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Abstract: The aim of the present paper is to investigate the propagation of Stoneley waves at the interface of 

two dissimilar transversely isotropic micropolar solid media. The basic equations are solved to obtain the 

general surface wave solutions in the medium in x-z plane. Following radiation conditions in the media, the 

particular solutions are obtained, which satisfied the appropriate boundary conditions at an interface to obtain 

the secular equations of the Stoneley wave in media. Limiting case of Rayleigh wave is also deduced from the 

present investigation. 
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I. INTRODUCTION 

The exact number of the layers beneath the earth’s surface is not known. One has, therefore, to consider 

various appropriate models for the purpose of theoretical investigations. These models not only provide better 

information about the internal composition of the earth but also helpful in exploration of valuable materials 

beneath the earth surface. Mathematical modelling of surface wave propagation along with the free boundary of 

an elastic half-space or along the interface between two dissimilar elastic half-spaces has been subject of 

continued interest for many years. These waves are well known in the study of geophysics, ocean acoustics, 

SAW devices and non-destructive evaluation.  

There is a rich literature available in surface waves in terms of classical elasticity [1-7]. Surface wave 

propagating along the free boundary of an elastic half-space, non-attenuated in their direction of propagation 

and damped normal to the boundary are known as Rayleigh waves in the literature, after their discovery by 

Rayleigh [5]. Stoneley [7] studied the existence of waves, which are similar to surface waves and propagating 

along the plane interface between two distinct elastic solid half-spaces in perfect contact. Stoneley waves can 

also propagate on interfaces either two elastic media or a solid medium and a liquid medium.  Stoneley [7] 

derived the dispersion equation for the propagation of Stoneley waves. Since then a number of problems 

concerning the propagation of Stoneley waves along the solid-solid and fluid-soild boundary have been 

discussed by several researchers, including Strick and Ginzbarg [9], Lim and Musgrave [10], Chadwick and 

Currie [11], Abbudi and Barnet [12], Goda [13], Tajuddin [14], Abd-Alla [15]. 

Abd-Alla and Ahmed [16] studied the Stoneley and Rayleigh waves in an inhomogeneous orthotropic 

elastic medium under the influence of gravity field. Tomar and Singh [17] discussed the propagation of Stoneley 

waves at an interface between two microstretch elastic half-spaces. Markov [18] discussed propagation of 

Stoneley wave at the boundary of two fluid-saturated porous media. Singh and Renu [19] studied the surface 

wave propagation in an initially stressed transversely isotropic thermoelastic solid. Abd-Alla et al. [20] 

investigated the propagation of surface waves in a rotating fibre-reinforced viscoelastic anisotropic media of a 

higher order and fraction orders of nth order including time rate of strain with voids. Singh and Sindhu [21] 

studied the propagation of Rayleigh wave in micropolar piezoelectric medium. Kumar et.al. [22] discussed the 

propagation of Stoneley wave in transversely isotropic thermoelastic media. 

In the present paper, we solved the governing equations of transversely isotropic micropolar medium 

analytically for surface wave solutions, where the particular solutions in the half-spaces are applied at required 

boundary conditions at the interface to obtain the secular equation for Stoneley wave in the present model. The 

secular equation for the Rayleigh wave is obtained as a limiting case. 
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II. BASIC EQUATIONS 
Following Iesan [8], the equations of motion for a homogeneous transversely isotropic micropolar solid 

in the absence of body forces and body couples consists are 

ji, j iσ =ρu                     (1)                                                                                                                                                                                                                          

 i k,i i jk i j km j i, j,k 1,2,3                                                            (2)                                                                                               

The constitutive equations are written as 

i j i jk l k l i jk l k lA e G                                                                                                                                         (3) 

i j k li j k l i jk l k lm G e B                                                                                                                                          (4) 

The geometrical equations are written as 

i j j, i i jk k i j j,ie u ,                                                                       (5) 

where 
ij

 is the stress tensor,  is the mass density, u


 is the displacement vector, 


 is the microrotation 

vector, j  is the micro-inertia, 
ijm is the couple stress tensor, 

ijk is the alternating symbol, 
ije  and 

ij are 

kinematic strain measures and 
ijkl ijklA , B and 

ijklG are constitutive coefficients. Superposed dot denote partial 

differentiation with respect to the time t. Subscripts preceded by a comma denote partial differentiation with 

respect to the corresponding cartesian coordinate and the repeated index in the subscript implies summation. 

 

III. FORMULATION OF THE PROBLEM 

Let M and 'M  be two dissimilar homogeneous, transversely isotropic micropolar solid media. They 

are perfectly welded in contact as shown in Fig. 1. These two media extend to an infinite great distance from the 

origin and are separated by a plane horizontal boundary and 'M  is to be taken above M. The origin of the 

Cartesian coordinate system (x,y,z) is taken at any point on the plane interface and z-axis pointing vertically 

downwards into M is taken which is designated as z 0 . 

We consider the possibility of a type of wave travelling in the x-direction in such a manner that the 

disturbance is largely confined to the neighbourhood of the boundary which implies that the wave is a surface 

wave. The present study is restricted to the plane strain parallel to x-z plane. For two-dimensional problem, the 

displacement vector 'u


 and microrotation vector '


 in medium 'M  and displacement vector u


 and 

microrotation vector 


 in medium M are taken as  

        ' ' ' ' '

1 3 2 1 3 2u u ,0,u , 0, ,0 , u u ,0,u and 0, ,0       
  

                                                                       (6) 

 Using eqs. (1) to (6), the equations of motion for transversely isotropic micropolar medium M are expressed as 

  
22 2 2

31 1 2 1

11 13 56 55 12 2 2

   
    

    

uu u u
A A A A K ρ

x z zx z t
                                                                                      (7) 

 
2 2 22

3 3 31 2

66 13 56 33 22 2 2

   
    

    

u u uu
A A A A K ρ

x z xx z t
                                                                                     (8) 

2 2 2

32 2 1 2

77 66 2 1 22 2 2

   
     

 









 uu
B B χ K K ρj

z xx z t
                                                                                      (9) 

where 

2 2 11 56 55 66 56 ,, K     K A A K A A                                                                                                         (10) 

Similarly, we can get similar equations of motion for medium 'M  with all the parameters in medium 'M  are 

denoted by super script “dash”. 
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IV. SOLUTION OF THE PROBLEM 
We seek the surface wave solution of the eqs. (7) to (9) in x-z plane in the following form 

           1 3 2 1 3 2u ,u , u z ,u z , z exp. i x ct                                                                                              (11) 

where   is the wave number and c is phase velocity of the wave,  

Making use of eq. (11) in eqs. (7-9) and applying the radiation conditions
1 3 20, 0, 0   u u as z , we 

obtain the following particular solutions for medium M  

3
( )

1

1

 



 
  
 
 jm z i x ct

j

j

u A e e                                                                                                                                       (12) 

3
( )

3

1

 



 
  
 
 jm z i x ct

j j

j

u A e e                                                                                                                                   (13) 

3
( )

2

1

 



 
  
 
 jm z i x ct

j j

j

A e e                                                                                                                                     (14) 

and similarly, for medium 'M  

'
3

' ' ( )

1

1





 
  
 
 jm z i x ct

j

j

u A e e                                                                                                                                         (15) 

'
3

' ' ' ( )

3

1





 
  
 
 jm z i x ct

j j

j

u A e e                                                                                                                                     (16) 

'
3

' ' ' ( )

2

1





 
  
 
 jm z i x ct

j j

j

A e e                                                                                                                                      (17) 

where the expressions for coupling coefficients j j, ( j 1,2,3)   and the relations between jm (j 1,2,3)  are 

given as follow: 

2 2 2 1

1 2 3

0

S
m m m

S
    

2 2 2 2 2 2 2

1 2 2 3 3 1

0

S
m m m m m m

S
    

2 2 2 3

1 2 3

0

S
m m m

S
  

where 

0 33 55 66S A A B ,   

 2 2 2

1 33 55 55 66 33 66 66 33 1S A A P A B N A B L B M A K ,       
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   2 4 2 2 2

2 33 55 66 1 2 1 2 55S A LP A NP B LN PM 2K K M K N K A ,         6 2 4

3 2S LNP LK ,      

   2

11 13 56L A c , M A A ,     2 2

11 77 2
N A c , P B jc ,

 
     

 
 

The expressions for  j j, j 1,2,3   are given as 

 

2 2

j j2

2 2

55 1 55

j 2

j j j332

2

1 55 55 33

m mKM L

A K A
i , j 1,2,3

m m mAK M N

K A A A

    
             

   
          

 

 

2 2 2 2
j j j

2 2 2

55 33 33 55j

2

j j j2 1

2

33 55 55 33

m m mL N M

A A A A
, j 1,2,3

m m mK KM N

A A A A

   
             

  
           

 

The quantities ' ' '

j j j, , m (j 1,2,3)    are defined in the same way as their counterparts without superscript dash. 

 

V. BOUNDARY CONDITIONS 
The appropriate boundary conditions at an interface z=0 are continuity of components of displacement, 

continuity of component of microrotation, the continuity of normal and tangential force stress components and 

continuity of tangential couple stress component i.e.,  
' ' ' ' ' '

1 1 3 3 2 2 33 33 31 31 32 32u u , u u , , , , m m ,                                                                                            (18) 

where   
' ' ' ' '

33 13 1,1 33 3,3A u A u    
33 13 1,1 33 3,3A u A u    

 ' ' ' ' ' ' ' '

31 56 3,1 55 1,3 56 55 2A u A u A A ,       

 31 56 3,1 55 1,3 56 55 2A u A u A A ,          

 ' ' '

32 66 2,3m B ,   32 66 2,3m B .   

Here, the symbols with superscript dash correspond to medium 'M  

Boundary conditions imply the following equations 
3 3

'

j j

j 1 j 1

A A
 

                                                                                                                                                       (19) 

3 3
' '

j j j j

j 1 j 1

A A
 

                                                                                                                                                   (20) 

3 3
' '

j j j j

j 1 j 1

A A
 

                                                                                                                                                   (21) 

   
3 3

' ' ' ' '

13 j j 33 j 13 j j 33 j

j 1 j 1

i A m A A i A m A A
 

                                                                                                   (22) 

     
3 3

' ' ' ' ' ' ' '

j 56 j 55 56 55 j j j 56 j 55 56 55 j j

j 1 j 1

i A m A A A A i A m A A A A
 

                                                   (23) 

   
3 3

' ' ' '

j j 66 j j j 66 j

j 1 j 1

m B A m n B A
 

                                                                                                                      (24) 

 

VI. STONELEY WAVE 

Elimination of constants jA  and  '

jA j 1,2,3  from eqs.(19-24) gives the following secular equation for the 

surface wave in transversely isotropic micropolar solid media i.e 

ijdet(a ) 0; (i, j 1,2,...,6)                                                                                                                              (25) 

where 

11 12 13 14 15 16a 1,a 1,a 1,a 1,a 1,a 1,          
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' ' '

21 1 22 2 23 3 24 1 25 2 26 3a ,a ,a ,a ,a ,a ,             

' ' '

31 1 32 2 33 3 34 1 35 2 36 3a ,a ,a ,a ,a ,a ,             

   

   

13 j j 33

4 j ' ' ' '

13 j 3 j 3 33

i A m A , j 1,2,3
a

i A m A , j 4,5,6 

    
 

    

 

    

    

j 56 j 55 56 55 j

5 j ' ' ' ' ' ' '

j 3 56 j 3 55 56 55 j 3

i A m A A A , j 1,2,3
a

i A m A A A , j 4,5,6  

      


 
      

 

 

 

j j 66

6 j ' ' '

j 3 j 3 66

m B , j 1,2,3
a

m n B , j 4,5,6 

 
 



 

The eq. (25) is the secular equation for Stoneley waves in transversely isotropic micropolar solid media. 

 

VII. RAYLEIGH WAVE AS LIMITING CASE 
Rayleigh wave is a special case of the above general surface wave. In this case, we consider a model 

where the medium 'M  is replaced by vacuum. Since the boundary z 0 is adjacent to vacuum. It is free from 

traction. So the boundary conditions in this case may be expressed as  

33 31 320, 0, m 0,      

Thus the set of eqs. (19-24) reduces to  

 
3

13 j j 33 j

j 1

i A m A A 0


                                                                                                                                    (26) 

  
3

j 56 j 55 56 55 j j

j 1

i A m A A A A 0


                                                                                                           (27) 

 
3

j j 66 j

j 1

m B A 0


                                                                                                                                              (28) 

Eliminating the constants  jA j 1,2,3 , we get the wave velocity equation for Rayleigh waves in the 

transversely isotropic micropolar case as follow: 

ijdet(b ) 0; (i, j 1,2,3)                                                                                                                                  (29) 

where 

   1j 13 j j 33b i A m A , j 1,2,3      

   2 j j 56 j 55 56 55 jb i A m A A A , j 1,2,3        

 3j j j 66b m B , j 1,2,3    

The eq. (29) is the secular equation for Rayleigh waves in transversely isotropic micropolar solid half-space. 

 

VIII. CONCLUSION 
Assuming the components of the displacement and microrotation vectors in the 

form    1 3 2u u ,0,u and 0, ,0   


, the governing equations given in Iesan [8] are derived as a special case 

for transversely isotropic micropolar medium in x-z plane. Stoneley and Rayleigh type surface waves are 

studied in this medium. The secular equation of Stoneley and Rayleigh waves in transversely isotropic 

micropolar media is obtained. The theoretical results indicate that the speed of the surface wave depends on 

various material parameters. Present analytical solutions can be used to find numerically the speed of the 

Stoneley and Rayleigh waves for a particular material modelled as a transversely isotropic micropolar material. 

The results in this paper should prove useful in the field of material science, designers of new materials as well 

as for those working on the development of theory of elasticity. 
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