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ABSTRACT:In the North-East India, China, mid Atlantic- ridge, Pacific seismic belt and Japan, most of the 

earthquake faults are dip slip in nature. In this work a long, surface breaking, dip-slip fault is assumed situated 

in a half space of linear viscoelastic medium of Burger’s Rheology. Tectonic forces due to mantle convection 

and other associated phenomena are acting on the system. The nature of the fault movement is assumed to be 

slipping. The displacement, stresses and strains are obtained analytically at any field point in an isotropic, 

homogeneous, viscoelastic half-space using integral transformation, modified Green’s function technique and 

correspondence principle. A close inspection of these expressions may give some clue about the nature of 

stressaccumulation in the lithosphere-asthenosphere system. 
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I. INTRODUCTION 
Rocky Mountains of Himalayas, Atlantic fault of central Greece-steeply dipping faults with dip 60 

degree, 80 degree where the surface level changes during the motion i.e. the faults are dip-slip in nature. 

Therefore, it is necessary to understand the mechanism of plate motion in the dip direction with a displacement 

dislocation and the nature of stress-strain accumulation/release in spatial and temporal co-ordinate to predict the 

future event in space and time. The work involving static ground deformation in elastic media was initiated 

by(Steketee,1958a),(Steketee,1958b), (Chinnery,1961),(Maruyama,1964),(Maruyama,1964). 

 (Savage et al.,1966) did wonderful work in analyzing the displacement, stress and strain for dip-slip 

movement of the fault. Some theoretical models in this field have been studied by a numberof authors like 

(Freund et al., 1976), (Ghosh et al., 1992),(Rybicki,1986),(Rybicki,1971),(Sing et al., 1996),(Tomar et al., 2003). 

(Segall,2010) developed various aspects of fault movements in his book.  

(Mukhopadhyay,1979),(Mukhopadhyayetal., 1980)have discussed stress accumulation near infinite 

fault in lithosphere-asthenosphere system. The work of (Debnath,2013), (Debnath,2014),(Sen et al., 2012) have 

been discussed about long dip-slip fault in the viscoelastic medium of Maxwell type material whereas the work 

of (Mondal et al., 2018) discussed about the representation of dip slip fault in  standard linear solid (SLS) type 

material. In the earlier works, most of the cases elastic or viscoelastic half space or layered medium 

wereconsidered to represent the lithosphere-asthenosphere system. The study of (Hu et al., 2016) and 

Observations in seismicallyactive regions suggest that linear viscoelastic material of Burger’s Rheology may be 

a suitable representation of the system. Inthis paper, we consider an infinite sudden dip-slip movement situated 

in a linear viscoelastic solid of Burger’sRheology.  

The system is under the action of tectonic forces which forces are taken to be constant, generated due 

to mantle convection or similar other processes and displacements, stressesare analyzed. 

 

II. FORMULATION 
Considering a long, dip-slip fault F, with width D situated in a viscoelastic half space of linear Burger’s 

Rheology. A Cartesian coordinate system is used with a suitable point O as origin on the fault, the strike of the 

fault is taken along 𝒚𝟏 axis, 𝒚𝟑axis pointing downwards so that the free surface is given by 𝒚𝟑 = 0 and 𝒚𝟐 axis is 

perpendicular to𝒚𝟏𝒚𝟑plane. We choose another coordinate system with 𝒚𝟏
′ , 𝒚𝟐

′ , 𝒚𝟑
′ axes as shown in Figure 1 so 

that the fault can be given by F : (𝒚𝟐
′ = 0; 0 ≤𝒚𝟑

′ ≤D) 
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Coordinate system describing the location of the fault. 

Let θ be the inclination of the fault F with the free surface. We consider the section of the model by the plane 𝒚𝟏 

= 0. The displacement, stress and strain components separate out into two independent groups. One group 

containing displacementu, stress component (𝝉𝟏𝟐, 𝝉𝟏𝟑) and strain components (𝑬𝟏𝟐, 𝑬𝟏𝟑)is associated with the 

strike- slip movement while the other group containing displacement component (v,w), stress components 

(𝝉𝟐𝟐, 𝝉𝟐𝟑, 𝝉𝟑𝟑) and strain components (𝑬𝟐𝟐, 𝑬𝟐𝟑, 𝑬𝟑𝟑) is associated with dip-slip movement. We consider the dip-

slip movement across the fault F. Let v,w be the displacement components along the 𝒚𝟐, 𝒚𝟑 axes and 

𝝉𝟐𝟐, 𝝉𝟐𝟑, 𝝉𝟑𝟑are the stress components and 𝑬𝟐𝟐, 𝑬𝟐𝟑, 𝑬𝟑𝟑 are the strain components respectively. We take t = 0 as 

an instant when the medium is in aseismic state. 

 

2.1 Constitutive Equation: 

The constitutive laws provide the relation between stress and strain possibly including time derivatives. We 

consider dip-slip movement across the fault when the medium is in aseismic state (t=0) for which the 

displacements v and w,stresses𝝉𝟐𝟐,𝝉𝟐𝟑, 𝝉𝟑𝟑 and strains  𝑬𝟐𝟐, 𝑬𝟐𝟑, 𝑬𝟑𝟑are present. The stress-strain relations for 

Burger’s Rheology model of viscoelastic material are taken as follows(Segall,2010) 

 

𝝉𝟐𝟐 + 𝒑𝟏
𝝏𝝉𝟐𝟐

𝝏𝒕
+ 𝒑𝟐

𝝏𝟐𝝉𝟐𝟐

𝝏𝒕𝟐
 = 𝟐𝒒𝟏

𝝏𝑬𝟐𝟐

𝝏𝒕
+ 𝟐𝒒𝟐

𝝏𝟐𝑬𝟐𝟐

𝝏𝒕𝟐
 

 

𝝉𝟐𝟑 + 𝒑𝟏
𝝏𝝉𝟐𝟑

𝝏𝒕
+ 𝒑𝟐

𝝏𝟐𝝉𝟐𝟑

𝝏𝒕𝟐
 = 𝟐𝒒𝟏

𝝏𝑬𝟐𝟑

𝝏𝒕
+ 𝟐𝒒𝟐

𝝏𝟐𝑬𝟐𝟑

𝝏𝒕𝟐
 

                                                                            (1) 

𝝉𝟑𝟑 + 𝒑𝟏
𝝏𝝉𝟑𝟑

𝝏𝒕
+ 𝒑𝟐

𝝏𝟐𝝉𝟑𝟑

𝝏𝒕𝟐
 = 𝟐𝒒𝟏

𝝏𝑬𝟑𝟑

𝝏𝒕
+ 𝟐𝒒𝟐

𝝏𝟐𝑬𝟑𝟑

𝝏𝒕𝟐
 

 

Where𝒑𝟏 =
 𝜼𝟏

µ𝟏
+

𝜼𝟐

µ𝟐
+

𝜼𝟏

µ𝟐
 ,𝒑𝟐 =

𝜼𝟏

µ𝟏

𝜼𝟐

µ𝟐
 ,  

𝒒𝟏= 𝜼𝟏, 𝒒𝟐=
𝜼𝟏𝜼𝟐

µ𝟐
 

Here 𝜼𝟏, 𝜼𝟐are the respective effectiveviscosities andµ𝟏,  µ𝟐are the respective effective rigidities of the 

materials. 

2.2Stress Equation of Motion: 

For the small deformations, if the inertial forces are very small so that the acceleration can be taken to be 

negligible and if there are no body forces acting in the system during our consideration, the quasi-static 

equilibrium equation is 
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𝝏𝝉𝟐𝟐

𝝏𝒚𝟐
 + 

𝝏𝝉𝟐𝟑

𝝏𝒚𝟑
 = 0  

𝝏𝝉𝟑𝟐

𝝏𝒚𝟐
 + 

𝝏𝝉𝟑𝟑

𝝏𝒚𝟑
 = 0                                        (2) 

(-∞<𝒚𝟐<∞,𝒚𝟑≥0, t≥0) 

 

2.3 Boundary Conditions: 

For the fault F 

𝝉𝟐𝟐(𝒚𝟐, 𝒚𝟑, 𝒕)→𝝉∞(𝒕) 𝐜𝐨𝐬 𝜽as|𝒚𝟐|→∞, 𝝉𝟐𝟑(𝒚𝟐, 𝒚𝟑, 𝒕)=0, 𝝉𝟑𝟑(𝒚𝟐, 𝒚𝟑, 𝒕)=0 on 𝒚𝟑=0.         (3) 

Alsoas 𝒚𝟑→∞, 𝝉𝟐𝟑(𝒚𝟐, 𝒚𝟑, 𝒕)→0  

and (𝒚𝟐, 𝒚𝟑, 𝒕)→𝝉∞(𝒕) 𝐬𝐢𝐧 𝜽 

(−∞ < 𝒚𝟐 < ∞, 𝒚𝟑 ≥ 𝟎, 𝒕 ≥ 𝟎) 

 

Where 𝝉∞(𝒕)isthe value oftectonic forces which may or may not vary with time but is taken to be independent 

of 𝒚𝟏. 

 

2.4 Initial Conditions: 

We assume the time t from a suitable instant when thesystem is in an aseismic state and there is no seismic 

disturbancein it. Let 𝒗 = 𝒗𝟎, 𝒘 = 𝒘𝟎at the time t = 0 and𝒗𝒕 =
𝝏𝒗

𝝏𝒕
= 𝟎and𝒘𝒕 =

𝝏𝒘

𝝏𝒕
= 𝟎 at time t = 0. We 

alsoassume that 𝝉𝟐𝟐 = (𝝉𝟐𝟐)𝟎𝝉𝟐𝟑= (𝝉𝟐𝟑)𝟎, 𝝉𝟑𝟑 = (𝝉𝟑𝟑)𝟎 and  
𝝏𝝉𝟐𝟐

𝝏𝒕
= 𝟎, 

𝝏𝝉𝟐𝟑

𝝏𝒕
= 𝟎,   

𝝏𝝉𝟑𝟑

𝝏𝒕
= 𝟎at time t=0 and𝑬𝟐𝟐 =

(𝑬𝟐𝟐)𝟎, 𝑬𝟐𝟑 = (𝑬𝟐𝟑)𝟎, 𝑬𝟑𝟑 = (𝑬𝟑𝟑)𝟎, at time t=0. 

The above initial values satisfy all the relations given in (1) to (3). 

 

III. SOLUTION 
Now differentiating 1 

st
 and 2

nd
equation of (1) with respect to 𝒚𝟐 and 𝒚𝟑 respectively, adding them and using 1

st
 

equation of (2). We obtain, 

∇2𝑉 𝑦2 , 𝑦3 , 𝑡 = 0where𝑉 = 𝑣 − 𝑣0 

Similarly,                                                                  (4) 

∇2𝑊 𝑦2 , 𝑦3 , 𝑡 = 0where𝑊 = 𝑤 − 𝑤0 

 

 

3.1 Solution Before Any Fault Movement 

 Taking Laplace transformation with respect to time t of all the constitutive equations and the boundary 

conditions,the boundary value problem given by equation (1) to (4) can be solved.  

On taking Laplace inverse transformation the solutions for displacement, stresses and strain are given below: 

𝒗𝒂 = 𝒗𝟎 + 𝒚𝟐𝝉∞[{
𝒕

𝒒𝟏
−

𝒒𝟐

𝒒𝟐
𝟏

 𝟏 − 𝒆
−

𝒒𝟏𝒕

𝒒𝟐  } 𝐜𝐨𝐬 𝜽  +{
𝒑𝟏

𝒒𝟏
 𝟏 − 𝒆

−
𝒒𝟏𝒕

𝒒𝟐  +
𝒑𝟐

𝒒𝟐
𝒆
−

𝒒𝟏𝒕

𝒒𝟐 }(𝐜𝐨𝐬 𝜽 − 𝟏)], 

 

𝒘𝒂 = 𝒘𝟎 + 𝒚𝟑𝝉∞[{
𝒕

𝒒𝟏
−

𝒒𝟐

𝒒𝟐
𝟏

 𝟏 − 𝒆
−

𝒒𝟏𝒕

𝒒𝟐  } 𝐬𝐢𝐧 𝜽  +{
𝒑𝟏

𝒒𝟏
 𝟏 − 𝒆

−
𝒒𝟏𝒕

𝒒𝟐  +
𝒑𝟐

𝒒𝟐
𝒆
−

𝒒𝟏𝒕

𝒒𝟐 }(𝐬𝐢𝐧 𝜽 − 𝟏)], 

 

(𝝉𝟐𝟐)𝒂 =
(𝝉𝟐𝟐)𝟎

𝑨
[ 𝒑𝟏 − 𝒑𝟐𝒓𝟏 𝒆

−𝒓𝟏𝒕 −  𝒑𝟏 − 𝒑𝟐𝒓𝟐 𝒆
−𝒓𝟐𝒕+𝝉∞[𝐜𝐨𝐬 𝜽 −

𝟏

𝑨
{ 𝒑𝟏 − 𝒑𝟐𝒓𝟏 𝒆

−𝒓𝟏𝒕 

− 𝒑𝟏 − 𝒑𝟐𝒓𝟐 𝒆
−𝒓𝟐𝒕}], 

 

(𝝉𝟐𝟑)𝒂 =
(𝝉𝟐𝟑)𝟎

𝑨
[ 𝒑𝟏 − 𝒑𝟐𝒓𝟏 𝒆

−𝒓𝟏𝒕 −  𝒑𝟏 − 𝒑𝟐𝒓𝟐 𝒆
−𝒓𝟐𝒕], 

 

(𝝉𝟑𝟑)𝒂 =
(𝝉𝟑𝟑)𝟎

𝑨
[ 𝒑𝟏 − 𝒑𝟐𝒓𝟏 𝒆

−𝒓𝟏𝒕 −  𝒑𝟏 − 𝒑𝟐𝒓𝟐 𝒆
−𝒓𝟐𝒕+𝝉∞[𝐬𝐢𝐧 𝜽−

𝟏

𝑨
{ 𝒑𝟏 − 𝒑𝟐𝒓𝟏 𝒆

−𝒓𝟏𝒕                  (5) 

− 𝒑𝟏 − 𝒑𝟐𝒓𝟐 𝒆
−𝒓𝟐𝒕}], 

 

(𝑬𝟐𝟐)𝒂 = (𝑬𝟐𝟐)𝟎 + 𝝉∞[{
𝒕

𝒒𝟏
−

𝒒𝟐

𝒒𝟐
𝟏

 𝟏 − 𝒆
−

𝒒𝟏𝒕

𝒒𝟐  } 𝐜𝐨𝐬 𝜽  +{
𝒑𝟏

𝒒𝟏
 𝟏 − 𝒆

−
𝒒𝟏𝒕

𝒒𝟐  +
𝒑𝟐

𝒒𝟐
𝒆
−

𝒒𝟏𝒕

𝒒𝟐 }(𝐜𝐨𝐬 𝜽 − 𝟏)], 

 

(𝑬𝟐𝟑)𝒂 = (𝑬𝟐𝟑)𝟎, 

 

(𝑬𝟑𝟑)𝒂 = (𝑬𝟑𝟑)𝟎 + 𝝉∞[{
𝒕

𝒒𝟏
−

𝒒𝟐

𝒒𝟐
𝟏

 𝟏 − 𝒆
−

𝒒𝟏𝒕

𝒒𝟐  } 𝐬𝐢𝐧 𝜽  +{
𝒑𝟏

𝒒𝟏
 𝟏 − 𝒆

−
𝒒𝟏𝒕

𝒒𝟐   +
𝒑𝟐

𝒒𝟐
𝒆
−

𝒒𝟏𝒕

𝒒𝟐 }(𝐬𝐢𝐧 𝜽 − 𝟏)]. 

Where, 
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𝒓𝟏 =
 𝒑𝟏 − 𝑨 

𝟐𝒑𝟐

, 𝒓𝟐 =
 𝒑𝟏 + 𝑨 

𝟐𝒑𝟐

, 𝑨 = (𝒑𝟏
𝟐 − 𝟒𝒑𝟐)

𝟏

𝟐 

and𝒑𝟏 and 𝒑𝟐 are same as given in equation (1) 

 

 Above solution shows that 𝝉𝟐𝟐increases with time and 𝝉𝟐𝟐→𝝉∞ (t) 𝐜𝐨𝐬 𝜽as t→∞ while 𝝉𝟐𝟑→0 but𝝉𝟑𝟑→𝝉∞ (t) 

𝐬𝐢𝐧 𝜽as,where 𝝉∞ (t)= constant. The geological conditions as well as the characteristic of the fault is such that 

when the stress component 𝝉𝟐𝟑across the fault reaches some critical value 𝝉𝒄 ,𝝉𝒄<𝝉∞ (t)𝐜𝐨𝐬 𝜽, the fault F starts 

slip and for bounded stresses and strains the dislocation function f(𝝃′
𝟑
) say, should satisfy the conditions as 

discussed in (Ghosh et al., 1992) 

 (i) Its value will be maximum on the free surface. (ii) The magnitude of the dislocation will decrease with 𝒚′
𝟑
 

as we move downwards and ultimately tends to zero near the lower edge of the fault 

𝒚′
𝟐
 = 0, 𝒚′

𝟑
= D. 

 

3.2 Solution After Any Fault Movement 

The stresscomponent𝝉𝟐𝟑, which is the main driving force for the dip-slip motion of the fault, exceeds the critical 

value 𝝉𝒄 = 200 barafter time T = 65 years (say) and the fault starts to slip.  

An additional condition characterizing the dislocation of w due to the sudden movement is 

[𝒘]𝑭 = 𝑼𝒇 𝒚′
𝟑
 𝑯 𝒕𝟏  

Where 𝒘]𝑭 = 𝐥𝐢𝐦𝒚′
𝟐→𝟎+ 𝒘 − 𝐥𝐢𝐦𝒚′

𝟐→𝟎− 𝒘                                 (6) 

(𝑦′
2

= 0, 0 ≤ 𝑦′
3
≤ 𝐷). 

Here 𝑯(𝒕𝟏) is the Heaviside function, Uis the slip magnitude and [𝒘]𝑭is the discontinuity of w across F.  It is to 

be noted that [𝒘]𝑭 = 0 for𝒕𝟏 ≤ 𝟎, where 𝒕𝟏 = 𝒕 − 𝑻.The fault F is located inthe region (𝒚′
𝟐

= 𝟎, 𝟎 ≤ 𝒚′
𝟑
≤ 𝑫). 

We note that v is continuouseven after the fault slip so that v = 0, while 𝒘satisfies the dislocation condition 

given in equation (6). The modified boundary value problem is stated below: 

𝛁𝟐𝑾 = 𝟎, where𝑾 = 𝒘 −
𝒘𝟎

𝒑
.𝒘is the L.T. of 𝒘 with modified boundary conditions 

𝝉𝟐𝟐(𝒚𝟐, 𝒚𝟑, 𝒑)→0 as |𝒚𝟐|→∞,𝒚𝟑 ≥ 𝟎 

𝝉𝟐𝟑(𝒚𝟐, 𝒚𝟑, 𝒑)→0 as 𝒚𝟑→∞ 

 (−∞ < 𝒚𝟐 < ∞) (7) 

𝝉𝟑𝟑(𝒚𝟐, 𝒚𝟑, 𝒑)→0 as 𝒚𝟑→∞ 

 (−∞ < 𝒚𝟐 < ∞). 

In the absence of any fault movement,all other boundary conditions are same as stated. 

We solve thisboundary value problem as shown in the appendix. Then the solution for displacements, stresses 

and strains after fault movement is in following equation 

𝑤𝑏 =
𝑈

2𝜋
𝜑 𝑦2 , 𝑦3 𝐻 𝑡1 , 

(𝜏22)𝑏 = 0, 

(𝜏23)𝑏 =
𝑈

2𝜋𝐴
[ 𝑞1 − 𝑞2𝑟1 𝑒

−𝑟1𝑡 −  𝑞1 − 𝑞2𝑟2 𝑒
−𝑟2𝑡]𝐻(𝑡1)𝜑1(𝑦2 , 𝑦3),                            (8) 

(𝜏33)𝑏 =
𝑈

2𝜋𝐴
[ 𝑞1 − 𝑞2𝑟1 𝑒

−𝑟1𝑡 −  𝑞1 − 𝑞2𝑟2 𝑒
−𝑟2𝑡]𝐻(𝑡1)𝜑2(𝑦2 , 𝑦3), 

(𝐸22)𝑏 = 0, 

(𝐸23)𝑏 =
𝑈

4𝜋
𝐻(𝑡1)𝜑1(𝑦2 , 𝑦3), 

(𝐸33)𝑏 =
𝑈

2𝜋
𝐻(𝑡1)𝜑2(𝑦2 , 𝑦3). 

 

𝑯(𝒕𝟏) is the Heaviside step function which gives the displacement at any point Q( 𝒚𝟐 , 𝒚𝟑 ) and 

φ(𝒚𝟐, 𝒚𝟑), 𝝋𝟏(𝒚𝟐, 𝒚𝟑) and  𝝋𝟐(𝒚𝟐, 𝒚𝟑)are given in Appendix. We try to find the solutions in the following form: 

𝑣 = 𝑣𝑎 + 𝑣𝑏 ,  𝑤 = 𝑤𝑎 + 𝑤𝑏  

𝜏22 = (𝜏22)𝑎 + (𝜏22)𝑏 , 𝜏23 = (𝜏23)𝑎 + (𝜏23)𝑏 , 

𝜏33 = (𝜏33)𝑎 + (𝜏33)𝑏 , 𝐸22 = (𝐸22 )𝑎 + (𝐸22)𝑏 , 

𝐸23 = (𝐸23)𝑎 + (𝐸23 )𝑏 , 𝐸33 = (𝐸33 )𝑎 + (𝐸33)𝑏  . 

Where the suffix 𝑎, 𝑏 represents solution before and after fault movement respectively. 

 

 

 

 

 

 

4. NUMECAL COMPUTATION 
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 Following (Cathles,1975), (Aki et al.,1980) and the recent studies on rheological behaviour of the crust and 

upper mantle by (Chiftet al., 2002), the value of the model parameters are taken as follows: 

µ𝟏 = 3×𝟏𝟎𝟏𝟎N / 𝒎𝟐(Pascals), 

µ𝟐 = 3.5×𝟏𝟎𝟏𝟎N / 𝒎𝟐(Pascals), 

𝜼𝟏 = 3×𝟏𝟎𝟏𝟗Pa: s,  𝜼𝟐 = 3.5×𝟏𝟎𝟏𝟗Pa: s 

D=Width of the fault F=5km=5×𝟏𝟎𝟑meter, 

(𝝉𝟐𝟐)𝟎= 20×𝟏𝟎𝟓 N/𝒎𝟐(Pascals), 

(𝝉𝟐𝟑)𝟎= 20×𝟏𝟎𝟓 N/𝒎𝟐(Pascals), 

(𝝉𝟑𝟑)𝟎= 20×𝟏𝟎𝟓 N/𝒎𝟐(Pascals) 

𝝉𝒄 = 200 bar = 2×𝟏𝟎𝟕N/𝒎𝟐(Pascals), 

θ=π/6, π/4, π/3, π/2,  𝝉∞ (t) = 20 ×𝟏𝟎𝟓N/𝒎𝟐 

R=2 meter, U=1.6 meter, 3.7 meter, 5.6 meter. 

We consider different dislocation functionf(𝝃′
𝟑
)in thefollowing form suggested by (Godara et al., 2017) 

(i) Liner Slip Function (LSF): f (𝝃′
𝟑
) =R (𝟏 −

𝝃′ 𝟑

𝑫
); (ii)Parabolic Slip Function (PSF): f (𝝃′

𝟑
) =R (𝟏 −

𝝃′
𝟐
𝟑

𝑫𝟐 ); 

(iii) Elliptic Slip Function (ESF):f (𝝃′
𝟑
) =R(𝟏 −

𝝃′
𝟐
𝟑

𝑫𝟐 )
𝟏

𝟐, which are satisfied for all the conditions for bounded 

stresses and strains. We computed displacements, stresses and strains taking the above values of the parameter 

with new time origin𝒕𝟏 = 𝒕 − 𝑻, where T = 65 years (say) 

usingMATLAB. 

 

 The displacement component w against 𝒚𝟐 for different slip function taking 𝒚𝟑 = 5 km with average 

slip magnitude 3.7 meter and a fixed inclination 𝜽 =
𝝅

𝟑
just immediately after the fault movement has been 

shown in Fig-2. It is clear from this figure that the displacement is maximum for ESF and minimum for LSF and 

this displacement tends to zeroas we move far away from the fault. In Fig-3, with the value of 𝒚𝟐 = 5 km, slip 

magnitude U = 3.7 meter for the ESF, displacement is found to be maximum on the freesurface𝒚𝟑= 0 and then it 

sharply decreases and  gradually→ 0 with the increasing value of depth. The rate of decreaseof displacement is 

higher when the fault is inclined at an angle 𝜽 = 𝝅/𝟔and this displacement falls off rapidly with the increase of 

inclination of the fault and finally tend to zero as 𝒚𝟑 → ∞ for all θ. Thus for the Burger’s Rheology and SLS 

type material, the effect on displacement component discussed in (Mondal et al., 2018) is almost same. It has 

been observed that for earthquake of smaller magnitude, the slip is small and this slip is higher for earthquake of 

higher magnitude. 

 

 
Fig-2 

Displacement w with𝒚𝟐 for different slip function. 
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Fig-3 

Displacement 𝒘 against 𝒚𝟑for various inclination. 
 

In the Fig-4, shear stress 𝝉𝟐𝟑  has been plotted against 𝒚𝟐 for various slip magnitude with fixed 

inclination π/3 and ESF. This shows that stress 𝝉𝟐𝟑 has different value near the free surface 𝒚𝟑 = 0 for different 

slip magnitude and for small magnitude of slip, stress quickly tending to zero. Each plot has a brunch cut and 

stress 𝝉𝟐𝟑vanishes far away from the fault 𝒚𝟐=0 after few km along 𝒚𝟐 . Stress 𝝉𝟐𝟑  with 𝒚𝟐  for various slip 

function has been shown in the Fig-5, taking 𝒚𝟑=5 km, with average slip magnitude U=3.7 meter and θ=π/3. In 

this figure we see that stress is maximum for ESF and minimumfor LSF. For different slip function stress 

𝝉𝟐𝟑increases slowly and after attending certain value of order 𝟏𝟎−𝟒, it decreases rapidly and finally tending to 

zero as stress is releasing after the fault slip. 

 
Fig-4 

Stress 𝝉𝟐𝟑 with 𝒚𝟐 for different slip magnitude. 

 

 
Fig-5 

Stress 𝝉𝟐𝟑 with 𝒚𝟐 for various slip function. 
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In Fig-6, we plotted stress 𝝉𝟐𝟑for various slip function against 𝒚𝟑 taking the same value of 𝒚𝟐, U and 

θthat (Mondal et al.,2018) uses for standard linear solid ( SLS) type material. Here we found that the stress is 

maximum and minimum for ESF and LSF respectively but order of this magnitude is of 𝟏𝟎−𝟒which is very less 

than the order of 𝟏𝟎𝟖shown in Fig-7, which is drown by (Mondal etal., 2018) for standard linear solid (SLS) 

type material. 

 

 
Fig-6 

Stress 𝝉𝟐𝟑 with 𝒚𝟑 for Burger’s Rheology of various slip function. 

 

 
Fig-7 

Stress 𝝉𝟐𝟑 with 𝒚𝟑for SLS of various slip function. 

 

Normal stress for a fixed inclination with 𝒚𝟐 for various𝒚𝟑, taking parabolic slip function and average 

slip magnitude has been shown in Fig-8. It is found that for 𝒚𝟑 = 1 km, the normal stress 𝝉𝟑𝟑increases sharply 

up to certain value of order 𝟏𝟎−𝟒, after that it decreases rapidly and → 0 as expected. For 𝒚𝟑= 3 km, there is 

gradual increase of stress and then it decreases. The rate of decrease of stress is higher for 𝒚𝟑= 1 kmthan the 

other values of𝒚𝟑. 
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Fig-8 

Normal stress against 𝒚𝟐 for Burger’s Rheology of various 𝒚𝟑. 

 

 
Fig-9 

Normal stress against 𝒚𝟐 for SLS of various 𝒚𝟑. 

 

 

The Fig-8 has been shown for Burger’s Rheology but same normal stress has been plotted with the same fetcher 

for SLS in Fig-9. This shows that order of normal stress is of 𝟏𝟎𝟖 . Thus there is a clear effect on stress 

component of various medium. 

 

IV. CONCLUSION 
The contribution of the previous study (Huetal.2016)suggest that the Rheological properties of 

Burger’s material can be a proper representation of the lithosphere-asthenosphere system. 

 Therefore, we derived analytical solutions for displacement, stress and strain due to faultmovement 

across an inclined, infinite, dip-slip fault situated in a viscoelastic half space. It is found from the above 

numerical computation hat these displacementand stresses depend on various inclinations and slip magnitude of 

the fault. In this article, a comparable discussion have been studied between SLS and Burger’s Rheology type of 

material.  The stress accumulation / release near the fault varies not only due to dip angle and slip magnitude but 

also on slip functions and viscoelastic material in the lithosphere- asthenosphere system. The values of the 

model parameters play an important role in determining the displacement and stress. The movement of fault 

causes stress accumulation /release near the fault which essentially depend on different positions of point on the 

fault for fixed width. 
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APPENDIX: 

Taking the Laplace transform of all constitutive equations and boundary conditions, one can obtain 

𝝉𝟐𝟐 =
(𝒑𝟏+𝒑𝟐𝒑)(𝝉𝟐𝟐)𝟎

 𝟏+𝒑𝟏𝒑+𝒑𝟐𝒑
𝟐 

+
(𝒒𝟏𝒑+𝒒𝟐𝒑

𝟐)
𝝏𝒗

𝝏𝒚𝟐

 𝟏+𝒑𝟏𝒑+𝒑𝟐𝒑
𝟐 

−
(𝒒𝟏+𝒒𝟐𝒑)(

𝝏𝒗

𝝏𝒚𝟐
)𝟎

(𝟏+𝒑𝟏𝒑+𝒑𝟐𝒑
𝟐)

          (9) 

and similar other equation for 𝝉𝟐𝟑and 𝝉𝟑𝟑. 

Also we have the boundary condition in transform 

domain as: 

𝝉𝟐𝟐 =
𝝉∞ 𝐜𝐨𝐬 𝜽

𝒑
as |𝒚𝟐| → ∞, 

𝝉𝟐𝟑 = 𝟎as 𝒚𝟑 → ∞,      

𝝉𝟑𝟑 =
𝝉∞ 𝐬𝐢𝐧 𝜽

𝒑
as |𝒚𝟐| → ∞,                 (10) 

(𝒚𝟑 ≥ 𝟎, 𝒕 ≥ 𝟎)        

 

Here 𝝉∞  is the constant value of 𝝉∞ (t), where 𝝉𝟐𝟐=  𝝉𝟐𝟐𝒆
−𝒑𝒕∞

𝟎
𝒅𝒕, p being Laplace transform variable. We have 

equation (4), in transform domain it can be written as, 

𝛁𝟐𝑽 = 𝟎, where  𝑽 = 𝒗 −
𝒗𝟎

𝒑
.   

𝛁𝟐𝑾 = 𝟎, where  𝑾 = 𝒘 −
𝒘𝟎

𝒑
.   

 

We solve this governing Laplace equation with the boundaryconditions (3) and (7). 

To solve this problem, one can assume that 𝒗, 𝒘 have the form 𝒗 = 
𝒗𝟎

𝒑
+A 𝒚𝟐+B𝒚𝟑 

and𝒘= 
𝒘𝟎

𝒑
+C 𝒚𝟐+D𝒚𝟑. Using the initial and boundary conditions and taking inverse Laplace transform, the 

solution of displacement, stress and strain before any fault movement is given by the equation (5). After the 

fault movement, an additional uniform dislocation condition which characterizes the sudden movement across F 

is given by equation (6). Taking L.T. of (6), we get 

[𝒘] =
𝑼

𝒑
f(𝒚′

𝟑
)                    (11) 

All the basic equations and initial conditions are same as before after fault movement. The modified boundary 

conditions are given in equation (7).  

We solved the above boundary value problem by modified Green’s function method developed by(Maruyama, 

1964), (Maruyama, 1966), (Rybicki,1986),(Rybicki, 1971) and correspondence principle.Let Q(𝒚𝟐, 𝒚𝟑) be any 

point in the medium andP(𝜻𝟐 , 𝜻𝟑) be any point on the fault F, then we have 

𝒘 𝑸 =  𝒘 𝑷 
𝑭

𝑮(𝑷, 𝑸)                         (12) 

 

where G(P, Q) = 𝑮𝟑𝟐
𝟑 𝑷, 𝑸 𝒅𝜻𝟑 − 𝑮𝟑𝟑

𝟑 𝑷, 𝑸 𝒅𝜻𝟐and 

𝑮𝟑𝟐
𝟑 𝑷, 𝑸 , 𝑮𝟑𝟑

𝟑 𝑷, 𝑸 are given by 

𝑮𝟑𝟐
𝟑 𝑷, 𝑸 =

[
𝒚𝟐−𝜻𝟐

𝑳𝟐 +
𝒚𝟐−𝜻𝟐

𝑴𝟐 ]

𝟐𝝅
 

𝑮𝟑𝟑
𝟑 𝑷, 𝑸 =

[
𝒚𝟑−𝜻𝟑

𝑳𝟐 −
𝒚𝟐+𝜻𝟑

𝑴𝟐 ]

𝟐𝝅
 

 𝑳𝟐 = (𝒚𝟐 − 𝜻𝟐)𝟐 + (𝒚𝟑 − 𝜻𝟑)𝟐 , 

𝑴𝟐 = (𝒚𝟐 − 𝜻𝟐)𝟐 + (𝒚𝟑 + 𝜻𝟑)𝟐. 

 

As 𝜻𝟐, 𝜻𝟑 being a point on F, 0≤ 𝜻𝟐 ≤ 𝑫𝐜𝐨𝐬 𝜽, 0≤ 𝜻𝟐 ≤ 𝑫 ≤ 𝐬𝐢𝐧 𝜽and𝜻𝟐 = 𝜻𝟑 𝐜𝐨𝐭 𝜽. A change in the 

coordinate axis from (𝜻𝟐, 𝜻𝟑) to (𝜻′
𝟐
,𝜻′

𝟑
) is connected by the relation: 

𝜻𝟐 = 𝜻′
𝟐
𝐬𝐢𝐧 𝜽 + 𝜻′

𝟑
𝐜𝐨𝐬 𝜽 , 

𝜻𝟑 = −𝜻′
𝟐
𝐜𝐨𝐬 𝜽 +𝜻′

𝟑
𝐬𝐢𝐧 𝜽,so that 𝜻′

𝟐
= 𝟎, 0 ≤ 𝜻′

𝟑
≤D on F. Therefore, 

𝒅𝜻𝟐 = 𝐜𝐨𝐬 𝜽 𝒅𝜻′
𝟑
,   𝒅𝜻𝟑 = 𝐬𝐢𝐧 𝜽 𝒅𝜻′

𝟑
. 

Thus, 

𝒘(Q)= 
𝑼

𝟐𝝅𝒑
 [

𝒚𝟐 𝐬𝐢𝐧 𝜽−𝒚𝟑 𝐜𝐨𝐬 𝜽

𝑳𝟐

𝑫

𝟎
+

𝒚𝟐 𝐬𝐢𝐧 𝜽+𝒚𝟑 𝐜𝐨𝐬 𝜽

𝑴𝟐 ]f(𝜻′
𝟑

)𝒅𝜻′
𝟑
 

Taking the inverse Laplace transform, we get 

w(Q) =
𝑼

𝟐𝝅
φ(𝒚𝟐, 𝒚𝟑) H(𝒕𝟏)                       (13) 
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where φ(𝒚𝟐, 𝒚𝟑) 

= [
𝒚𝟐 𝐬𝐢𝐧 𝜽−𝒚𝟑 𝐜𝐨𝐬 𝜽

𝑳𝟐

𝑫

𝟎
+

𝒚𝟐 𝐬𝐢𝐧 𝜽+𝒚𝟑 𝐜𝐨𝐬 𝜽

𝑴𝟐 ]f(𝜻′
𝟑

)𝒅𝜻′
𝟑
 

and𝑳𝟐=𝜻′𝟐

𝟑
− 𝟐𝜻′

𝟑
(𝒚𝟐 𝐜𝐨𝐬 𝜽 + 𝒚𝟑 𝐬𝐢𝐧 𝜽) + 𝒚𝟐

𝟐
+ 𝒚𝟐

𝟑
, 𝑴𝟐=𝜻′𝟐

𝟑
− 𝟐𝜻′

𝟑
(𝒚𝟐 𝐜𝐨𝐬 𝜽 − 𝒚𝟑 𝐬𝐢𝐧 𝜽) + 𝒚𝟐

𝟐
+ 𝒚𝟐

𝟑
. 

It is to be noted that 𝒘 = 0 for   𝒕𝟏.= 𝒕 − 𝑻 ≤ 𝟎. 

From the equation (9), (12) and assuming displacement, stress and strain to be zero for    𝒕𝟏 = 𝒕 − 𝑻 < 0, we 

have 𝝉𝟐𝟐 = 0. We note that v is continuous even after the fault slip so that v = 0 after fault movement. Taking 

inverse Laplace transform, 𝝉𝟐𝟐 = 0. Similarly other equations are as follows: 

𝜏23 =
𝑈

2𝜋𝐴
[ 𝑞1 − 𝑞2𝑟1 𝑒

−𝑟1𝑡 −  𝑞1 − 𝑞2𝑟2 𝑒
−𝑟2𝑡]𝐻(𝑡1)𝜑1(𝑦2 , 𝑦3),                             

𝜏33 =
𝑈

2𝜋𝐴
[ 𝑞1 − 𝑞2𝑟1 𝑒

−𝑟1𝑡 −  𝑞1 − 𝑞2𝑟2 𝑒
−𝑟2𝑡]𝐻(𝑡1)𝜑2(𝑦2 , 𝑦3),𝐸22 = 0, 

𝐸23 =
𝑈

4𝜋
𝐻 𝑡1 𝜑1 𝑦2 , 𝑦3 ,   𝐸33 =

𝑈

2𝜋
𝐻(𝑡1)𝜑2(𝑦2 , 𝑦3) 

Where𝝋𝟏 𝒚𝟐, 𝒚𝟑 =
𝝏𝝋

𝝏𝒚𝟐
, 𝝋𝟐(𝒚𝟐, 𝒚𝟑)=

𝝏𝝋

𝝏𝒚𝟑
  which have the expression in the appendix of the paper of (Mondal et 

al.,2018) 
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