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. INTRODUCTION
For any integerm > —p, let 7, ,, denote the class of all meromorphic functions f(z) of the form

f@)=z"+3¥naz (p €N) 1)
which are analytic and p-valent in the punctured unit disk D* = {z: z € Cand 0 < |z| < 1} = D/{0}.
Now we define the general integral operatory, (a, 5)f (z) which is as follows

B @pr@ =520 [y @ pro

1 1 1 *
= )(; (a,B) (Zp(l_z)) * )(; (a,B) (zp(l—z)) * L. *)(;(a, B) (zP(1—z)) € f(z),z € D*and p € N(2)For the sake of
convenience, in particular cases
(i) 1fn =0 then the above integral operator x; (a, B)f (z) converts intoxg(a,ﬁ)f(z) = f(2).

@i) If n=1 then the above integral operator Xy (@, B)f (2) converts
BY z (Byp—
intox} (@ B)f () = (£) 2777 f7 el =) poya.
i) If n=2 then the above integral operator Xy (@, B)f (2) converts

intox2(a, )F () = (£) 277~ [ e Vyd @ p) 01

Hence, if f(z) € 7,,,, , we obtained the foIIowing results

B@Rf@ =5+ T [ @

Therefore from (3), it is easy to see that

az (3 (e, ﬁ)f(Z)) =B (@ Bf @) — (@ + P @hf(@  (@>0) (@

We observe that (i) x; (1,1)f (z) = Py f(2) (see, [4]), (ix{ (1, )f (z) = P! f(2)
We also see that

() 23 (LB (@) = xpf(2) where x2 f(2) =+ 57 m[wﬂ,)
(i) 25 (@, Df(2) = xpof (R)where it f(2) = —+zr N Feveroem
(i) 23 (LDf(2) = a3 f@where 33 f (@) = =+ Ny [—

©)

] 4
1+a(r+p)

|
o

1+(r+p)

1. DEFINITIONS
Let T;J;nl(n,és u, 1) be the class of functions f(z) € T, ,, which is satisfies the condition

2 1(a,B)f (2) @@ (x @@\ !
10 (Gmenis) 1 enns (menns)
iRe{( ’1)( Fapeo) T A ehio T ano > ®)
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n+1 @, 2
e RCLLICONNC
Here 1 and n belongs to real numbers such that 0 < n < 1,u > 0and 1 € ¢ with Re(1) > 0.
Currently many scholars and researchers studied similar classes for various types of different operators
including Aouf and Mostafa [2], Al-Ashwah [6], [7] et al.

whereg(z) € T, fulfill the following conditionSRe{

1. PRELIMINARY LEMMAS
The following lemmas will be required in our present investigation

Lemma.i. Let Q be a set in the complex plane ¢ and let the function W:c? — ¢ satisfy the condition
Y(ir,,s1) € Qforallreal 1,51 < —1+2—”2. If g(2) is analytic in withq(0) = 1 and

¥(q(2),2zq'(2)) € Qz€D,thenR{q(z)} >0 (z € D).

Lemma ii. Let gq(2) is analytic function in disk D with g(0) = 1 and if a« € c/{0} with R{a} = 0, then
Re{q(2) + azq'(2)} =1, 1€[01) = Re{q(2)} > 1+ (1 +2)(2y — D)whereyis given by y=
vy {Re(a)} = f01{1 + tme{“}}_ldt which isa function of Re{a } and % <y < 1.The estimate sharp in the sense

that bound cannot be improved.
For the complex or a real number a,b and ¢ (c# 0and not negative integer) the Gauss hyper geometric function
is defined by
2Fi(a,b;c;z) =1+ L7 42O 2 4
c c(c+1)2!
The above series converges absolutely for z € D and2”(a, b; c; z) is an analytic function in the unit disk D.
Each of the identities is well known cf.; e.g., [7].
Lemma iii. For a real or complex parameters a, b and ¢ (¢ # 0)

[t (1= 01 - ) de = %2“ (a,b; c; 2), R(c) > R(b) > 0 )
(1—tz) 22" (a,c —b; c;zzj) = 2fi(a, b; c; 2) 8
_ 9F, 9.1
2In2 = 2R (1,1, 2,2)
9

V. MAIN RESULTS
If it is not mentioned in other sense, let us assume that (a,8) > 0,p € N,n € Njand —1 < B <A< 1.

n+1 u
Theorem i. let  f(z) €T,m(momh) thenRe (M> > (L) §(2) € T (n,8,1,1)

x5 a,p)g(2) 2upB +aps

(10)

at _ 2H0B tapd . . .
Proof:let = 2nf rape and we define the function g(z) given by

_ 1 x;}“(a,ﬁ)f(z)) _ }
9(z) = (1—y){(x{,‘“(a,ﬁ)g(z) 14 (11)
Then g(2) is analytic in D and q(0) = 1.

i i - _ x"“(a.ﬁ)g(Z))

If we consider the function h(z) defined by h(z) = ( T af 9@ (12)

then by the our assumption (8), Re{h(z)} > 6.

Differentiating (12) with respect to z and by the (6), we obtain% = (;({,’“(a, B)g(2) * xy(a, ) f (z) —
rontlaffzxypnafgzypntlaffzypna gz (13)

now using (13), we have

al(1 —v)zq(2) h(2)

{A-v)q@ +v}+

1P
_ A(){E(a.ﬂ)f(Z) _x;l“(a,ﬁ)f(Z)) 4 <x;}“(a,ﬂ)f(2)>”
(@ pg@  xptt(a,p)g(z) X e, Bg(2)
A(1 — 'h
= (- + 7+ 2 ny(z) 2
B B @p @\ A @BF @D (22 @pF @\
=1-4 (x{}“(a.ﬂ)g(Z)) +ar (x;; (a.ﬁ)g(z)) (x;}“(a,ﬁ)g(z)) (14)
Again, we consider the function®(r,s) = {r —(r-Dy+ %}:}')Sh(z)} (15)

From (15) and the fact that f(z) € T, ,, (0, 3, 1, 1), we have{'¥ q(2)zq'(2); zED} c Q
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2
= {w € c: Re(w) > n}. Now for real 1, s; < —H% , We have
Re{¥(iry, s1)}
B ty= 2B <-2 (21!:;)5 = n.Therefore vz € D,{¥(ry,51)} € Q.
Thus from the lemma [1], we have Req(z) > 0 (z € D) and hence
n+1 a, H
R {x ( B)f(Z)} >y (z€D)

e n+1
X a, By (z)
Theoremiii. Let the function f(z)and g(z) be in the class 7, ,, and let the function g(z) satisfy the

L 13 ap)f @) X{,’(a,ﬁ)f(Z)}
> —
condition (7).1f « = 1 and Re {(1 A) T e a}({,’ P > nWhere € [0,1)and (z € D) .

__ Reh(z)(1—y)oksq _ §(1+r3)ar(1-y)

. <X§(a,ﬁ)f(2)> >y = 2B +ad) +al(A—-1)
x5 (@, p)g(z) 2B + apa
. xp (a,ﬁ)f(z)} — (1 {xﬁ“(a,ﬁ)f(z)} _ {x{;‘”(d.ﬁ)f@)} {x;(a.ﬁ)f(z)}
Proof: 1T we setd {x;} who@ = A" DT apeol T D T eno) T A e
. .. X (a.ﬁ)f(z)} S (] — 208 +aAé
By the theorem i and ii we have, A{xig(a.ﬁ)g(ﬂ >A1-1) (2ﬁ+aﬁ5 ) +7
M(a, z ab(A—1)+n(A6+2
A{Xi( ﬁ)f()}z{ ( ) +n( ﬁ)},uzlandaZL(zE]D))
x5 (a,B)g(z) 2B + ada

Corollary i :Let € C/{0} with Re(1) = Osatisfies the following condition If f(z) € T, ,,
Re [{(1 - D@1 (@A@Y +1@ a5 @ F @)@ ap @ BF @Y | > 1

Then Re {(ZngH(a,ﬁ)f(z))}# > (%)Further ifA>1and f(z) € T,,, ,satisfies

Re[(1 - 1)2° 3 (0. B)f @) + M2 x5 (@, F)f @)] > 1.
Then Re{zP x7 (a, B)f (2)} > (W)

2B +ar
Proof: If we taking g(z) = Zip in theorem i and ii with Re(8) = 1, then the result is obvious.
Theorem iii. Let A € C withRe(A) = 0. If f(2) € T, ,, satisfies the following condition:

Re (1 - D{@ (@ BF @) + Mz 2 (@ B f )@ @ BF D) | > 7
ThenRe[{(z" 3 " (@, F D] >+ A= @p - 1), p = 3FF (L1 2= 1 1,

Proof: let q(z) = ({(zp)(g“(a,ﬁ)f(z)}u) (16)
Then q(z) is analytic with the condition q(0) = 1.Differentiating (16) with respect to z and using the identity

(6). we getq (2) = = 27 {3 (. I @) 2" (3 (@ BIF ()} = (3 (@ DIf (2))
Now, by the definition of q(z) ,we haveq(z) + zq'(2) Z—;
= {232 (@, B f D))" + a{@P 2 (@ B f @Y {2 x2 (@ B)f @)} — {20 2 (@, B)f ()} Solving above

mention equation, we getq(z) + zq'(z) %

= (1 - VP (@, B)f(2))" + AzPx2 (@, B)f @) H{ (P X (e, B f D))"

Therefore , by the assumption of theorem iii, we haveRe {q(z) +2q'(2) Z—;} >

-1
By the lemma ii, %Re{q(2)}>n+ (1—-n)(2p—1)Where p=p(Re{l}= f01 (1 L y;_g)) e
1 LMy
aagfu) Sy + )7t pee® dy
-1
Taking Re(1) = A; andA; > 0. Therefore p = p(Re{A} = f01 (1 e 24) "

Again using lemma iii, we have p = %F}(l,l;% + 1;%
Corollary ii: let A € Real number withA > 1. If f(z) € T, ,, satisfies ERe[(l - k){(zp)({,’“ (a,[)’)f(z)} +
Mzp ypnaffz>7Then
Re[{zP 1} (@ B)F @Y] > 1+ (A= m)(2p1 = 1) (1 - 7 Jwherepy = S FE(LL 5 +1;3) .
Proof : let us consider ARe{zP x} (a, B)f (2)}
= Re[(1 = D[Py (@, BIF (D)} + MzZP 1 (@, B)f (2) + (A = D{(zP x5 (@, B)f (2)}]
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By the theorem iii and above corollary Re[zPxp(a,B)f(2)] =n+ (1 —-m(2p; — 1) (1 - é)where pL =
SFRALE+13).
Theorem iv. Let f(z)and g(z) belongs to the class T, ,, and g(z) satisfies the condition
-1

_ X{,‘“(a,ﬁ’)f(Z))” 13 (@ p)f (2) (x;}“(a.ﬁ)f(z))“
e {(1 A (X{,‘“(aﬁ)g(Z) +’1xg(a,ﬁ)g(z) xptHap)g(2) >
. x5 @B @) x';“(a,ﬁ)f(z)} > _sm
i {X{,‘(aﬁ)g(Z) T @he@) = 0 2

x;}“(a,ﬁ)f(z)}
m < tp WS
For some n(0 < n < 1 then Re {Xgﬂ(aﬁ)g(z) > (18)

x{}(a./i)f(Z)} 7(2B+8)—6
a”dme{xg(a.m(z) Y (19)

1 (23 @B @)
Proof: let = {( L -
oof: let () = 75 1 i @ms

13t apg(z)
xp (@.p)g(2)

1 @PE@ (5 @) = @pIE)(g+ @he@)
2
(a1 @pee)

(17

n)} then q(z) is analytic function inD with g(0) = 1. Now , if we

setting ¢ (z) = , then form (7), we have Re{p(z)} > § and § € D.A easy calculation show that

(1-mq@ =
1 " @Pg @y (0P —xp T (@B (@)r (0p)g(2)
2
(xﬁ“(u.ﬁ)g(z))

az(1-1)q'(z) _ Xg (0,p)f(2) _ xg"'l(a,ﬁ)f(z) _ ,
5 YO = nemee  aTepem - #(a().24 @), where

Solving above and using the relation (4), we haveaz(1 —n)q'(z) =

Now by the definition of ¢(z), we get

W(r,s) = (1—n;sso(z)_

So by the our assumption

{W(q(2),2zq'(2);zeD)}c Q= {a) € C:Re(w) > _%

Re{¥(ir,, s;)} = rn(1- n)ﬁﬂ?e{q)(z)} < (1 ;Bn)d

This is shows that ¥ (ir,,s;) ¢ Q for each z € D. Hence by the lemma [1] we get Re{q(2)} > 0 (z € D). This

. 7 (@B)f (2) @@ xptl@pf@
is the proof of (18). Now for the proof of (19), {L}z {” —2£ }

P (18) P (19). Relramem @@ 2 @ @)
R {x;}“(a,ﬁ)f(z)} S _a-me

1t apg(2) 28
> nR2B+6)—68
T

+1

which is the complete proof of (19).
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