478

10 0.0084 0.0984 0.0133 0.0134 1893 1887 1895

11 0.0598 0.0022 0.014 0.0558 746 739 750

12 0.00375 0.0534 0.0388 0.01289 121 115 119

13 0.021 0.0129 0.0175 0.0174 392 402 398

14 0.00531 0.1004 0.1039 0.0688 73 70 74

15 0.0903 0.0076 0.0077 0.01275 707 684 699

16 0.0474 0.0301 0.0589 0.03 654 638 657

17 0.0059 0.0502 0.0184 0.01431 18 15 17

Application of Ann to Ensure Software Reliability and Quality

International organization of Scientific Research 85 | P a g e

18 0.0126 0.0122 0.1059 0.0993 1357 1343 1355

19 0.189 0.0157 0.0131 0.0564 194 187 188

20 0.00971 0.0067 0.0356 0.0149 893 878 881

MMRE=
1

𝑚

 𝑥𝑖−𝑥𝑖

𝑥𝑖

𝑚
𝑗=1

 Where xi is the actual value and ^xi is the estimated value of avariable of interest

ii. Balanced Mean Magnitude of Relative Error (BMMRE): MMRE isunbalanced and assessesoverratesin excess

ofunderrates.

For this reason, a balancedmeanmagnitude of relativeerror measure is also considered which is as follows:

BMMRE=
1

𝑚

 𝑥𝑖−𝑥𝑖

min (𝑥𝑖𝑥𝑖)

𝑚
𝑗=1

The minor value of MMRE and BMMRE specifies improved precisionof prediction.

ERROR Rate Fuzzy Method ANN Method

BMRE 0.6862 0.1047

MMRE 0.5268 0.3921

VI. CONCLUSION
 In this paper, ANN based approach to find software defect density and compared with the previous

fuzzy model. A detailed explanation of the software metrics has been covered. The proposed model considers

only reliability relevant software metrics of each phase of SDLC. The error values are calculate and the

prediction of defects is been obtain using fuzzy technique. In order to increase the rate of prediction of defects

we further implement our work using artificial neural networks. The experimental results using fuzzy and ANN

are been compared using matlab tool. By the obtained results it is shown that thepredicted defect density

indicators are very helpful to analyze the defects severity in different artifacts of SDLC of a software project.

prediction rate is more accurate by using ANN method. The error rate such as MMRE and BMMRE calculated

using fuzzy and ANN for which ANN proved to be best with low error rate.

Future Work:

 Further we can extend our work using convolution neural networks. By which we can try to reduce the

functioning time and reduce the cost of implementation. The no of actual defects identification may also further

increase.

REFERENCES
[1]. M.R. Lyu, Handbook of Software Reliability Engineering, vol. 222,IEEEComputer Society Press, CA,

1996.

[2]. IEEE Guide for the use of IEEE Standard Dictionary of Measures to Produce Reliable Software. IEEE,

New York, IEEE Std. 982.2-1988, 1988.

[3]. [3] IEEE Standard Glossary of Software Engineering Terminology. IEEE, New York, IEEE Std.

610.12–1990, pp. 1–84, 1990.

[4]. K.Y. Cai, C.Y. Wem, M.L. Zhang, A critical review on software reliabilitymodeling, Reliab. Eng. Syst.

safety 32 (3) (1991) 357–371.

[5]. C. Kaner, Software engineering metrics: what do they measure and how do we know?, in: 10th

International Software Metrics Symposium, vol. 6, 2004.

[6]. J.D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement,Prediction,

Application,McGraw-Hill Publishers, New York, 1987.

[7]. H. Pham, System Software Reliability, Reliability Engineering Series,Springer-Verlag Publisher,

London, 2006.

[8]. Methodology for Software Reliability Prediction and Assessment. TechRep RL- TR-92-95, Rome

Laboratory, vol. 1–2, 1992.

[9]. W.W. Agresti, W.M. Evanco, Projecting software defects form analyzing adadesign, IEEE Trans. Softw.

Eng. 18 (11) (1992) 988–997.

[10]. C. Wholin, P. Runeson, Defect content estimations from review data, in: Proceedings of 20th

International Conference on software Engineering, 1998, pp. 400–409.

[11]. C. Smidts, M. Stutzke, R.W. Stoddard, Software reliability modeling: anapproach to early reliability

prediction, IEEE Trans. Reliab. 47 (3) (1998)268–278.

http://refhub.elsevier.com/S0950-5849(15)00052-X/h0005
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0005
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0005
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0005
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0005
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0020
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0020
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0020
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0030
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0030
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0030
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0030
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0035
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0035
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0035
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0035
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0045
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0045
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0045
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0055
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0055
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0055
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0055

Application of Ann to Ensure Software Reliability and Quality

International organization of Scientific Research 86 | P a g e

[12]. V. Cortellesa, H. Singh, B. Cukic, Early reliability assessment of UML based software models, in:

Proceedings of the 3rd International Workshop on Software and Performance, 2002, pp. 302–309.

[13]. J.E. Gaffney Jr., C.F. Davis, An approach to estimating software errors and availability, in: Proceedings

of 11th Minnowbrook Workshop on Software Reliability, SPC-TR-88-007, version 1.0, July 26–29,

1988, Blue Mountain Lake, NY, 1988.

[14]. J.E. Gaffney Jr., J. Pietrolewiez, An automated model for software early error prediction (SWEEP),

in:Proceedings of 13th Minnowbrook Workshop on Software Reliability, Blue Mountain Lake, NY,

1990.

[15]. J.E. Gaffney Jr., Estimating the number of faults in code, IEEE Trans. Softw. Eng.10 (4) (1984) 141–152.

[16]. M. Lipow, Number of faults per line of code, IEEE Trans. Softw. Eng. Se-8 (4)(1982) 437–439.

[17]. T.M. Khoshgoftaar, J.C. Musson, Predicting software development errors usingsoftware complexity

metrics,IEEE J. Sel. Areas Commun. 8 (2) (1990) 253–261.

[18]. N.E. Fenton, M. Neil, A critique of software defect prediction models, IEEETrans. Softw. Eng. 25 (5)

(1999)675–689.

[19]. N.E. Fenton, M. Neil, et al., Predicting software defects in varying developmentlifecycles using Bayesian

nets,Inf. Softw. Technol. 49 (1) (2007) 32–43.

[20]. N.E. Fenton, M. Neil, et al., On the effectiveness of early life cycle defectprediction with Bayesian

Nets,EmpiricalSoftw. Eng. 13 (5) (2008) 499–537.

[21]. S. Mohanta, G. Vinod, A.K. Ghosh, R. Mall, An approach for early prediction ofsoftware reliability,

ACM SIGSOFT Softw. Eng. Notes 35 (6) (2010) 1–9.

[22]. S. Mohanta, G. Vinod, R. Mall, A technique for early prediction of softwarereliability based on design

metrics,Int. J. Syst. Assurance Eng. Manage. 2 (4)(2011) 261–281.

[23]. D.K. Yadav, S.K. Charurvedi, R.B. Mishra, Early software defects predictionusing fuzzy logic, Int.

J. Performability Eng. 8 (4) (2012) 399–408.

[24]. HarikeshBahadurYadav, Dilip Kumar Yadav, A fuzzy logic based approach for phase-wise software

defects prediction using software metrics –http://dx.doi.org/10.1016/j.infsof.2015.03.001.

[25]. PromiseRepository<http://promise.site.uottawa.ca/SERepository/datasets-page.html>.

Authors

T. Ravi Kumar received M.Tech degree in Computer Science and Engineering from

Jawaharlal Nehru technological University Hyderabad, A.P., India. And B.tech in computer

Science and Information Technology from Jawaharlal Nehru Technological University

Hyderabad, A.P., India. He is having 10 years of experience in teaching and presently

working as Sr Assistant Professor in the Department of Computer Science and Engineering

at Aditya Institute of Technology and Management, Tekkali [AITAM], A.P., India. His area

of research includes Software Engineering, Fuzzy logic and Software Testing

Methodologies.

Dr T. Srinivas Rao received B.Tech degree from GITAM, Andhra University,

Visakhapatnam A.P., India. Received M.Tech degree from Andhra University,

Visakhapatnam, A.P., India. Received Ph.D. degree from Andhra University,

Visakhapatnam, A.P., India. Presently he is working as Associate professor, department of

CSE, Gitam Institute of Technology, GITAM University, Visakhapatnam. He is having 17

years of Teaching Experience. His research interest includes wireless communication (WiFi,

WiMax), Mobile Ad hoc Networks, Sensor Networks, Neural Networks and fuzzy logic,

Communication networks, Data mining, software engineering, Machine Learning.

T. Ravi Kumar "Application of Ann to Ensure Software Reliability and Quality.” IOSR

Journal of Engineering (IOSRJEN), vol. 08, no. 7, 2018, pp. 80-86.

IOSR Journal of Engineering (IOSRJEN) is UGC approved Journal with Sl. No. 3240,

Journal no. 48995.

http://refhub.elsevier.com/S0950-5849(15)00052-X/h0075
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0075
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0080
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0080
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0085
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0085
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0090
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0090
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0090
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0095
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0095
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0095
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0100
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0100
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0100
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0105
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0105
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0105
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0110
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0110
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0110
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0110
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0165
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0165
http://refhub.elsevier.com/S0950-5849(15)00052-X/h0165
http://dx.doi.org/10.1016/j.infsof.2015.03.001
http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html

