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Abstract: This paper presents bending analysis of all clamped (CCCC) rectangular thick plate using 

polynomial shape function in shear deformation theory. The theory presented herein is based on Ritz energy 

method and the displacement function based on polynomial function. The theory derived transverse shear stress 

from constitutive relation that satisfied zero shear stress condition on the top and bottom surfaces of the plate, 

hence like other higher order theories no shear correction factor is required. The total potential energy equation 

of a thick plate was formulated from the principle elasticity. The governing equations for determination of 

displacement coefficients were derived by subjecting the total potential energy equation to direct variation. A 

rectangular thick plate with all edges clamped was considered for numerical studies. The results obtained herein 

for displacements and stresses were compares with those from previous works to show the sufficiency of this 

theory. It was observed that the present results agreed with those of previous works. Also the obtained non-

dimensional values of vertical shear stress (𝝉𝒙𝒛    ) were used to delineate the boundary between thick and thin 

plate based on span to depth ratio. The values of non-dimensional vertical shear stress (𝝉𝒙𝒛    ) between span to 

depth ratios (α) of 60 and 100 were equal to values obtained from classical plate theory (CPT), therefore they 

can be idealized to be thin plate. The values of the vertical shear stress (𝝉𝒙𝒛    ) of plate, whose span to depth ratio 

(α) falls between 20 and 50 varied minimally and differed from those of classical plate theory, so the plate can 

be taken to be moderately thick. Furthermore, values of the vertical shear stress (𝝉𝒙𝒛    ) of plate whose span to 

depth ratio (α) falls between 4 to 15 varied significantly with span to depth ratio. Therefore, the plate can be 

taken to be thick.. 
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I. INTRODUCTION 
The wide spread application of shear flexible materials has stimulated interest in predicting accurately 

the structural behavior of thick plates. Thick beams and plates, either isotropic or anisotropic, basically form two 

and three dimensional problems of elasticity theory. The main objective of researchers has been the reduction of 

these problems to the corresponding one and two dimensional approximate problems for their analysis. The 

shear deformation effects are more pronounced in thick plates subjected to transverse loads than in the thin 

plates under similar loading (Sayyad & Ghugal, 2012b; Touratier, 1991). The analyses of thick plates by 

previous authors have been predominantly characterized by the use of trigonometric and exponential 

displacement function. It has been witnessed that most scholars have obtained the closed form solutions and 

others have obtained approximate solution by use of energy method. However, one thing is common in them all 

- the use of trigonometric displacement functions to approximate the deformed shapes of the plates.  

(Chikalthankar et al., 2013; Sayyad, 2011; Akavci, 2007; Sayyad and Ghugal, 2012; Sadrnejad et al., 2009; 

Daouadji et al., 2013;Hashemi and Arsanjani, 2005; Reddy, 2014; Shimpi and Patel, 2006; Murthy, 1981; 

Daouadji, Tounsi, Hadji,  Henni and El Abbes, 2012; Zhen-qiang, Xiu:xi and Mao-guang, 1994). Others have 

applied the polynomial displacement functions in numerical methods like finite element method and differential 

quadrature element methods (Matikainen, Schwab and Mikkola, 2009; Goswami and Becker, 2013, Liu, 2001). 

In the course of development of refined plate theory, the assumption that the shear deformation line is not 

varying linear with depth of the plate was introduced. This according to many scholars helps to ensure that the 

vertical shear stress across the plate section does not remain constant, but varies parabolically with zero values 
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at both the top and bottom surfaces (Kruszewski, 1949; Ambartsumian, 1958 Krishna, 1984; Touratier, 1991; 

Karama and Mistou, 2003; Sayyad, 2011). They came up with different shear deformation line functions, here-

in-after called F(z). However, their F(z) are not strictly based on the vertical shear stress mathematical 

formulation. As discussed earlier, scholars had been assuming displacement functions in thick plate bending 

analysis. The correctness of the analysis through variational or energy approaches depend more on the exactness 

of the assume displacement function. This seems to be the major factor discouring engineers in petronizing thick 

plate analysis, and instead resort to idealizing thick plate as thin plates. In this paper, the authors tried to 

integrate the thick plate governing equation to obtain general polynomial displacement function, which was easy 

to satisfy the boundary condintion for various plates. They also, tried to propagate an easy and straightforwad 

approach to bending analysis of thick rectangular plates.. 

 

II. TEORITICAL FORMULATION 
The displacement field include two in-plane displacements (u and v) and out-of-plane displacement 

(w). While the inplane displacements are differentiable with respect to the three cardinal coordinates, the out-of-

plane displacement is only differentiable with respect to x and y coordinates. The in-plane domains are in the 

following range: 0 ≤ x ≤ a;0 ≤ y ≤ b. Where a and b are the in-plane lengths of the plate as shown on Figure 1. 

The out-of-plane domain is within the following range -t/2 ≤ z ≤ t/2.  

 
Figure 1: Three dimensions and cordinates of rectangular plate 

The in-plane displacements comprized of classical part and shear deformation part. They are: 

𝑢 = 𝑢𝑐 + 𝑢𝑠                                       (1) 

𝑣 = 𝑣𝑐 + 𝑣𝑠                                       (2) 

Where the classical parts are: 

𝑢𝑐 = −𝑧𝜃𝑐𝑥 = −𝑧
𝑑𝑤

𝑑𝑥
                     (3) 

𝑣𝑐 = −𝑧𝜃𝑐𝑦 = −𝑧
𝑑𝑤

𝑑𝑦
                      (4) 

Ibearugbulem et al. (2016) gave the shear deformation parts as: 

𝑢𝑠 = 𝐹(𝑧)𝜃𝑠𝑥                                 (5) 

𝑣𝑠 = 𝐹(𝑧)𝜃𝑠𝑦                                 (6) 

Where F(z) is the shear deformation function profile across the thickness of the plate. They gave it in 

dimensional form as: 

𝐹 𝑧 =
3𝑧

2
 1 −

4

3
 
𝑧

𝑡
 

2

                  (7𝑎) 

This is written in non dimensional form as: 

𝐹 𝑆 =
3𝑆𝑡

2
 1 −

4

3
𝑆2                 (7𝑏) 

Where S = z/t 

The total potential energy functional for thick plate in pure bending is given as: 

Π =      
1

2
 𝑥𝑥 + 𝑦𝑦 + 𝑥𝑦 𝑥𝑦 + 𝑥𝑧 𝑥𝑧 + 𝑦𝑧 𝑦𝑧 𝑑𝑧

𝑡

2

−
𝑡

2

− 𝑞𝑤 
𝑦𝑥

𝑑𝑥𝑑𝑦     (8)  

The five engineering strain components are defined as: 

𝑥  =  
𝜕𝑢

𝜕𝑥
= −𝑧

𝜕2𝑤

𝜕𝑥2
+ 𝐹(𝑧)

𝜕𝜃𝑠𝑥
𝜕𝑥

                    (9) 
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𝑦  =  
𝜕𝑣

𝜕𝑦
= −𝑧

𝜕2𝑤

𝜕𝑦2
+ 𝐹(𝑧)

𝜕𝜃𝑠𝑦

𝜕𝑦
                                                                          (10) 


𝑥𝑦

 =  
𝑑𝑢

𝑑𝑦
+
𝑑𝑣

𝑑𝑥
.  𝑇𝑎𝑡 𝑖𝑠: 


𝑥𝑦

= −2
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝐹 𝑧 

𝜕𝜃𝑠𝑥
𝜕𝑦

+ 𝐹 𝑧 
𝜕𝜃𝑠𝑦

𝜕𝑥
                                                            (11)     


𝑥𝑧

 =  
𝑑𝑢

𝑑𝑧
+
𝑑𝑤

𝑑𝑥
.  𝑇𝑎𝑡 𝑖𝑠: 


𝑥𝑧

=
𝜕𝐹 𝑧 

𝜕𝑧
.𝜃𝑠𝑥                                                                                                            (12) 


𝑦𝑧

=
𝜕𝐹 𝑧 

𝜕𝑧
.𝜃𝑠𝑦                                                                                                            (13) 

The corresponding five stress components are: 

𝑥  =  
𝐸

1 − 2
 𝑥 +  𝑦                                                                                           (14) 

𝑦  =  
𝐸

1 − 2
 

𝑥
+  𝑦                                                                                            (15) 

𝑥𝑦  =  
𝐸(1 − )

1 − 2

𝑥𝑦

                                                                                                   (16) 

𝑥𝑧  =  
𝐸(1 − )

1 − 2

𝑥𝑧

                                                                                                    (17) 

𝑦𝑧  =  
𝐸(1 − )

1 − 2

𝑦𝑧

                                                                                                    (18) 

Substituting equations (14) to (18) into equation (8) gave: 

Π =      
𝐸

2 1 − 𝜇2 
 𝜀𝑥𝑥

2 + 2𝜇𝜀𝑥𝑥 . 𝜀𝑦𝑦 + 𝜀𝑦𝑦
2 +  1 − 𝜇  

𝛾𝑥𝑦
2

2
+
𝛾𝑥𝑧

2

2
+
𝛾𝑦𝑧

2

2
  𝑑𝑧

𝑡

2

−
𝑡

2

− 𝑞𝑤 
𝑦𝑥

𝑑𝑥𝑑𝑦   (19)  

Substituting equations (9) to (13) into equation (19) gave: 

Π =
𝐷

2
 {   

𝑑2𝑤

𝑑𝑥2
 

2

+ 2 
𝑑2𝑤

𝑑𝑥𝑑𝑦
 

2

+  
𝑑2𝑤

𝑑𝑦2
 

2

  − 2𝑔2  
𝑑2𝑤

𝑑𝑥2

dθsx

dx
+
𝑑2𝑤

𝑑𝑥2
.
dθsy

dy
+
𝑑2𝑤

𝑑𝑦2
.
dθsx

dx
+
𝑑2𝑤

𝑑𝑦2

dθsy

dy
  

+𝑔3   
dθsx

dx
 

2

+  1 + 𝜇 
dθsx

dx

dθsy

dy
+  

dθsy

dy
 

2

+
 1 − 𝜇 

2
  

dθsx

dy
 

2

+  
dθsy

dx
 

2

   +
 1 − 𝜇 

2
𝑔4 θsx

2 + θsy
2 

−
2𝑞𝑤

𝐷
} 𝑑𝑥 𝑑𝑦                                                  (20) 

 

Where: 

D =
Et3

12 1 − 2 
;  g2  =

12

t3
 𝑧F z  dz

t

2

−
t

2

= 1.2 

g3 =
12

t3
  F z  2 dz

t

2

−
t

2

=
51

35
; g4 =∝2 g5 

g5 =
12

t3
  

dF(z)

dz
 

2

dz = 14.4

t

2

−
t

2

 

Writing eequation (20) in terms of the non-dimensional coordinates gave: 

Π =
𝑎𝑏𝐷

2
  {

1

𝑎4

1

0

1

0

  
𝑑2𝑤

𝑑𝑅2
 

2

+
2

𝛽2
 
𝑑2𝑤

𝑑𝑅𝑑𝑄
 

2

+  
𝑑2𝑤

𝑑𝑄2
 

2

   

−
2𝑔2

𝑎3
 
𝑑2𝑤

𝑑𝑅2

dθsx

dR
+

1

𝛽

𝑑2𝑤

𝑑𝑅2
.
dθsy

dQ
+

1

𝛽2

𝑑2𝑤

𝑑𝑄2
.
dθsx

dR
+

1

𝛽3

𝑑2𝑤

𝑑𝑄2

dθsy

dQ
  

+
𝑔3

𝑎2
  

dθsx

dR
 

2

+
 1 + 𝜇 

𝛽

dθsx

dR

dθsy

dQ
+

1

𝛽2
 

dθsy

dQ
 

2

+
 1 − 𝜇 

2𝛽2
  

dθsx

dQ
 

2

+  
dθsy

dR
 

2

   

+
 1 − 𝜇 

2
𝑔4 θsx

2 + θsy
2 −

2𝑞𝑤

𝐷
} 𝑑𝑅 𝑑𝑄                                                                    (21) 
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Minimizing equation (20) with respect to deflection and the shear deformation rotations (w, sx and sy) gave the 

governing eqation and two compatibility equations respectively as: 

𝑞

𝐷
=  

𝑑4𝑤

𝑑𝑥4
+ 2

𝑑4𝑤

𝑑𝑥2𝑑𝑦2
+
𝑑4𝑤

𝑑𝑦4
  − 𝑔2  

d3θsx

dx3
+

d3θsx

dxdy2
+

d3θsy

𝑑𝑥2dy
+

d3θsy

dy3
                                       (23𝑎) 

 

𝐷[g2  
𝑑3𝑤

𝑑𝑥3
+

𝑑3𝑤

𝑑𝑥𝑑𝑦2
 − g3  

d2θsx

dx2
+

1 − 𝜇

2

d2θsx

dy2
  − g3

 1 + 𝜇 

2

d2θsy

dxdy
 −

1 − 𝜇

2
g4θsx ] = 0        (23𝑏) 

𝐷[g2  
𝑑3𝑤

𝑑𝑦3
+

𝑑3𝑤

𝑑𝑥2𝑑𝑦
 − g3  

d2θsy

dy2
+

1 − 𝜇

2

d2θsy

dx2
  − g3

 1 + 𝜇 

2

d2θsx

dxdy
 −

1 − 𝜇

2
g4θsy ] = 0         (23c) 

 

III. SOLUTIONS OF GOVERNING EQUATIONS 
Solving equations (23b) and (23c) simultabeously  gave: 

θsx =
g2

g3

𝑑𝑤

𝑑𝑥
=

2g2

g3 1 − 𝜇 

𝑑𝑤

𝑑𝑥
= 𝑐

𝑑𝑤

𝑑𝑥
                                                                          (24) 

θsy =
g2

g3

𝑑𝑤

𝑑𝑦
=

2g2

g3 1 − 𝜇 

𝑑𝑤

𝑑𝑦
= 𝑐

𝑑𝑤

𝑑𝑦
                                                                          (25) 

d2

dxdy
= −

 1 − 𝜇 g4

 1 + 𝜇 g3

                                                                                                           (26) 

Where, c is a yet to be determined constant. 

Substituting equations (24), (25) and (26) into equation 23a and rearranging gave: 

𝑑4𝑤

𝑑𝑥4
+ 2

𝑑4𝑤

𝑑𝑥2𝑑𝑦2
+
𝑑4𝑤

𝑑𝑦4
=

𝑃𝑃

𝐷 1 − 𝑔2𝑐 
                                                                        (27) 

The ready solution to equation (27) after integration in terms of non dimensional coordinates is: 

w = h A1 =  hx  ax .  hy  ay                                                                                            (28) 

where: 

 ax 
T =  a0a1a2a3a4  ;  

 ay 
T

=  b0b1b2b3b4  

 hx =  1  R  R2R3R4 ;   hy =  1  Q  Q2Q3Q4  

Substituting equation (28) into equations (24) and (25) gave (in terms non dimensional coordinates): 

θsx = 𝑐
𝑑𝑤

𝑑𝑥
=

A2

a
 
𝑑

𝑑𝑅
                                                                                                     (29) 

θsy = 𝑐
𝑑𝑤

𝑑𝑦
 =

A3

b
 
𝑑

𝑑𝑄
                                                                                                   (30) 

The boundary conditions for cccc plate are: 

𝐴𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑝𝑙𝑎𝑡𝑒;  𝑥 = 0 , 𝑎:   𝑤 =
𝑑𝑤

𝑑𝑥
= 0 

𝐴𝑡 𝑒𝑑𝑔𝑒 𝑜𝑓 𝑝𝑙𝑎𝑡𝑒;  𝑦 = 0 , 𝑏:   𝑤 =
𝑑𝑤

𝑑𝑦
= 0 

Satisfying these boubdary conditions gave: 

𝑤 = 𝐴1 𝑅
2 − 2𝑅3 + 𝑅4 .  𝑄2 − 2𝑄3 + 𝑄4  

 

IV. DETERMINATION OF  DISPLACEMENT COEFFICIENTS 
Substituting equations (28), (29) and (30) into equation (21) and minimizing the outcome with respect to A1, A2 

and A3 respectively gave: 

𝑞𝑎4

𝐷
. 𝑘𝑞𝐴1 =  𝐴1

2 − 𝑔2𝐴1𝐴2 𝑘𝑥  +  2𝐴1
2 − 𝑔2𝐴1𝐴2 − 𝑔2𝐴1𝐴3 

1

𝛽2
𝑘𝑥𝑦  +  𝐴1

2 − 𝑔2𝐴1𝐴3 
1

𝛽4
𝑘𝑦        (31) 

 g3𝑘𝑥 + g3

1 − 𝜇

2𝛽2
𝑘𝑥𝑦 +

1 − 𝜇

2
g5  

a

t
 

2

𝑘𝑁𝑥  𝐴2  + g3

1 + 𝜇

2𝛽2
𝑘𝑥𝑦𝐴3 =  𝑘𝑥 +

𝑘𝑥𝑦

𝛽2
 g2𝐴1                                 (32) 

 
𝑔3

𝛽4
𝑘𝑦 + 𝑔3

1 − 𝜇

2𝛽2
𝑘𝑥𝑦 +

1 − 𝜇

2𝛽2
g5  

a

t
 

2

𝑘𝑁𝑦  𝐴3  + 𝑔3

1 + 𝜇

2𝛽2
𝑘𝑥𝑦𝐴2 =  

𝑘𝑦

𝛽4
+
𝑘𝑥𝑦

𝛽2
 𝑔2𝐴1                              (33) 

Where: 

𝑘𝑥 =    
𝑑2

𝑑𝑅2
 

21

0

1

0

𝑑𝑅 𝑑𝑄   
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𝑘𝑥𝑦 =    
𝑑2

𝑑𝑅 𝑑𝑄
 

21

0

1

0

𝑑𝑅 𝑑𝑄  

𝑘𝑦 =    
𝑑2

𝑑𝑄2
 

21

0

1

0

𝑑𝑅 𝑑𝑄  

𝑘𝑁𝑥 =    
𝑑

𝑑𝑅
 

21

0

1

0

𝑑𝑅 𝑑𝑄  

𝑘𝑁𝑦 =    
dh

dQ
 

21

0

1

0

𝑑𝑅 𝑑𝑄   

𝑘𝑞 =   h
1

0

1

0

𝑑𝑅 𝑑𝑄  

Solving equations (32) and (33) simultaneously gave: 

𝐴2 = 𝑇2𝐴1                                                                                                                                 (34) 

𝐴3 = 𝑇3𝐴1                                                                                                                                 (35) 
Where: 

𝑇2 =
 c12c23 − c13c22 

 c12c12 − c11c22 
                                                                                                          (36) 

𝑇3 =
 c12c13 − c11c23 

 c12c12 − c11c22 
                                                                                                           (37) 

c11 = g3𝑘𝑥 + g3

1 − 𝜇

2𝛽2
𝑘𝑥𝑦 +

1 − 𝜇

2
g5  

a

t
 

2

𝑘𝑁𝑥  

c12 = g3

1 + 𝜇

2𝛽2
𝑘𝑥𝑦 ;   c13 =  𝑘𝑥 +

𝑘𝑥𝑦

𝛽2
 g2 

c22 =
𝑔3

𝛽4
𝑘𝑦 + 𝑔3

1 − 𝜇

2𝛽2
𝑘𝑥𝑦 +

1 − 𝜇

2𝛽2
g5  

a

t
 

2

𝑘𝑁𝑦  

c23 =  
𝑘𝑦

𝛽4
+
𝑘𝑥𝑦

𝛽2
 𝑔2 

Substituting equations (36) and (37) into equation (31) and reaaranging the out-come gave: 
𝐴1𝐷

𝑞𝑎4
=

𝑘𝑞

𝑘𝑇

                                                                                                                             (38) 

Where: 

𝑘𝑇 =  1 − 𝑔2𝑇2 𝑘𝑥 +  2 − 𝑔2𝑇2 − 𝑔2𝑇3 
1

𝛽2
𝑘𝑥𝑦  +  1 − 𝑔2𝑇3 

1

𝛽4
𝑘𝑦  

 

V. DEFINITION OF PARAMETERS 
The following definitions for parameters were made: 

𝑤 = 𝑤  
𝑞𝑎4

𝐷
 = 𝐴1  

𝑞𝑎4

𝐷
  

𝑢 = 𝑢  
𝑞𝑎4

𝐷
 =

1

∝
 −𝐴1𝑆 +  𝐴2𝐹(𝑆) 

𝑑

𝑑𝑅
. 
𝑞𝑎4

𝐷
  

𝑣 = 𝑣  
𝑞𝑎4

𝐷
 =

1

𝑃 ∝
 −𝐴1𝑆 + 𝐴3𝐹(𝑆) 

𝑑

𝑑𝑄
 
𝑞𝑎4

𝐷
  

𝜎𝑥 = 𝜎𝑥    . 𝑞 = 12𝑞 ∝2   −𝐴1𝑆 + 𝐴2𝐹 𝑆  
𝑑2

𝑑𝑅2
+



𝑃2
 −𝐴1𝑆 + 𝐴3𝐹(𝑆) 

𝑑2

𝑑𝑄2
  

𝜎𝑦 = 𝜎𝑦    . 𝑞 = 12𝑞 ∝2   −𝐴1𝑆 + 𝐴2𝐹 𝑆  
𝑑2

𝑑𝑅2
+

1 

𝑃2
 −𝐴1𝑆 + 𝐴3𝐹(𝑆) 

𝑑2

𝑑𝑄2
  

𝜏𝑥𝑦 = 𝜏𝑥𝑦     . 𝑞 =
6𝑞 ∝2

𝑃
  −2𝐴1𝑆 + 𝐴2𝐹 𝑆 + 𝐵3𝐹(𝑆) 

𝑑2

𝑑𝑅𝑑𝑄
 (1 − ) 

𝜏𝑥𝑧 = 𝜏𝑥𝑧    . 𝑞 = 6𝑞 ∝3  𝐴2

𝑑𝐹 𝑆 

𝑑𝑆

𝑑

𝑑𝑅
 (1 − ) 

𝜏𝑦𝑧 = 𝜏𝑦𝑧    . 𝑞 = 6𝑞 ∝3  
𝐴3

𝑃

𝑑𝐹 𝑆 

𝑑𝑆

𝑑

𝑑𝑄
 (1 − ) 

 

VI. NUMERICAL PROBLEM 
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Determine the in-plane displacements (u and v) at (R = 0.5; Q = 0.5; S = 0.2) of cccc thick plate. Determine also 

the in-plane normal stresses x and y at (R = 0.5; Q = 0.5; S = 0.5), in-plane shear stress (xy) at (R = 0; Q = 0; 

S = 0.5) and the vertical shear stress (xz) at (R = 0.2; Q = 0.5; S = 0.2) of the cccc thick plate. Polynomial 

displacement function for cccc plate used in this analysis is: 

 =  𝑅2 − 2𝑅3 + 𝑅4 .  𝑄2 − 2𝑄3 + 𝑄4 .  
The stiffness coefficients (k values) from this displacement function are:  

𝑘1 = 0.00127; 𝑘2 = 0.000363; 𝑘3 = 0.00127 

𝑘4 = 0.0000302; 𝑘4 = 0.0000302 

Frq = 0.00111 

 

VII. RESULTS AND DISCUSSIONS 
The value of vertical shear stress from classical plate theory (CPT) analysis is zero. Any plate whose 

span-to-depth ratio is such that the value of vertical shear stress from thick plate analysis is approximately zero 

can be idealized as thin plate. Analyzing such plate with classical plate theory will not introduce significant 

errors. From Table 1, it is apparent that for span-to-depth ratio between 60 and 100, the value of vertical shear 

stress is significant when corrected to 6 decimal places. Hence, for such span-to-depth ratio, the plate is 

classified as thin plate. For span-to-depth ratio between 20 and 50, the value of vertical shear stress is significant 

when corrected to 5 decimal places. Thus, these plates can be classified as moderately thick plate. Hence, 

analyzing them with classical plate theory will introduce significant errors. When the span-to-depth ratio is less 

than 20, the value of vertical shear stress is significant when corrected to 4 decimal places. This range of span-

to-depth ratio produces plate classified as thick plate. 

To determine the correctness of the results from the present studies, comparison was made between 

values from the present study and those from past scholars. These comparisons were presented on Table 2, 

Table 3 and Table 4. Table 2 shows the values of centroidal deflection (which was multiplied by 100) for square 

cccc plate at various span-to-depth ratios from the present study and those from past scholars. The percentage 

differences between the values from the present study and those of past scholars were presented on Table3 and 

Table 4. A critical look at Table 3 reveals that maximum recorded percentage difference is 4.07 % (Li et al., 

2014; Sheng and He,1995;  Liu and Liew, 1998;  Lok and Cheng, 2001;  Zhong and Xu, 2017). This implies 

that at 96 % confidence level, the values from the present study are the same with those of previous studies. 

Furthermore, it is evident from Table 4 that the maximum percentage difference between the values from the 

present study and those from  Xiao et al. (2007) is 5.28 %. Again, at 94 % confidence level, the values from the 

present study are the same with those from Xiao et al. (2007).  

The recorded differences between value from the present study and earlier works may be attributed to difference 

in deflection functions used. While some of the earlier scholars used trigonometric deflection function in 

variational methods, Naviers approach, Levy’s approach and Timoshenko approach, others used polynomial 

deflection numerical methods like finite element method. In this present work, polynomial deflection function 

used in a variational method. 
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Table 1: Displacements and stresses of square cccc thick plate of various span-to-depth ratio (a/t) 

a/t 𝑤  𝑢  𝑣  𝜎𝑥    𝜎𝑦    𝜏𝑥𝑦     𝜏𝑥𝑧     

2 0.006231 -0.003297 -0.003297 0.02232 0.02232 -0.01013 0.009412 

2.5 0.004517 -0.002858 -0.002858 0.019349 0.019349 -0.00878 0.00612 

3 0.003562 -0.002613 -0.002613 0.017694 0.017694 -0.00803 0.004288 

3.333333 0.003145 -0.002506 -0.002506 0.016971 0.016971 -0.00770 0.003486 

4 0.002596 -0.002366 -0.002366 0.01602 0.01602 -0.00727 0.002433 

5 0.002144 -0.00225 -0.00225 0.015235 0.015235 -0.00691 0.001564 

6 0.001896 -0.002187 -0.002187 0.014806 0.014806 -0.00672 0.001088 

7 0.001746 -0.002148 -0.002148 0.014547 0.014547 -0.00660 0.000801 

8 0.001649 -0.002123 -0.002123 0.014378 0.014378 -0.00652 0.000613 

9 0.001582 -0.002106 -0.002106 0.014262 0.014262 -0.00647 0.000485 

10 0.001534 -0.002094 -0.002094 0.014179 0.014179 -0.00643 0.000393 

11 0.001498 -0.002085 -0.002085 0.014117 0.014117 -0.00641 0.000325 

12 0.001471 -0.002078 -0.002078 0.01407 0.01407 -0.00638 0.000273 

13 0.00145 -0.002073 -0.002073 0.014034 0.014034 -0.00637 0.000233 

14 0.001434 -0.002068 -0.002068 0.014005 0.014005 -0.00635 0.000201 

15 0.00142 -0.002065 -0.002065 0.013982 0.013982 -0.00634 0.000175 

16 0.001409 -0.002062 -0.002062 0.013963 0.013963 -0.00633 0.000154 

17 0.0014 -0.00206 -0.00206 0.013947 0.013947 -0.00633 0.000136 

18 0.001392 -0.002058 -0.002058 0.013933 0.013933 -0.00632 0.000121 

19 0.001386 -0.002056 -0.002056 0.013922 0.013922 -0.00632 0.000109 

20 0.00138 -0.002055 -0.002055 0.013913 0.013913 -0.00631 0.000098 

30 0.001352 -0.002047 -0.002047 0.013863 0.013863 -0.00629 0.000044 

40 0.001342 -0.002045 -0.002045 0.013846 0.013846 -0.00628 0.000025 

50 0.001337 -0.002044 -0.002044 0.013838 0.013838 -0.00628 0.000016 

60 0.001335 -0.002043 -0.002043 0.013834 0.013834 -0.00628 0.000011 

70 0.001333 -0.002043 -0.002043 0.013831 0.013831 -0.00628 0.000008 

80 0.001332 -0.002042 -0.002042 0.013829 0.013829 -0.00627 0.000006 

90 0.001332 -0.002042 -0.002042 0.013828 0.013828 -0.00627 0.000005 

100 0.001331 -0.002042 -0.002042 0.013827 0.013827 -0.00627 0.000004 

𝐿𝑒𝑔𝑒𝑛𝑑: 𝑤 =   𝑤  𝑅 = 0.5,𝑄 = 0.5, 𝑆 = 0.5 ;   𝑢 =   𝑢  𝑅 = 0.2,𝑄 = 0.5, 𝑆 = 0.5  
𝑣 = 𝑣  𝑅 = 0.5,𝑄 = 0.2, 𝑆 = 0.5 ;  𝜎𝑥   = 𝜎𝑥    𝑅 = 0.5,𝑄 = 0.5, 𝑆 = 0.5  
𝜎𝑦   =  𝜎𝑦    𝑅 = 0.5,𝑄 = 0.5, 𝑆 = 0.5 ;  𝜏𝑥𝑦    = 𝜏𝑥𝑦     𝑅 = 0.2,𝑄 = 0.2, 𝑆 = 0.5  

𝜏𝑥𝑧    =  𝜏𝑥𝑧     𝑅 = 0,𝑄 = 0.5, 𝑆 = 0 ;  ∗ 𝜏𝑥𝑧    = 𝜏𝑥𝑧     𝑃𝑟𝑒𝑠𝑒𝑛𝑡 − 𝜏𝑥𝑧     𝑎𝑡  𝑎 𝑡 = 100  
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Table 2: Centroidal deflection of square cccc thick plate multiplied by hundred 

100 𝑤  𝑅 = 0.5,𝑄 = 0.5, 𝑆 = 0  
Span-to-

depth ratio 

(a/t) Present 

Li et al. 

(2014) 

Sheng and He 

(1995) 

Liu and Liew 

(1998) 

Lok and 

Cheng 

(2001) 

Zhong and 

Xu (2017) 

3 0.3562 * * * * 0.3611 

5 0.2144 0.2172 0.2204 0.2172 0.2147 0.2114 

10 0.1534 0.1505 0.1513 0.1505 0.1495 0.1483 

20 0.1381 0.1327 0.1329 0.1327 * * 

 

 

Table 3: Percentage difference between the values of centroidal  deflection from present and past studies 

%𝐷𝑖𝑓𝑓 =
/𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑎𝑠𝑡 𝑣𝑎𝑙𝑢𝑒/

𝑝𝑎𝑠𝑡 𝑣𝑎𝑙𝑢𝑒
× 100 

a/t 

Li et al. 

(2014) 

Sheng and He 

(1995) 

Liu and Liew 

(1998) 

Lok and 

Cheng (2001) 

Zhong and 

Xu (2017) 

3 * * * * 1.36 

5 1.29 2.72 1.29 0.14 1.42 

10 1.93 1.39 1.93 2.61 3.44 

20 4.07 3.91 4.07 * * 

 

Table 4: Percentage difference between the values of centroidal  deflection from present and work of Xiao et al. 

(2007) 

100 𝑤  𝑅 = 0.5,𝑄 = 0.5, 𝑆 = 0  

a/t Present 

Xiao et al. 

(2007) 

% Diff 

2 0.6231 0.6079 2.50 

2.5 0.4517 0.4434 1.87 

3.3333 0.3145 0.3092 1.71 

5 0.2144 0.2089 2.63 

10 0.1534 0.1457 5.28 
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