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Abstract: The paper deals with the problem of reflection of plane waves at the free surface of transversely 

isotropic micropolar elastic solid. The governing equations of transversely isotropic micropolar material are 

specialized in x-z plane. The plane wave solutions of these equations indicate the existence of three reflected 

waves in a transversely isotropic micropolar half-space. The relations in amplitude ratios and the expressions for 

energy ratios corresponding to reflected waves are obtained numerically with a suitable Snell’s law. The speeds, 

amplitude ratios and the square root of energy ratios are plotted against the angle of incidence. The effect of 

micro-inertia on speeds, amplitude ratios and energy ratios are studied graphically for a particular model. 
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I. INTRODUCTION  

 The linear theory of elasticity has numerous applications in engineering structural materials. The linear 

elasticity describes the mechanical behavior of concrete, wood and coal. However, the linear theory of elasticity 

does not describe the behavior of some new synthetic materials, for example, polymethyl-methacrylate, 

polyethylene, polyvinyl chloride. The behavior of such materials is described by the theory of micropolar 

elasticity.  Micropolar theory is an extension of elasticity with extra independent degrees of freedom for local 

rotation. The theory explains certain static and dynamic effects, i.e. new types of waves and coupled stress of 

the materials. In this theory, the motions of the particles are expressed in terms of displacement and micro-

rotation vector. 

Eringen [3] introduced the linear theory of micropolar elasticity and explained the micro-rotational 

motion and spin inertia that can support coupled stress and body couples in the materials. Many problems of 

waves and vibrations of micropolar elasticity have been investigated by several researches e.g. Nowacki and 

Nowacki [4-5], Nowacki [6], Parameshwaran and Koh [7], Smith [8], Achenbach [12] etc. Parameshwaran and 

Koh [7] discussed the problem of wave propagation in micro-isotropic and microelastic solids. Smith [8] 

discussed the problem of waves in micropolar elastic solid and obtained the velocity of surface wave. Ariman 

[9] studied the wave propagation in micropolar elastic solids. Parfitt and Eringen [10] investigated the plane 

wave propagation in an infinite isotropic homogeneous micropolar elastic solid half-space. Iesan [11] derived 

the uniqueness and existence theorems in the orthotropic micropolar elastic solids.  Tomar and Gogna [13] 

discussed the problem of reflection and refraction of a longitudinal microrotational wave at an interface between 

two micropolar elastic media. Kumar and Choudhary [14] discussed the plane strain problem in homogeneous 

micropolar orthotropic elastic solids. Singh [15] studied the problem of wave propagation in an orthotropic 

micropolar elastic solid and obtained reflection coefficients of the reflected waves.  

In this paper, we investigate the problem of reflection in a transversely isotropic micropolar medium. 

We obtain speeds, amplitude ratios and the square root of energy ratios of reflected waves for incident 

longitudinal wave. The effect of micro-inertia on the speed, amplitude ratios and energy ratios of reflected 

waves are discussed for a particular model. 

 

II. BASIC EQUATIONS 
Following Iesan [11], the equations of motion for a homogeneous transversely isotropic micropolar 

solid in the absence of body forces and body couples consists are ji, j iσ =ρu
                    (1)                                                                                                                                                                                                                          

 i k,i i jk i j km j i, j,k 1,2,3     
                                                      (2)                                                                                               

The constitutive equations are written as 
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i j i jk l k l i jk l k lA e G   
                                                                                                                                     (3) 

i j k li j k l i jk l k lm G e B  
                                                                                                                                       (4) 

The geometrical equations are written as 

i j j, i i jk k i j j,ie u ,     
                                                                 (5) 

where 
ij

 is the stress tensor,  is the mass density, u


is the displacement vector, 


is the microrotation vector, 

j is the micro-inertia, 
ijm is the couple stress tensor, 

ijk is the alternating symbol, 
ije and 

ij are kinematic 

strain measures and 
ijkl ijklA , B and 

ijklG are constitutive coefficients. Superposed dot denote partial 

differentiation with respect to the time t. Subscripts preceded by a comma denote partial differentiation with 

respect to the corresponding cartesian coordinate and the repeated index in the subscript implies summation. 

 

III. FORMULATION OF THE PROBLEM  
We consider a homogeneous transversely isotropic micropolar solid half-space (medium M). The 

origin of the Cartesian coordinate system (x,y,z) is taken at any point on the plane interface and z-axis pointing 

vertically downwards into M is taken which is designated as z 0 . The present study is restricted to the plane 

strain parallel to x-z plane. For two-dimensional problem, the displacement vector u


 and microrotation vector 




 in medium M are taken as  

    1 3 2u u ,0,u and 0, ,0   


                                                                                                                        (6) 

 Using eqs. (1) to (6), the equations of motion for transversely isotropic micropolar medium M are expressed as 

  
22 2 2

31 1 2 1

11 13 56 55 12 2 2

   
    

    

uu u u
A A A A K ρ

x z zx z t
                                                                                     (7) 

 
2 2 22

3 3 31 2

66 13 56 33 22 2 2

   
    

    

u u uu
A A A A K ρ

x z xx z t
                                                                                     (8) 

2 2 2

32 2 1 2

77 66 2 1 22 2 2

   
     

 









 uu
B B χ K K ρj

z xx z t
                                                                                        (9) 

where   
2 2 11 56 55 66 56 ,, K     K A A K A A                                                                                              (10) 

 

IV. SOLUTION OF THE PROBLEM 

We seek the plane wave solution of the eqs. (7) to (9) in x-z plane in the following form 

      1 3 2u ,u , A,B,C exp. ik xsin zcos vt                                                                                   (11) 

where k is the wave number and v is the speed of wave propagating in x-z plane along a direction making an 

angle with z-axis.  

Making use of eq. (11) in eqs. (7-9), we obtain three homogeneous equations in A, B and C and which have 

non-trivial solution if   
3 2

1 2 3S S S 0                                                                                                                                           (12) 

where 
2    

*

1 1 2 3S D D D ,    

* * 2 * 2 * 2

2 1 2 2 3 3 1 1 1 2 2S D D D D D D L K K cos K K sin ,        

* * 2 * 2 * 2 *

3 1 2 3 3 2 2 1 1 1 2 1 2S D D D D L K K D sin K K D cos 2LK K sin cos ,        

2 2 2 2 2 2

1 11 55 2 66 33 3 77 66D A sin A cos , D A sin A cos , D B sin B cos ,          

  * * *3 1 2

13 56 3 1 22 2 2

D K K
L A A sin cos , D , K , K .

j jk jk jk


         

The three real roots of cubic eq. (12) in 2v correspond to the speeds of three quasi plane waves in a transversely 

isotropic micropolar medium. The three roots 
1 2v , v  and  3 1 2 3v v v v   correspond to the speeds of Coupled 

Longitudinal Displacement (CLD), Coupled Transverse Displacement (CTD) and Coupled Transverse 

Microrotational (CTM) waves, respectively. 

 

V. REFLECTION FROM FREE SURFACE 
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A train of longitudinal wave with amplitude 
0A is incident at the plane interface making an angle 

0 with the normal. This wave gives three reflected coupled waves in the half-space M. The complete geometry 

of the problem is shown in Fig.1. 

 

 
 

The formal solution for the displacement components
1 3u ,u and microrotation component 

2 are as follow: 

     
3

1 0 1 0 0 1 j j j j j

j 1

u A exp. ik xsin zcos v t A exp. ik xsin zcos v t ,


                                               (13) 

     
3

*

3 1 0 1 0 0 1 j j j j j j

j 1

u A exp. ik xsin zcos v t A exp. ik xsin zcos v t ,


                                           (14) 

     
3

*

2 1 0 1 0 0 1 j j j j j j

j 1

A exp. ik xsin zcos v t A exp. ik xsin zcos v t ,


                                           (15) 

where 
iv (i 1,2,3) are real speeds of CLD, CTD and CTM waves, respectively. 

The coupling constants 
* *

1 1 j, ,   and  j j 1,2,3  are defined as  

1j j 2 j* *

1 1 1 1 j

j j j

, , , ,
k

  
        

 
   

where  
2

j j 2 j j 1j j 2 j1j j 1j 2 j j j j, , ,C K Q K P K C K C PQ         

2 2

j j2 2 2

j j 11 0 55 0

1 1

v v
P v A sin A 1 sin ,

v v

    
          
     

2 2

j j2 2 2

j j 66 0 33 0

1 1

v v
Q v A sin A 1 sin ,

v v

    
          
     

 

 
2 2

j j j j2 2

j 13 56 0 0 1j 1 0 2 j 2 0'

1 1 11

v v v v
C A A sin 1 sin , K iK 1 sin , K iK sin ,

v v vv

       
                 

       
                                                                                                                 

 

VI. BOUNDARY CONDITIONS 
The appropriate boundary conditions at an interface z 0   are  the continuity of normal and tangential 

force stress components and continuity of tangential couple stress component i.e.,  

33 31 320, 0, m 0                                                                                                                                          (16) 

where   

33 13 1,1 33 3,3A u A u    

 31 56 3,1 55 1,3 56 55 2A u A u A A          
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32 66 2,3m B   

The displacement components and microrotation component are given by eqs. (13) to (15) satisfy boundary 

conditions (16) if following relations (Snell’s law) hold 

1 0 1 1 2 2 3 3k sin k sin k sin k sin                                                                                                                 (17) 

1 1 2 2 3 3k v k v k v                                                                                                                                               (18) 

and we obtain following non-homogeneous system of three equations in amplitude ratios of reflected waves 

  
3

ij j i

j 1

a Z b , i 1,2,3


                                                                                                                                   (19) 

where  
j

j

0

A
Z , j 1,2,3

A
  are amplitude ratios of reflected CLD, CTD and CTM waves, respectively and 

 

2

21
13 0 33 j 0

j

1j *

13 0 33 1 0

v
A sin A sin

v
a , j 1,2,3

A sin A cos

 
      

 
 

   
 

 
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 
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j j j

2 j *
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56 1 0 55 0 56 55

1
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A sin A sin i A A

v v k
a , j 1,2,3

A sin A cos i A A
k

    
              

    
 

 
       
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 

2

21
j 0

j

3 j *

1 0

v
sin

v
a , j 1,2,3

cos

 
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 
 

 
 

1 2 3b 1, b 1, b 1      

 

VII. ENERGY RATIOS 
We shall now consider the partitioning of energy between different reflected waves at a surface 

element of unit area. Following Achenbach [12], the instantaneous rate of work of surface traction is the scalar 

product of the surface traction and the particle velocity. This scalar product is called the power per unit area, 

denoted by *P , and represents the rate at which the energy is communicated per unit area of the surface, i.e., the 

energy flux across the surface element. The time average of *P over a period, denoted by *P , represents the 

average energy transmission per unit surface area per unit time. For the micropolar medium, the rate of energy 

transmission at the free surface z 0 is given by  
*

33 3 31 1 32 2P u u m                                                                                                                                         (20)   

The time rate of average energy transmission for the respective wave to that of the incident wave, denoted by 

jE (j=1, 2, 3) for reflected CLD, reflected CTD, reflected CTM waves respectively, are given as  

 
*

j

j *

0

P
E , j 1,2,3

P
                                                                                                                                 (21) 

where 
*

0P denotes the average energy transmission per unit surface area per unit time for incident CLD wave 

in micropolar medium M . 

The expressions for energy ratios at an interface z = 0 are given as  

 
j j j 2

j j

0

p q r
E Z , j 1,2,3

w

  
  
 

                                                                                                       (22) 

where 

j 13 j 56 j 0p (A A )sin ,    

2

2 2 21

j 55 33 j 66 j 0

j

v
q (A A B ) sin ,

v

 
       

 
 

  j1

j 56 55

j j

v
r i A A

v k

  
    

  
  
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 
*

* *2 *2 1

0 13 56 1 0 55 33 1 66 1 0 56 55

1

w (A A ) sin (A A B )cos i A A
k

 
             

 
 

                                   
 

VIII. NUMERICAL RESULTS AND DISCUSSION 
We are interested in the computation of speeds, amplitude ratios and the square root of energy ratios of 

reflected waves for incident longitudinal wave. We have developed programs on MATLAB for the computation 

of speed, amplitude ratios and the square root of energy ratios and will discuss the effects of micro-inertia. To 

illustrate the numerical results graphically, the value for relevant parameters for transversely isotropic 

micropolar solid are taken as (modified value of Singh [16]) 
11 -2 11 -2 11 -2 11 -2

11 33 13 56

11 -2 11 -2 10 10 3 -3

55 66 77 66

A =17.8×10 Nm , A =18.43×10 Nm , A =7.59×10 Nm , A =1.89×10 Nm ,

A =4.357×10 Nm , A =4.42×10 Nm , B =0.278×10 N, B =0.268×10 N, ρ=1.74×10 Kg m
 

The variations of speeds of reflected CLD, CTD and CTM waves with angle of incidence at different values of 

micro-inertia are shown in Figs. 2-4. The variations of absolute values of amplitude ratios of reflected waves 

with angle of incidence at different values of micro-inertia are shown in Figs. 5-7 and those of square root of 

energy ratios are depicted in Figs 8-10. In all figures, we take values of micro-inertia as follow: 

j 0.019, j 0.02, j 0.021   . 

 

Effect of Micro-inertia on Speeds of Reflected waves 

In Figs. 2-4, it is observed that there is a little effect of micro-inertia on the speed of reflected CLD wave and the 

speeds of reflected CTD and reflected CTM waves decrease with increase of micro-inertia. 

 

Effect of Micro-inertia on Amplitude Ratios of Reflected waves 

From Fig. 5, it may be noted that there is a little effect of micro-inertia on the amplitude ratios of reflected CLD 

wave. From Figs. 6 and 7, it is observe that value of amplitude ratios increase for reflected CTD wave and 

decrease for reflected CTM wave with increase of micro-inertia. The minimum effect of micro-inertia on 

amplitude ratios of reflected CTD and CTM waves is observed near grazing angle of incidence. 

 
Fig.2  Variations of speeds of reflected coupled longitudinal displacement (CLD) wave against the angle of 

incidence of incident CLD wave at different values of micro-inertia 
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Fig.3  Variations of speeds of reflected coupled transverse displacement (CTD) wave against the angle of 

incidence of incident CLD wave at different values of micro-inertia 

 
Fig.4  Variations of speeds of reflected coupled transverse microrotational (CTM) wave against the angle of 

incidence of incident CLD wave at different values of micro-inertia 
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Fig.5  Variations of amplitude ratios of reflected coupled longitudinal displacement (CLD) wave against the 

angle of incidence of incident CLD wave at different values of micro-inertia 

 

 
Fig.6  Variations of amplitude ratios of reflected coupled transverse displacement (CTD) wave against the angle 

of incidence of incident CLD wave at different values of micro-inertia 
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Fig.7  Variations of amplitude ratios of reflected coupled transverse microrotational (CTM) wave against the 

angle of incidence of incident CLD wave at different values of micro-inertia 

 
 Fig.8  Variations of the square root of energy ratios of reflected coupled longitudinal displacement (CLD) wave 

against the angle of incidence of incident CLD wave at different values of micro-inertia 
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Fig.9  Variations of the square root of ratios of reflected coupled transverse displacement (CTD) wave against 

the angle of incidence of incident CLD wave at different values of micro-inertia 

 
Fig.10  Variations of the square root of ratios of reflected coupled transverse microrotational (CTM) wave 

against the angle of incidence of incident CLD wave at different values of micro-inertia 

 

 

 

Effect of Micro-inertia on Energy Ratios of Reflected waves 
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From Fig. 8, it is observed that there is a little effect of micro-inertia on the value of square root of energy ratio 

of reflected CLD wave. From Fig. 9, we conclude that the value of square root of energy ratios of reflected CTD 

wave increase with increase of micro-inertia and the minimum effect of micro-inertia has observed near grazing 

angle of incidence. From Fig. 10, it may be noted that minimum effect of micro-inertia on value of square root 

of energy ratio of reflected CTM wave is observed in the range o o

0 0 16   . Thereafter, value of square root of 

energy ratios of reflected CTM wave decrease with increase of micro-inertia upto o

0 70  and then there is a 

little change from o

0 70  to o72 . Thereafter, it increases with increase of micro-inertia upto o

0 83  and 

decrease with increase of micro-inertia from o

0 85.7  to o

0 90  .  

 

IX. CONCLUSION 
The problem of the effect of micro-inertia on the reflection of plane waves at the free surface of transversely 

isotropic micropolar half-space has been investigated. The speeds, amplitude ratios and the square root of 

energy ratios of the reflected CLD, CTD and CTM waves due to incident CLD wave are obtained. These speeds, 

amplitude ratios and energy ratios are computed numerically for different values of micro-inertia and study the 

effects. We may summarize with the following concluding remarks: 

i. The speeds, amplitude ratios and energy ratios of reflected waves are functions of angle of incidence, 

frequency and micro-inertia. 

ii. There is a little effect of micro-inertia on the speeds, amplitude ratios and square root of energy ratios 

of reflected CLD wave. 

iii. The speeds of reflected CTD wave decrease and amplitude ratios and the square root of energy ratios of 

reflected CTD wave increase with increase of micro-inertia. 

iv. The speeds and amplitude ratios of reflected CTM wave decrease with increase of micro-inertia and 

have mixed effect on the square root of energy ratios of CTM wave. 
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