
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org

ISSN (e): 2250-3021, ISSN (p): 2278-8719

Vol. 08, Issue 9 (September. 2018), ||V (I) || PP 33-39

International organization of Scientific Research 33 | P a g e

An Efficient and Improved Query Search in Road Networks

1
A.DurgaPraveenKumar,

2
Dr.V.Suresh.

3
V.V.S.Sasank

1,2,3
Asst.Professor, IT Department,ANITS EngineeringCollege,Visakhapatnam

Abstract: Allowing the user to search from road networks is an interesting research issue in the field of queries

in road network. Various models proposed by various authors from years of research, every model has its own

pros and cons. If this paper, we are proposing an efficient and empirical model of road network based

implementation for user search queries. Finding the search results like restaurant, hospital, home etc. are related

spatial queries which includes latitude and longitude for every entity. Our proposed model improves the

performance by cluster and proxy implementation while finding the optimal path and it gives more efficient

results than traditional model.

--- ----------

Date of Submission: 26-08-2018 Date of acceptance: 07-09-2018

--- ----------

I. INTRODUCTION:
A few calculations have been created utilizing the network remove. Shahabi et al. proposed an inserting

method to change a street network into a higher dimensional space so as to use computationally straightforward

measurements [1][2]. The primary impediment of this method is that it gives just an estimate of the real

separation. Jensen et al. [3] propose an information model and meaning of dynamic usefulness required for NN

questions in spatial network databases. They utilize calculations like Dijkstra's calculation all together to

perform online counts of the most brief separation from a query point to a protest. Shahabiet al. [4] display four

elective systems for finding the first closest neighbour to a moving query question on guaranteed way.

In past works, introduced an answer called INE for NN inquiries in spatial network databases by

introducing a design that incorporates network and Euclidean data and catches down to business constraints.

Since the quantity of connections and hubs that should be recovered and inspected is contrarily professional

portioned to the cardinality proportion of items, the primary inconvenience of this approach is a sensational

degradation in execution when the above cardinality proportion is small, which is a typical case for genuine

scenarios. Moreover, it doesn't improve crude musical dramations to encourage an effective network seek since

it is intended to help both customary spatial inquiries in light of the Euclidean separation and inquiries in light of

the network remove[5].

The instinct behind is that clients (e.g. suburbanites) want to take after the course they are natural with,

in this way they might want to pick the corner store with the littlest deviation from the course. In the wake of

refuelling, they will come back to the past course and proceed with the excursion. Anyway a downside of IRNN

is that the client needs to enter precisely the entire query way ahead of time, which is recognized by all crossing

points along the way, while a client's driving way frequently can't be unequivocally pre-chosen. Envision that a

client is driving from Washington to New York, which is a long trip. It is unrealistic for a client to enter

hundreds of convergences before effectively making a query.

The Nearest Neighbour query is also extended to a roadnetwork scenario by using network distance as

the distancemetric. Papadis et al. present in [5] the Incremental EuclideanRestriction (IER) and Incremental

Network Expansion(INE) algorithms for retrieving k-NN according to networkdistance. IER uses the Euclidean

distance as a lowerbound for pruning during the search, and INE performs anetwork expansion similar to the

Dijkstra‘s algorithm .Jensen et al. also propose in a general spatial-temporalframework for NN queries in a road

network which is representedby a graph.

II. RELATED WORK:
In portable correspondence database and innovations are rising applications. There is a capacity to help

and continuous inquiries from versatile customers in street authorizations to duplicate material is conceded

given. The capacity to help consistent inquiries from portable customers on a street Permission to duplicate

without charge all or part of this material is conceded given that the duplicates are not made or circulated for

coordinate business advantage, the VLDB copyright see and the title of the production and its date show up, and

see is given that replicating is by authorization of the Very Large Data Base Endowment [6][7].

Example arrangement frameworks in view of machine learning calculations are ordinarily utilized as a

part of security-related applications like biometric validation, network interruption recognition, and spam

sifting, to segregate between a "genuine" and a "malignant" example class (e.g., authentic and spam messages).

An Efficient and Improved Query Search in Road Networks

International organization of Scientific Research 34 | P a g e

In spite of conventional ones, these applications have an inborn ill-disposed nature since the info information

can be deliberately controlled by a savvy and versatile enemy to undermine classifier task. This frequently offers

ascend to a weapons contest between the enemy and the classifier originator. Surely understood cases of assaults

against design classifiers are: presenting a phony biometric quality to a biometric verification framework [8][9].

The is first seek after security with regards to a weapons contest it isn't adequate to respond to watched

assaults, yet it is likewise important to proactively envision the enemy by foreseeing the most significant,

potential assaults through an imagine a scenario where examination; this enables one to create reasonable

countermeasures previously the assault really happens, as indicated by the guideline of security by outline.

Second, to give pragmatic rules to reproducing reasonable assault situations, we characterize a general model of

the foe, regarding her objective, information, and capacity, which envelops and sums up models proposed in

past work. Third, since the nearness of painstakingly focused on assaults may influence the conveyance of

preparing and testing information independently, we propose a model of the information circulation that can

formally describe this conduct, and that enables us to consider an expansive number of potential assaults; we

additionally propose a calculation for the age of preparing and testing sets to be utilized for security assessment,

which can normally oblige application-particular and heuristic systems for recreating assaults[10].

III. GENERALIZED COSTS
In its original formulation [1, 7], the PRP problem consists of finding a path of minimum user-specified

linear combination of additive costs. However, this is too restrictive in practice as some important constraints

cannot be modeled as additive costs. For example, one cannot simply add height limitations of two consecutive

tunnels. Other real-world restrictions such as vehicle width, vehicle weight, or maximum climbing ability

(depending on the slope) essentially fall into the same category: Every road has a certain threshold value (i. e.,

the tunnel height), and if the vehicle‘s characteristic value (i. e., its height) is above this threshold, the vehicle is

not allowed to traverse the road. Clearly, adding these threshold values is not meaningful, instead one needs to

compute the minimum of thresholds: A vehicle can pass through every tunnel on a path, if and only if it can pass

through the lowest tunnel. Restrictions that are formalized by upper bounds on vehicle characteristics are the

most common. However, there also restrictions that result in a lower bound. An example is the minimum

required speed on highways that bans vehicles that cannot go fast enough. Another source of restrictions is that

some road categories are forbidden for some vehicle types. For example many city centers ban large trucks.

Some trucks carry dangerous goods and are therefore not allowed in water conservation zones. Some drivers

want to avoid highways with toll. All of these restrictions have in common that some roads are flagged and

some vehicles are not allowed to traverse them. It is possible to regard them as 1-bit height-limitations.

However, we prefer another view: We attach to every road a bitfield where the i-th bit stands for the i-th

restriction of this type. By convention we say that a bit being set means that a road can be traversed. A path can

be traversed if every road in it can be traversed. Formally this consists of computing the bitwise-and of all road

bitfields and testing the bits in the result against the vehicle restrictions or user preferences. We support all these

criteria by generalizing the PRP scenario. The user does not input a vector of query weights w, but an arbitrary

function f that fulfills a set of requirements. We require f to map cost vectors onto a value from R≥0∪{∞}. We

further need an operation ◦ that combines two cost vectors. We require that ◦ is associative, i.e., for any cost

vectors c1, c2, and c3 we require that (c1◦c2)◦c3 = c1◦(c2◦c3). Furthermore, it must not matter whether we first

combine two cost vectors c1 and c2 and then apply f, or whether we first apply f to both vectors and then

compute the sum of the results. Formally, we require that f(c1 ◦ c2) = f(c1) + f(c2), which is the definition of f

being a semigroup homomorphism. In the case of linear combinations, f is the scalar product with w, and the ◦-

operation is the component-wise addition. However, we can also do component-wise minimum or maximum,

since it is associative, and even choose different operations for different cost components. The right operation

for height limitations (and similar restrictions), is to compute the minimum of all height limitations. The

function f then maps the cost vector onto ∞ if the vehicle is too high and otherwise ignores that cost component.

The ◦ operation for road categories is the bitwise-and operation, which is fortunately also associative. The

function f tests whether a certain bit, such as the highway bit, is set or not. Depending on the outcome f

evaluates to ∞ or f looks only at the other cost components.

IV. ACCELERATING TRAFFIC ASSIGNMENTS BY FAST BATCHED SHORTEST PATHS
Previous work applying speedup techniques to traffic assignment observed that the performance

bottleneck depends on the traffic scenario under study. For short or off-peak periods, where there are few OD-

pairs, preprocessing dominates the total running time. When there are many OD-pairs, as for long or peak

periods, queries become the main bottleneck.

To decrease the preprocessing time, we apply the concept of customization to traffic assignment.

Customizable speedup techniques [8, 2, 4] split preprocessing into a metricindependent part, taking only the

graph structure into account, and a metric-dependent part (the customization), incorporating new edge weights

An Efficient and Improved Query Search in Road Networks

International organization of Scientific Research 35 | P a g e

(the metric). Since the graph topology does not change in all iterations of the traffic assignment procedure and

only edge weights change, it suffices to run a fast customization in each iteration instead of an entire

preprocessing. We build our accelerated traffic assignment upon customizable contraction hierarchies [1, 2],

which allows us to employ the hierarchy decomposition optimization from [2, 6]. As basic query algorithm, we

use the engineered elimination tree search from the previous section. To reduce the query time, the following

sections introduce several optimization techniques for computing batched point-to-point shortest paths fast.

4.1 Reordering OD-pairs to Exploit Locality

Previous work processed the OD-pairs in no particular order. However, reordering the OD-pairs so that

pairs with similar forward and reverse search spaces tend to be processed in succession improves memory

locality and cache efficiency. We call two search spaces similar if their symmetric difference is small. Note that

the size of the symmetric difference between the search spaces of u and v is equal to the distance between u and

v in the elimination tree. Hence, we partition the elimination tree into as few cells with bounded diameter as

possible, assign IDs to cells according to the order in which they are reached during a DFS [29] on the

elimination tree, and reorder OD-pairs lexicographically by the origin and destination cells.

We use a simple yet optimal greedy algorithm to partition the elimination tree into as few cells with

diameter at most U as possible. Our algorithm repeatedly cuts out a subtree (with diameter at most U) and

makes it a cell of its own. In order to do so, it maintains for each vertex v the height h(v) of the remaining

subtreeTvrooted at v, initialized to zero, and processes vertices in ascending rank order. To process v, we

examine its children wiin order of increasing height of Twi. If h(v) + 1 + h(wi) ≤ U, we set h(v) = 1 + h(wi).

Otherwise, we cut out Twi, making it a cell of its own. We use U = 40 in our experiments.

4.2 Centralized Searches

Instead of processing similar OD-pairs in succession, processing them at once in a single search achieves

additional speedup. The idea of bundling together multiple shortest-path computations was introduced in [20]

and later used in [8, 7, 9, 4, 40]. However, in each case, centralized searches were only used for one-to-all and -

many queries, and only combined with plain Dijkstra (and Bellman-Ford in [8]). Even (R)PHAST [7, 9]

performs the CH searches sequentially, and bundles only the linear sweeps. We extend the idea to point-to-point

queries, and combine it with CH searches, including appropriate stopping and pruning criteria.

The basic idea of centralized searches is to maintain k distance labels for each vertex u, laid out consecutively in

memory. The i-th distance label represents the tentative distance from the i-th source to u. Initially, the i-th

distance label of the i-th source is set to zero, and all remaining kn − k distance labels to ∞. When relaxing an

edge (u,v), we try to improve all k distance labels of v at once. Increasing k allows us to compute more shortest

paths at once, however, it also evicts useful data from caches.

Dijkstra-Based Search. Initially, we insert all k sources (targets) into the queue of the forward (reverse) search.

As keys, we can use many different values, for example the minimum over all k entries in a distance label or the

minimum over the entries that were improved by the last edge relaxation. However, a preliminary experiment

showed that using the minimum over all k entries clearly dominates the others, which is consistent with previous

observations on related techniques [20]. We can stop the forward (reverse) search as soon as its queue is empty

or the smallest queue entry exceeds the maximum over all k tentative shortest-path distances. When using stall-

on-demand [18], we prune the forward (reverse) search at a vertex v when each of the k distance labels of v is

suboptimal.

Elimination Tree Search. Computing multiple shortest paths in a single elimination tree search is more

involved, since it uses no queues that can easily be initialized with multiple sources and targets. Instead, we

equip the forward and reverse search each with a tournament tree [23]. Suppose we have k sorted sequences that

are to be merged into a single output sequence, as in k-way mergesort. To do so, we have to repeatedly find the

smallest from the leading elements in the k sequences. This can be done efficiently with a tournament tree.

In our case, the k sorted sequences are the paths in the elimination tree T from each source (target) to the root,

and the single output sequence is the order in which we want to process the vertices during the search. More

precisely, we initialize the tournament tree with all k sources (targets). Then, we extract a lowest-ranked vertex

from the tournament tree, process it, and insert its parent in T into the tournament tree. We continue with a next-

lowest-ranked vertex, until we reach the root of T. Note that in our case, unlike in mergesort, the sequences are

implicit, and never stored explicitly.

As soon as two (or more) of the k paths in T converge at a common vertex, there are duplicates in the

single output sequence. However, we want to process each vertex at most once. Therefore, whenever two or

more paths converge, we block all but one of them, so that only one continues to move through the tournament

tree. To do so, we insert for each path to be blocked a vertex with infinite rank into the tournament tree (instead

of the next vertex on the path). We know that some paths converged, when we extract the very same vertex

several times in succession from the tournament tree.

An Efficient and Improved Query Search in Road Networks

International organization of Scientific Research 36 | P a g e

A clear advantage of the centralized elimination tree search is that it retains the labelsettingproperty, i.e., each

vertex and each edge is processed at most once. In contrast, the centralized Dijkstra-based search is a label-

correcting algorithm. Note that one centralized elimination tree search is slower than k elimination tree searches

by a factor of logkin O-notation (due to k-way merging), but outperforms them in practice (see Section 5).

4.3 Instruction-Level Parallelism

Modern CPUs have special registers and instructions that enable single-instruction multipledata

(SIMD) computations performing basic operations (e.g., additions, subtractions, shifts, compares, and data

conversions) on multiple data items simultaneously [24]. We implemented versions of the centralized searches

using SSE instructions (working with 128-bit registers), and additionally versions using AVX(2) instructions

(manipulating 256-bit registers), requiring a processor based on Intel‘s Haswell or AMD‘s Excavator

microarchitecture.

As an example, we describe how an AVX-accelerated edge relaxation (used in Dijkstrabased and

elimination tree searches) works, assuming k = 8. Since we use 32-bit distance labels, all k labels of a vertex fit

in a single 256-bit register. To relax an edge (u,v), we copy all k distance labels of u to an AVX register, and

broadcast the edge weight to all elements of another register. Then, we add both registers with a single

instruction, and check with an AVX comparison whether any tentative distance improves the corresponding

distance label of v. If so, we compute the packed minimum of the tentative distances and v‘s distance labels. In

the same fashion, we implement the other aspects (stopping and pruning criteria).

4.4 Core-Level Parallelism

Dibbelt et al. [12] introduce parallelization techniques for the triangle enumeration during

customization. However, we observed that the perfect witness search building the upward and downward search

graphs (which is difficult to parallelize) actually takes up 60% of the customization time. Hence, the speedup

obtainable by parallelizing the customization phase is limited (less than a factor of 1.5). For simplicity, we stick

to sequential customization.

In contrast, the shortest-path computations are easy to parallelize. Since the centralized computations

are independent from one another, we can assign contiguous subsets of OD-pairs to distinct cores. We distribute

the OD-pairs to cores in chunks of size 64. This maintains some locality even between centralized computations.

Each core executes a chunk, then requesting another chunk until no chunk remains. Flow units on the (shortcut)

edges are cumulated locally and aggregated after computing all paths. We observe an almost perfect speedup for

the time spent on queries.

V. COLLECTIVE SPATIAL KEYWORD QUERYING
With the proliferation of geo-positioning and geotagging, spatial web objects that possess both a

geographical location and a textual description are gaining in prevalence, and spatial keyword queries that

exploit both location and textual description are gaining in prominence. However, the queries studied so far

generally focus on finding individual objects that each satisfy a query rather than finding groups of objects

where the objects in a group collectively satisfy a query. We define the problem of retrieving a group of spatial

web objects such that the group‘s keywords cover the query‘s keywords and such that objects are nearest to the

query location and have the lowest inter-object distances. Specifically, we study two variants of this problem,

both of which are NP-complete. We devise exact solutions as well as approximate solutions with provable

approximation bounds to the problems. We present empirical studies that offer insight into the efficiency and

accuracy of the solutions. With the proliferation of geo-positioning, e.g., by means of GPS or systems that

exploit the wireless communication infrastructure, accurate user location is increasingly available. Similarly,

increasing numbers of objects are available on the web that has an associated geographical location and textual

description. Such spatial web objects include stores, tourist attractions, restaurants, hotels, and businesses. This

development gives prominence to spatial keyword queries. A typical such query takes a location and a set of

keywords as arguments and returns the single spatial web object that best matches these arguments. We observe

that user needs may exist that are not easily satisfied by a single object, but where groups of objects may

combine to meet the user needs. Put differently, the objects in a group collectively meet the user needs. For

example, a tourist may have particular shopping, dining, and accommodation needs that may best be met by

several spatial web objects. As another example, a user may wish to set up a project consortium of partners

within a certain spatial proximity that combine to offer thecapabilities required for the successful execution of

the project. To address the need for such collective answers to spatial keyword queries, we assume a database of

spatial web objects and then consider the problem of how to retrieve a group of spatial objects that collectively

meet the user‘s needs given as location and a set of keywords: 1) the textual description of the group of objects

must cover the query keywords, 2) the objects are close to the query point, and 3) the objects in the group are

close to each other. We present the new problem of retrieving a group of spatial objects, each associated with a

An Efficient and Improved Query Search in Road Networks

International organization of Scientific Research 37 | P a g e

set of keywords, such that the group covers the query‘s keywords and has the lowest cost measured by their

distance to the query point, and the distances between the objects in the group. We study two particular

instances of the problem, both of which are NP-complete. We develop approximation algorithms with provable

approximation bounds and exact algorithms to solve the two problems. Results of experimental evaluation offer

insight into the efficiency and the accuracy of the approximation algorithms, and the efficiency of the exact

algorithms.

VI. PROPOSED WORK:
In this paper we are proposing an empirical model query search implementation in road networks with

cluster based hybrid implementation for shortest query result. Usually end user makes a query to search engine

of the network. User query includes, search information along with location parameters. Road network or

algorithm which implemented receives the input parameters, send those parameters to server to compute the

available nodes which are nearest to the current location and filter the result and returns to the user. The

implementation majorly divided in to two categories. One will cluster the available nodes and other filter he

results with required information.

Intermediate Server or Sub Road Network receives set of nodes and cluster them based on the latitude

and longitude with centroid based cluster implementation. Usually Many nodes exists in various spatial

locations can be based on the latitude and longitude of the nodes. Server nodes can have grouped or clustered

with geographic parameters and shortest distance can be computed with Euclidean distance as measure and

keeps the nearest every time and repeats the same process until it is stabilizing or maximum number of iterations

Spatial Query Location based Cluster Implementation:

Step1:Load all available nodes from the network

Step2:Select number n of centroids from the complete set of nodes (N) and N>=n

Step3:Measure the Euclidean distance between Ci node and Ninode

Step4: For each Ni in N

If (Euclidean distance(Ci,Nj) <=initial distance) then

Shortest or optimal distance:= Euclidean distance(Ci,Nj)

Centroid_id=Ci;

 End if

 Next

Step 5: Continue the process until clusters are stable or maximum number of iterationsif not met.

 Step6.:Continue the process or steps from 2 to 5

These clustered results can be forwarded to main server to process the information of nodes which are received

from the intermediate server. It initially searches for complete object results and then sort the results based on

the nearest distance between the required object and selected cluster object. It obviously improves the

performance by minimizing the number of nodes

Location Query Search implementation:

Input: Qi—Input Spatial Query, DOlist(Total Data objects)

Output: Rlist (result set)

1. User provides the spatial query which involves the spatial object and feature

2. Load DOlist from database(LBS)

3. For i=0;i<List_Nodes ;i++

 For each Object O in DOlist

If(O== Qi.objectname)

 Add to Object_List

 Next

 For each object O in Object_List

 If (O.attribute==Qi.attribute)

Add ‗O‘ to Rlist

 Next

Next

4. Sort the Result set

5. Return Rlist

Output Analysis:

 For Experimental analysis, we clustered the set of nodes based on the geographic or spatial information of

the objects and results can be forwarded to intermediate server and process the spatial query. The following

screen shows list of nodes with geo parameters andclustered nodes based on Euclidean distance between the

nodes.

An Efficient and Improved Query Search in Road Networks

International organization of Scientific Research 38 | P a g e

In the above implementation, it shows list of cluster nodes and shortest path generated by the server. Now main

server identifies the object specific results and forwarded to end user as per input query

VII. CONCLUSION
 In our work we are concluding our search implementation with a hybrid model. Usually end user

makes a query to search engine of the network. User query includes, search information along with location

parameters. Road network or algorithm which implemented receives the input parameters, send those

parameters to server to compute the available nodes which are nearest to the current location and filter the result

and returns to the user. Our proposed model gives more efficient results than traditional models.

REFERENCES:
[1]. D. Delling, A. V. Goldberg, and R. F. Werneck, ―Faster batched shortest paths in road networks,‖ in

Proc. 11th Workshop Algorithmic Approaches Transportation Model., Optimization, Syst., 2011, vol. 20,

pp. 52–63.

[2]. R. Geisberger, ―Advanced route planning in transportation networks,‖ Ph.D. dissertation, Karlsruhe Inst.

Technol., Karlsruhe, Germany, Feb. 2011.

[3]. R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, ―Exact routing in large road networks using

contraction hierarchies,‖ Transportation Sci., vol. 46, no. 3, pp. 388–404, 2012.

[4]. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, ―A Hub-based labeling algorithm for

shortest paths on road networks,‖ in Proc. 10th Int. Symp. Exp. Algorithms, 2011, LNCS 6630, pp. 230–

241.

[5]. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, ―Hierarchical hub labelings for shortest

paths,‖ in Proc. 20th Annu. Eur. Conf. Algorithms, LNCS 7501, 2012, pp. 24–35.

[6]. R. Bauer, D. Delling, P. Sanders, D. Schieferdecker, D. Schultes, and D. Wagner, ―Combining

hierarchical and goal-directed speed-up techniques for Dijkstra‘s algorithm,‖ ACM J. Exp. Algorithmics,

vol. 15, no. 2.3, pp. 1–31, 2010.

[7]. D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, ―Customizable route planning,‖ in Proc. 10th

Int. Conf. Exp. Algorithms, LNCS 6630, 2011, pp. 376–387.

[8]. D. Delling, and R. F. Werneck, ―Faster customization of road networks,‖ in Proc. 12th Exp. Algorithms,

LNCS 7933, 2013, pp. 30–42.

[9]. M. Holzer, F. Schulz, and D. Wagner, ―Engineering multi-level overlay graphs for shortest-path queries,‖

ACM J. Exp. Algorithms, vol. 13, no. 2.5, pp. 1–26, Dec. 2008.

[10]. Y.-W. Huang, N. Jing, and E. A. Rundensteiner, ―Effective graph clustering for path queries in digital

maps,‖ in Proc. Conf. Inf. Knowl. Manage., 1996, pp. 215–222.

Authors

A. Durga Praveen Kumar is working as Asst Professor Dept of IT in ANITS Engineering

College, Visakhapatnam. His research Paper published in ELSEVIER publications with Title

―Data Collection, Statistical Analysis and Machine Learning Studies of Cancer Dataset from

North Costal Districts of AP, India‖-2015. AnotherPaper published in IJETT publications with

Title ―Improved Entity based Object Oriented Framework for IDE-June-2017‖. One more

Paper published in IJETT publications with Title ―An Empirical Model Of Range -Aggregate

Queries In Big Data Environment-August-2016‖.

An Efficient and Improved Query Search in Road Networks

International organization of Scientific Research 39 | P a g e

Dr V. Suresh received B.E. degree from AMA College of Engg., Kancheepuram, University of

Madras, Chennai, Tamilnadu, India. Received M.Tech degree from Andhra University,

Visakhapatnam, A.P., India. Received Ph.D. degree from Andhra University, Visakhapatnam,

A.P., India. Presently he is working as Assistant professor, department of IT, ANITS

Engineering College, Visakhapatnam. He is a life member in

CSI(00174296),MITE(M155602) and AMIE(AM0915397). He is having 24 years of Teaching

and Industrial Experience. His research interest includes Natural Language Processing(NLP)

Image Processing, BigData, Data Analytics and Machine Learning.

Mr.V.V.S.Sasank, received his B.tech and M.tech Degree from GITAM

University,Visakhapatnam, AndhraPradesh, India. He got 1st rank in M.tech CST from

GITAMUniversity. Presently he is working as Assistant Professor in the IT Department of

ANITS Engineering College,Visakhapatnam since one year. He activelyparticipated in various

workshops and seminars and presented papers related to information technology. His areas of

interests are data mining, databasemanagement system and image processing.

|

1A.DurgaPraveenKumar " An Efficient and Improved Query Search in Road Networks. ” IOSR

Journal of Engineering (IOSRJEN), vol. 08, no. 9, 2018, pp. 33-39.

