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I. INTRODUCTION 

Throughout, a double sequence is denoted by <Xnk >, a double infinite array of elements Xnk, where 

each  Xnk  is a fuzzy real number. 

The initial works on double sequences is found in Bromwich [2]. Later on it was studied by Hardy [4], 

Moricz [7], Basarir and Sonalcan [1], Tripathy and Sarma [12], Sarma [10] and many others. Hardy [4] 

introduced the notion of regular convergence for double sequences.  

The concept of paranormed sequences was studied by Nakano [8] and Simmons [10] at the initial stage. 

Later on it was studied by many others. 

Sequences of fuzzy real numbers relative to the paranormed sequence spaces is studied by Choudhury 

and Tripathy [3]. 

An Orlicz function M is a mapping  M :[0, )  [0, ) such that it is continuous, non-decreasing and 

convex with  M(0) = 0, M(x) > 0 for x > 0 and  M(x)  , as x   . 

Let  D denote the set of all closed and bounded intervals  X = [a1, a2] on  R, the real line. For  X, Y  D 

we define                                                 

                                            d (X, Y ) = max ( | a1 
_
 b1 |, | a2 

_
 b2 | ), 

where  X = [a1, a2] and  Y = [b1, b2]. It is known that (D, d) is a complete metric space. 

         A fuzzy real number  X  is a fuzzy set on  R,  i.e. a mapping  X : R  I (=[0,1]) associating each real 

number  t  with its grade of membership  X (t). 

  The  - level set [X]

 of the fuzzy real number X, for 0 <   1, defined as           [X]


 = { t  R : X(t)   }.  

A fuzzy real number  X  is said to be upper-semi continuous if, for each  > 0, X
-1

( [0, a + )), for all  a  I  is 

open in the usual topology of  R. 

A fuzzy real number X is called convex if X(t)  X(s)  X(r) = min (X(s),  X(t)), where  s < t < r. 

         If there exists t0  R such that X(t0) = 1, then the fuzzy real number  X  is called normal. 

         The set of all upper-semi continuous, normal, convex fuzzy real numbers is denoted by R(I) and 

throughout the article, by a fuzzy real number we mean that the number belongs to  R(I). 

         The set R of all real numbers can be embedded in R(I). For r  R, r  R(I) is defined by 

                                       r (t) = 

.

1, for ,

0, for

t r

t r







         A fuzzy real number  X  is called non-negative if  X(t) = 0, for all  t < 0. The set of all non-negative fuzzy 

real numbers is denoted by  R*(I ).                                                            

         Let   d : R(I)  R(I)  R  be defined by                                                                          

                                           d (X, Y) =  
0 1

sup [ ] ,[ ]d X Y 

 

.                                                     

         Then d  defines a metric on R(I).                                                                                             

The additive identity and multiplicative identity in R(I) are denoted by 0 and 1  respectively. 
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II. DEFINITIONS AND PRELIMINARIES 
A double sequence (Xnk) of fuzzy real numbers is said to be convergent in Pringsheim’s sense to the fuzzy real 

number  L  if, for every   > 0, there exists  n0, k0  N such that d (Xnk, L) < , for all  n  n0 , k  k0.  

A double sequence (Xnk) of fuzzy real numbers is said to be regularly convergent  if it convergent in 

Pringsheim’s sense and the following limits exist:  

                                            lim ( , ) 0nk k
n

d X L  ,  for some Lk  R(I), for each k  N, 

                              and        lim ( , ) 0nk n
k

d X J  ,  for some Jn  R(I), for each n  N. 

A fuzzy real number sequence (Xk) is said to be bounded if sup | | μ,k
k

X   for some   R*(I ).  

Throughout the article  2wF, 2( )F , 2cF,
 

2 0( )Fc , 2

R

Fc  and 2 0( )R

Fc denote the classes of  all, bounded,  

convergent in Pringsheim’s sense, null in Pringsheim’s sense, regularly convergent and regularly null fuzzy 

real number sequences respectively.    

         A double sequence space EF
 
is said to be solid (or normal) if <Ynk> 

 
EF,  whenever  |Ynk|  |Xnk|, for all n, k 

 N,  for some  <Xnk>EF. 

         A double sequence space EF  is said to be sequence algebra if  ( Xnk Ynk ) EF, whenever  (Xnk), (Ynk) 

EF.  

         A double sequence space EF is said to be convergence free if  (Ynk)  EF,  whenever  (Xnk)  EF and 

0nkX     implies 0nkY  . 

We study different properties of the following sequence spaces those are defined by Sarma [10].          

         Let  p = <pnk> be a sequence of strictly positive real numbers. 

2 ( , )M p = 2
,

( ,0)
: lim

nkp

nk
nk F

n k

d X
X w M



      
       

     

 

2 ( , )Fc M p = 
2

,

( , )
{ : lim 0, for some ( )}

nkp

nk
nk F

n k

d X L
X w M L R I



   
     

   

 

         For 0L   we get the class 2 0( ) ( , )Fc M p .  

         Also a fuzzy sequence <Xnk>  2 ( , )R

Fc M p  if  <Xnk>  2 ( , )Fc M p  and the following limits exist: 

                                        
( , )

lim 0, for some ( )

nkp

nk k
k

n

d X L
M L R I



   
   

   

 

                                        
( , )

lim 0, for some ( )

nkp

nk n
n

k

d X J
M J R I



   
   

   

 

 

III. MAIN RESULTS 

Theorem 3.1.  Let  0 ,ij ijq p     for all  i,  j  N.  Then  Z(M, p)  Z(M, q)  for Z = 2 Fc , 2( )R

Fc , 

2 0( )Fc , 2 0( )R

Fc . 

Proof. Consider the sequence space 2 ( , )Fc M p  and 2 ( , )Fc M q . Let <Xnk>  2 ( , )Fc M p .  

                     Then   { ( , )} ε,nkp

nkd X L  for all 0 0 , .n n k k   

The result follows from the inequality { ( , )} nkq

nkd X L { ( , )} nkp

nkd X L  with the help of non decreasing 

property of M. 

The following result is proved in Sarma [10]. 

Theorem 3.2. Let <pnk> be bounded. Then the classes of sequences 2( )F (M, p), 

2 ( , )R

Fc M p , 2 0( ) ( , )R

Fc M p are complete metric spaces with respect to the metric defined by, 
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                       f (X, Y) = 
,

( , )
inf 0 : sup 1

nkp

nk nkJ

n k

d X Y
r M

r

   
   

   

,   where  J = max (1, 2
H-1

) 

Property 3.3.  The spaces 2( ) ( , )F M p , 2 ( , )Fc M p , 2 0( ) ( , )Fc M p , 2( ) ( , )R

Fc M p  and 

2 0( ) ( , )R

Fc M p  are not convergence free. 

         The result follows from the following example. 

Example 3.3.  Consider the sequence space 2 ( , )Fc M p . Consider M(x) = x. Let  p1k = 1 for all k  N,  pnk = 3, 

otherwise. Consider the sequence <Xnk> defined by,    

                                      X1k = 0 ,   

and for other values 
1 1 1

2,      for   2 1,

( ) ( 1) ( 1) ,  for 1 ,

0,  otherwise.

nk

t t

X t nt n n t n  

    


       



 

         Let the sequence <Ynk> be defined by, 

                                      Y1k = 0    

and for other values  
1

1,       for 0 1,

( ) ( )( 1) , for 1 ,                   

0,  otherwise.

nk

t

Y t n t n t n

 


    



 

         Then  <Xnk>  2 ( , )Fc M p  but  <Ynk>  2 ( , )Fc M p . Hence the space 2 ( , )Fc M p is not convergence 

free. Similarly the other spaces are also not convergence free. 

Property 3.4. Z(M, p)  2( ) ( , )F M p ,  for  Z = 2( )R

Fc , 2 0( )R

Fc . The inclusions are strict. 

Proof. The result follows by the property that all regular convergence sequences are bounded. 

 

Theorem 3.7. The spaces 2( ) ( , )F M p , 2 0( ) ( , )Fc M p , 2 0( ) ( , )R

Fc M p  are sequence algebras. 

Proof.  Consider the sequence space 2 0( ) ( , )Fc M p . Let <Xnk>, <Ynk>  2 0( ) ( , )Fc M p . Then the result 

follows immediately from the inequality:   

                                 { ( ,0)} { ( ,0)} { ( ,0)}nk nk nkp p p

nk nk nk nkd X Y d X d Y . 
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