ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 09, Issue 12, December. 2019, ||Series -I || PP 28-37

sd-Hybridization, Population Analysis And MOT In Ru²⁺. I. Simple Ruthenium Dihalides

Alok Shukla¹, Kavindra Kumar Mishra² and Anil Kumar Soni^{3*}

 ¹Department of Physics, Maharani LalKunwari, P.G. College, Balrampur (U.P.), India
²Department of Physics, Mewar University, Chittorgarh, Rajasthan, India
³Department of Chemistry, Shia P.G. College, Sitapur Road, Lucknow (U.P.), India Corresponding Author: Anil Kumar Soni Received 28 November 2019; Accepted 13 December 2019

Abstract: Atomic orbital (AO) and molecular orbital (MO) treatment has been made on ruthenium(II) halides: RuCl₂, RuBr₂, and RuI₂. The $\sum c_i$ values 4dx2-y2, 4dxz, 4dxy, 5s, 5px, 5py, 5pzAOs of metal in their halides show sd-hybridization, which is supported by their bond angles as proposed by Landis et al. Further, $\sum c_i$ values are highest in case of iodide and lowest in chloride shows good agreement with nephelauxetic series of ligands i.e. the effective positive charge on Ru is reduced greater by iodide and lesser by chloride, while bromide lies in between them. Population analysis study shows among the seventeen (ϕ_1 - ϕ_{17}) MOs formed by LCAO-MO approximation, nine (ϕ_1 - ϕ_5 and ϕ_8 - ϕ_{11}) are bonding, two (ϕ_6 and ϕ_7) are nonbonding and remaining six (ϕ_{12} - ϕ_{17}) are antibonding. The nonbonding MOs, ϕ_6 and ϕ_7 , are purely 4dyx and 4dz² AOs of ruthenium, respectively. The magnitude of splitting of ruthenium's d-orbitals has also been studied that follow the sequence RuCl₂> RuBr₂> RuI₂, which is in good agreement with spectrochemical series of ligands i.e. larger splitting by chloride and shorter by iodide, and bromide in between them. The MOT reflected that all the MOs (ϕ_1 - ϕ_{17}) have definite energy and definite shape due to (a) different contribution (c_{ri} and c_{si}) of many basis functions (χ_1 - χ_{17}), (b) difference in energies ($\Delta \varepsilon$) of overlaping AOs, (c) difference in overlap integral ($S_{r.s}$) and (d) symmetry (phase) of overlapping AOs. And, thus provide clear cut electronic picture of the molecule, which more precisely explain or help to explain the various properties of the molecule.

Key-words: Simple ruthenium dihalides, Atomic orbital treatment, Molecular orbital treatment and Mulliken population analysis

I. INTRODUCTION

A quantitative atomic orbital (AO) and molecular orbital (MO) treatment has been made on Ruthenium(II) halides to study (i) involvement of metal (n-1)d-, ns-and np-orbitals in hybridizations and its type that provide information related to shape (bond angle) and size (bond length); (ii) contribution of various AOs in the formation of MOs through LCAO approximation using values of eigenvector and overlap matrix; (iii) nature of MOs by distinguishing them in to bonding, nonbonding and antibonding MOs through population analysis; and (v) splitting of metal (n-1)d-orbitals and its magnitude.

II. MATERIAL AND METHODS

The study materials of this research work are RuCl₂, RuBr₂ and RuI₂. The 3D modeling and geometry optimization of the halides have been done by CAChe software using molecular mechanics with EHT option [1]. Eigenvectors, overlap matrix and eigenvalues have been computed with the same software, using the same option. The method adopted for various calculations are based on Mulliken population analysis (MPA) [2]. Within the LCAO-MO approximation, the wave function for ith eigen state of molecule as defined by Mulliken is

$$\phi_i = \sum_{rk} c_{irk} \chi_{rk}$$
 Eq. 1

The contributions of electrons $(n_{r,i})$ in each occupied MO are calculated by using the following equation as proposed by Mulliken

$$n_{ri} = n_i c_{ri}^2$$
 Eq. 2

where n_i is the number of electron in MO ϕ_i and c_{ri} is the coefficient of AOs for MO ϕ_i (i=1-17). Thereafter, MPA has also used for evaluating overlap population as described below

$$n_{r-s,i} = n_i (2c_{ri}c_{si}S_{rs})$$

Eq. 3

where, c_{ri} is the coefficient of atomic orbitals for one atom, c_{si} is the coefficient of AOs for other atom and S_{rs} is the overlap integral between the two AOs (one of an atom and one of other atom).

III. RESULTS AND DISCUSSION

A systematic molecular mechanics based investigation of bonding nature in ruthenium dihalides has been studied. Ruthenium dihalides, which are under investigation, are dichloride, dibromide and diiodide, except difluoride, which does not exist.

3.1 Ruthenium dichloride

Ruthenium(II) chloride is triatomic molecule, having the following optimized geometry as obtained from molecular mechanics method.

Fig. 1 Structure of RuCl₂

The MOs of this molecule are formed by linear combination of 17AOs: nine orbitals (five 4d-orbitals, one 5s orbital and three 5p orbitals) from ruthenium and four orbitals (three 3p orbitals and one 3s orbital) from each chlorine atom. These are AOs are represented by χ . These are $\chi_1 = 5s$, $\chi_2 = 5px$, $\chi_3 = 5py$, $\chi_4 = 5pz$, $\chi_5 = 4dx^2-y^2$, $\chi_6 = 4dz^2$, $\chi_7 = 4dxy$, $\chi_8 = 4dxz$, $\chi_9 = 4dyz$, for Ru-1 and $\chi_{10} = 3s$, $\chi_{11} = 3px$, $\chi_{12} = 3py$, $\chi_{13} = 3pz$ for Cl-2 and $\chi_{14} = 3s$, $\chi_{15} = 3px$, $\chi_{16} = 3py$, $\chi_{17} = 3pz$ for Cl-3). These 17 AOs on LCAO approximations give 17 MOs (represented by ϕ_1 to ϕ_{17}). The magnitude of contribution of various AOs (χ) in the formation of 17 MOs is demonstrated by Eqs., ϕ_1 to ϕ_{17} . Here, the coefficients of γ are the eigenvector and its zero or near zero values have been omitted.

 $\phi_1 = -0.1029 \chi_1 - 0.1034 \chi_5 + 0.0606 \chi_6 - 0.0181 \chi_7 - 0.6626 \chi_{10} - 0.0142 \chi_{11} - 0.0012 \chi_{12} - 0.6626 \chi_{14} + 0.0142 \chi_{15} + 0.0012 \chi_{16} + 0$ $\phi_2 = 0.0686\chi_2 + 0.0060\chi_3 + 0.6829\chi_{10} + 0.0187\chi_{11} + 0.0016\chi_{12} - 0.6829\chi_{14} + 0.0187\chi_{15} + 0.0016\chi_{16} + 0.00$ $\varphi_3 = -0.0966 \chi_1 - 0.4559 \chi_5 + 0.2672 \chi_6 - 0.0799 \chi_7 - 0.1572 \chi_{10} + 0.4899 \chi_{11} + 0.0426 \chi_{12} + 0.1572 \chi_{14} - 0.4899 \chi_{15} - 0.4899 \chi_{15} + 0.1572 \chi_{16} +$ 0.0426%16 $\phi_4 = -0.0001\chi_5 + 0.0008\chi_7 - 0.7490\chi_8 - 0.0651\chi_9 + 0.0004\chi_{12} - 0.4021\chi_{13} - 0.0004\chi_{16} + 0.4021\chi_{17} - 0.4021\chi_{17} - 0.0004\chi_{16} + 0.4021\chi_{17} - 0.0004\chi_{17} - 0.0004\chi_{$ $\phi_5 = -0.1298\chi_5 + 0.7405\chi_7 + 0.0008\chi_8 + 0.0001\chi_9 - 0.0348\chi_{11} + 0.4006\chi_{12} + 0.0004\chi_{13} + 0.0348\chi_{15} - 0.4006\chi_{16} - 0.4006\chi_{16} + 0.0004\chi_{16} + 0.0004\chi_$ 0.0004%17 $\phi_6 = 0.0866\chi_8 - 0.9962\chi_9$ $\phi_7 = 0.4925\chi_5 + 0.8660\chi_6 + 0.0863\chi_7$ $\phi_8 = -0.1675\chi_2 - 0.0146\chi_3 + 0.0675\chi_{10} + 0.6380\chi_{11} + 0.0555\chi_{12} - 0.0675\chi_{14} + 0.6380\chi_{15} + 0.0555\chi_{16} + 0.055\xi\chi_{16} + 0.05\xi\chi_{16} + 0.0\xi\chi_{16$ $\phi_9 = -0.0110\chi_2 - 0.1267\chi_3 + 0.0004\chi_4 + 0.0589\chi_{11} - 0.6770\chi_{12} + 0.0023\chi_{13} + 0.0589\chi_{15} - 0.6770\chi_{16} + 0.0023\chi_{17} + 0.0023$ $\phi_{10} = -0.0004\chi_3 - 0.1272\chi_4 + 0.0002\chi_{11} - 0.0023\chi_{12} - 0.6796\chi_{13} + 0.0002\chi_{15} - 0.0023\chi_{16} - 0.6796\chi_{17} + 0.0002\chi_{15} - 0.0023\chi_{16} - 0.6796\chi_{17} + 0.0002\chi_{16} - 0.0023\chi_{16} -$ $\phi_{11} = 0.4603\chi_1 - 0.6570\chi_5 + 0.3851\chi_6 - 0.1151\chi_7 + 0.0028\chi_{10} - 0.2801\chi_{11} - 0.0244\chi_{12} + 0.0028\chi_{14} + 0.2801\chi_{15} - 0.0028\chi_{16} + 0.0028\chi$ $+0.0244\chi_{16}$ $\phi_{12} = -0.0001\chi_5 + 0.0007\chi_7 + 0.6699\chi_8 + 0.0583\chi_9 + 0.0001\chi_{11} - 0.0006\chi_{12} - 0.5895\chi_{13} - 0.0001\chi_{15} + 0.0006\chi_{16}$ +0.5896X17 $\phi_{13} = 0.1161\chi_5 - 0.6623\chi_7 + 0.0007\chi_8 + 0.0001\chi_9 - 0.0511\chi_{11} + 0.5873\chi_{12} - 0.0006\chi_{13} + 0.0511\chi_{15} - 0.5873\chi_{16} + 0.0006\chi_{13} + 0.0006\chi_{13} + 0.0006\chi_{13} + 0.0006\chi_{13} + 0.0006\chi_{16} + 0.0006\chi$ +0.0006χ17 $\phi_{14} = 0.0886\chi_2 - 1.0188\chi_3 - 0.0030\chi_4 - 0.0227\chi_{11} + 0.2608\chi_{12} + 0.0008\chi_{13} - 0.0227\chi_{15} + 0.2608\chi_{16} + 0.0008\chi_{17} - 0.0008\chi_{17} + 0.00$ $\phi_{15} = 0.0003\chi_2 - 0.0030\chi_3 + 1.0226\chi_4 - 0.0001\chi_{11} + 0.0008\chi_{12} - 0.2618\chi_{13} - 0.0001\chi_{15} + 0.0008\chi_{16} - 0.2618\chi_{17} - 0.0001\chi_{15} + 0.0008\chi_{16} - 0.2618\chi_{17} - 0.0001\chi_{15} + 0.0008\chi_{16} - 0.0001\chi_{16} - 0.00$ $\phi_{16} = -1.1220\chi_1 - 0.0001\chi_2 - 0.4012\chi_5 + 0.2352\chi_6 - 0.0703\chi_7 + 0.3731\chi_{10} - 0.6063\chi_{11} - 0.0527\chi_{12} + 0.3730\chi_{14} + 0.37\chi_{14} + 0.3\chi_{14} + 0.$ $+0.6062\chi_{15}+0.0527\chi_{16}$

φ17 = 0.0001χ1 -1.4504χ2 -0.1261χ3 +0.5300χ10 -0.6493χ11 -0.0565χ12 -0.5301χ14 -0.6494χ15 -0.0565χ16

3.2 Ruthenium dibromide

Ruthenium(II) bromideis also triatomic molecule, having the following optimized geometry as obtained from molecular mechanics method.

The MOs of this molecule as formed by linear combination of 17AOs ($\chi_1-\chi_{17}$), where $\chi_1 = 5s$, $\chi_2 = 5px$, $\chi_3 = 5py$, $\chi_4 = 5pz$, $\chi_5 = 4dx^2-y^2$, $\chi_6 = 4dz^2$, $\chi_7 = 4dxy$, $\chi_8 = 4dxz$, $\chi_9 = 4dyz$, for Ru-1 and $\chi_{10} = 4s$, $\chi_{11} = 4px$, $\chi_{12} = 4py$, $\chi_{13} = 4pz$ for Br-2 and $\chi_{14} = 4s$, $\chi_{15} = 4px$, $\chi_{16} = 4py$, $\chi_{17} = 4pz$ for Br-3. The 17 AOs on LCAO approximations give 17 MOs($\phi_1-\phi_{17}$). The magnitude of contribution of various 17 χ s in the formation of 17 ϕ s, is demonstrated by Eqs., ϕ_1 to ϕ_{17} . Here, the coefficients of χ are the eigenvector and its zero or near zero values have been omitted.

 $\phi_1 = 0.1235\chi_1 + 0.1404\chi_5 - 0.0823\chi_6 + 0.0246\chi_7 + 0.6531\chi_{10} + 0.0020\chi_{11} + 0.0002\chi_{12} + 0.6531\chi_{14} - 0.0020\chi_{15} - 0.0002\chi_{16} + 0.0002\chi_{1$ $\phi_2 = -0.0869\chi_2 - 0.0076\chi_3 - 0.6794\chi_{10} - 0.0174\chi_{11} - 0.0015\chi_{12} + 0.6794\chi_{14} - 0.0174\chi_{15} - 0.0015\chi_{16}$ $\phi_3 = 0.0412\chi_1 + 0.5894\chi_5 - 0.3455\chi_6 + 0.1033\chi_7 - 0.1904\chi_{10} - 0.4010\chi_{11} - 0.0349\chi_{12} - 0.1904\chi_{14} + 0.4010\chi_{15} - 0.1904\chi_{16} - 0.1904\chi_{1$ $+0.0349\chi_{16}$ $\phi_4 = -0.0001\chi_7 - 0.8827\chi_8 - 0.0768\chi_9 - 0.2694\chi_{13} + 0.2694\chi_{17}$ $\phi^{_5} = 0.1529 \text{X}_5 - 0.8728 \text{X}_7 + 0.0001 \text{X}_8 + 0.0233 \text{X}_{11} - 0.2683 \text{X}_{12} - 0.0233 \text{X}_{15} + 0.2683 \text{X}_{16}$ $\phi_6 = -0.0866\chi_8 + 0.9962\chi_9$ $\phi_7 = 0.4925\chi_5 + 0.8660\chi_6 + 0.0863\chi_7$ $\phi = 0.1943\chi_2 + 0.0169\chi_3 \\ 0.0796\chi_{10} - 0.6248\chi_{11} - 0.0543\chi_{12} + 0.0796\chi_{14} - 0.6248\chi_{15} - 0.0543\chi_{16} - 0.6248\chi_{15} - 0.0543\chi_{16} - 0.6248\chi_{16} - 0.6248$ $\phi_9 = 0.0109\chi_2 - 0.1249\chi_3 + 0.0593\chi_{11} - 0.6820\chi_{12} - 0.6820\chi_{15} - 0.6820\chi_{16}$ $\phi_{10} = 0.1254\chi_4 + 0.6846\chi_{13} + 0.6846\chi_{17}$ $\phi_{11} = -0.4988\chi_1 + 0.5413\chi_5 - 0.3173\chi_6 + 0.0949\chi_7 + 0.0328\chi_{10} + 0.3692\chi_{11} + 0.0321\chi_{12} + 0.0328\chi_{14} - 0.3692\chi_{15} - 0.3692\chi_{15} + 0.0328\chi_{10} + 0.0328$ 0.0321%16 0.6580%17 $\phi_{13} = -0.0820 \chi_5 + 0.4679 \chi_7 - 0.0009 \chi_8 - 0.0001 \chi_9 + 0.0570 \chi_{11} - 0.6556 \chi_{12} + 0.0012 \chi_{13} - 0.0570 \chi_{15} + 0.6556 \chi_{16}$ 0.0012%17 $\phi_{14} = 0.0876\chi_2 - 1.0075\chi_3 - 0.0041\chi_4 - 0.0195\chi_{11} + 0.2238\chi_{12} + 0.0009\chi_{13} - 0.0195\chi_{15} + 0.2238\chi_{16} + 0.0009\chi_{17} - 0.0195\chi_{15} + 0.0009\chi_{17} - 0.0195\chi_{16} + 0.0009\chi_{17} - 0.00$ $\phi_{15} = -0.0004\chi_2 + 0.0041\chi_3 - 1.0113\chi_4 + 0.0001\chi_{11} - 0.0009\chi_{12} + 0.2246\chi_{13} + 0.0001\chi_{15} - 0.0009\chi_{16} + 0.2246\chi_{17} + 0.0001\chi_{15} - 0.0009\chi_{16} + 0.0001\chi_{16} + 0.0$ $\phi_{16} = 1.0382\chi_1 + 0.3628\chi_5 - 0.2127\chi_6 + 0.0636\chi_7 - 0.3224\chi_{10} + 0.5860\chi_{11} + 0.0510\chi_{12} - 0.3224\chi_{14} - 0.5860\chi_{15} - 0.3224\chi_{16} + 0.0536\chi_{15} - 0.3224\chi_{16} + 0.0536\chi_{15} - 0.3224\chi_{16} + 0.0536\chi_{16} + 0.0536\chi$ 0.0510X16 $\phi_{17} = 1.3428\chi_2 + 0.1168\chi_3 - 0.4462\chi_{10} + 0.6090\chi_{11} + 0.0530\chi_{12} + 0.4462\chi_{14} + 0.6090\chi_{15} + 0.0530\chi_{16} + 0$

3.3 Ruthenium diiodide

The optimized geometry of RuI₂ as obtained from molecular mechanics method is shown below.

Fig. 3 Structure of RuI₂

The MOs of this molecule is formed by linear combination of 17AOs (χ_1 - χ_{17}), where $\chi_1 = 5s$, $\chi_2 = 5px$, $\chi_3 = 5py$, $\chi_4 = 5pz$, $\chi_5 = 4dx2$ -y2, $\chi_6 = 4dz2$, $\chi_7 = 4dxy$, $\chi_8 = 4dxz$, $\chi_9 = 4dyz$, for Ru-1 and $\chi_{10} = 5s$, $\chi_{11} = 5px$, $\chi_{12} = 5py$, $\chi_{13} = 5pz$ for I-2 and $\chi_{14} = 5s$, $\chi_{15} = 5px$, $\chi_{16} = 5py$, $\chi_{17} = 5pz$ for I-3). The magnitude of contribution of

sd-Hybridization, Population Analysis And MOT In Ru²⁺. I. Simple Ruthenium Dihalides

various AOs ($\chi_1 - \chi_{17}$) in the formation of 17 MOs is demonstrated by Eqs., ϕ_1 to ϕ_{17} as given below. Here, the coefficients of χ are the eigenvector and its zero or near zero values have been omitted.

 $\phi_1 = 0.1682\chi_1 + 0.2485\chi_5 - 0.1457\chi_6 + 0.0436\chi_7 + 0.6041\chi_{10} - 0.0468\chi_{11} - 0.0041\chi_{12} + 0.6045\chi_{14} + 0.0468\chi_{15} + 0.0041\chi_{16} + 0.0041\chi_{1$

 $\phi_2 = -0.1185\chi_2 - 0.0103\chi_3 - 0.6705\chi_{10} - 0.0091\chi_{11} - 0.0008\chi_{12} + 0.6700\chi_{14} - 0.0091\chi_{15} - 0.0008\chi_{16} - 0.0$

 $\phi_3 = -0.0001\chi_5 + 0.0003\chi_7 + 0.9276\chi_8 + 0.0807\chi_9 + 0.0001\chi_{12} + 0.2075\chi_{13} - 0.0001\chi_{16} - 0.2077\chi_{17} + 0.0001\chi_{16} + 0.00001\chi_{16} + 0.0001\chi_{16} + 0.00001\chi_{16} + 0.00001\chi_{16} + 0.00001\chi_{16} + 0.00001\chi_{16} + 0.0000\chi_{16} + 0.0000\chi_{16} + 0.000\chi_{16} + 0.000\chi_{16$

 $\phi_4 = -0.1607 \chi_5 + 0.9172 \chi_7 - 0.0003 \chi_8 - 0.0180 \chi_{11} + 0.2068 \chi_{12} - 0.0001 \chi_{13} + 0.0180 \chi_{15} - 0.2069 \chi_{16} + 0.0001 \chi_{17} + 0.0001 \chi_{17} + 0.0001 \chi_{18} + 0.0001 \chi_{18}$

 $\phi_5 = 0.0083\chi_1 - 0.6139\chi_5 + 0.3598\chi_6 - 0.1076\chi_7 + 0.2911\chi_{10} + 0.3522\chi_{11} + 0.0306\chi_{12} + 0.2912\chi_{14} - 0.3523\chi_{15} - 0.0306\chi_{16}$

 $\phi_6 = 0.0866\chi_8 - 0.9962\chi_9$

 $\phi_7 = -0.4925\chi_5 - 0.8660\chi_6 - 0.0863\chi_7$

 $\varphi_8 = -0.0003\chi_1 + 0.2094\chi_2 + 0.0182\chi_3 + 0.0182\chi_5 - 0.0002\chi_6 - 0.1031\chi_{10} - 0.6166\chi_{11} - 0.0536\chi_{12} + 0.1032\chi_{14} - 0.6169\chi_{15} - 0.0536\chi_{16}$

 $\varphi_9 = -0.4974\chi_1 - 0.0001\chi_2 + 0.4844\chi_5 - 0.2839\chi_6 + 0.0849\chi_7 + 0.0636\chi_{10} + 0.4048\chi_{11} + 0.0352\chi_{12} + 0.0635\chi_{14} - 0.4041\chi_{15} - 0.0351\chi_{16}$

 $\phi_{10} = 0.0002 \chi_2 - 0.0024 \chi_3 + 0.1194 \chi_4 + 0.0012 \chi_{11} - 0.0138 \chi_{12} + 0.6880 \chi_{13} + 0.0012 \chi_{15} - 0.0138 \chi_{16} + 0.6877 \chi_{17} + 0.0012 \chi_{15} - 0.0138 \chi_{16} + 0.6877 \chi_{17} + 0.0012 \chi_{15} - 0.0012 \chi_{15} - 0.0012 \chi_{15} - 0.0012 \chi_{15} - 0.0012 \chi_{16} + 0.0012 \chi_{17} - 0.0012 \chi_{17$

 $\phi_{11} = -0.0103\chi_2 + 0.1189\chi_3 + 0.0024\chi_4 - 0.0596\chi_{11} + 0.6854\chi_{12} + 0.0139\chi_{13} - 0.0596\chi_{15} + 0.6851\chi_{16} + 0.0139\chi_{17} + 0.0139\chi_{17} + 0.0139\chi_{17} + 0.0139\chi_{17} + 0.0039\chi_{17} + 0.0032\chi_{17} + 0.003\chi_{17} + 0.003\chi_{17$

 $\varphi_{12} = -0.0001 \chi_4 - 0.0001 \chi_5 + 0.0005 \chi_7 - 0.3732 \chi_8 - 0.0325 \chi_9 + 0.0001 \chi_{11} - 0.0009 \chi_{12} + 0.6786 \chi_{13} - 0.0001 \chi_{15} + 0.0009 \chi_{16} - 0.6789 \chi_{17}$

 $\phi_{13} = -0.0001\chi_3 + 0.0647\chi_5 - 0.3690\chi_7 - 0.0005\chi_8 - 0.0588\chi_{11} + 0.6760\chi_{12} + 0.0009\chi_{13} + \chi_{14} + 0.0588\chi_{15} - 0.6763\chi_{16} - 0.0009\chi_{17}$

 $\phi_{14} = 0.0004\chi_2 - 0.0040\chi_3 - 1.0073\chi_4 - 1.0073\chi_{11} + 0.0008\chi_{12} + 0.2026\chi_{13} - 0.0001\chi_{15} + 0.0008\chi_{16} + 0.2027\chi_{17} + 0.0008\chi_{16} + 0.00$

 $\phi_{15} = -0.0873\chi_2 + 1.0035\chi_3 - 0.0040\chi_4 + 0.0175\chi_{11} - 0.2018\chi_{12} + 0.0008\chi_{13} + 0.0176\chi_{15} - 0.2019\chi_{16} + 0.0008\chi_{17} + 0.0$

 $\phi_{16} = -1.0160 \chi_1 - 0.0008 \chi_2 - 0.0001 \chi_3 - 0.3238 \chi_5 + 0.1898 \chi_6 - 0.0568 \chi_7 + 0.3211 \chi_{10} - 0.5795 \chi_{11} - 0.0504 \chi_{12} + 0.3207 \chi_{14} + 0.5789 \chi_{15} + 0.0503 \chi_{16}$

 $\phi_{17} = -0.0008\chi_1 + 1.3012\chi_2 + 0.1131\chi_3 - 0.0003\chi_5 + 0.0002\chi_6 - 0.0001\chi_7 - 0.4205\chi_{10} + 0.6005\chi_{11} + 0.0522\chi_{12} + 0.4212\chi_{14} + 0.6014\chi_{15} + 0.0523\chi_{16}$

The characteristics of transition metal (TM) elements are due to their d orbitals of (n-1) shell and s and p orbitals of n shell. As the atom of TM elements form compound they adopted either concept of bonded attraction and non-bonded repulsion of VB (Valence Bond) theory, and or positive and negative overlap populations of MO (Molecular Orbital) theory [3-5]. In the first case they may undergo various type of hybridization that depends upon the oxidation state of TM and number and nature of combing atoms or ions, and in the second case formation of molecular orbital by LCAO approximation [6].

At first we have to examine the extent of involvement of 4d, 5s and 5p AOs of Ru-1 in the formation of MOs in ruthenium dihalides. To see the total involvement of seven AOs of Ru-1 in eleven MOs (ϕ_1 - ϕ_{11}), the coefficient value (c_i) of each orbital (χ_i) has been added. The χ of non-bonding orbitals 4dz2 (χ_6) and 4dyz (χ_9) are excluded. The six vacant MOs (ϕ_{12} - ϕ_{17}) are exempted here, as there is only 22e⁻ to be filled by following Aufbau principle, Hund's rule and Pauli's exclusion principle and thus we considered only eleven MOs among seventeen MOs.

ΣΑΟ	RuCl ₂	RuBr ₂	RuI_2
$\Sigma 4 dx^2 - y^2$	1.8387	1.9165	2.0004
Σ4dxy	1.0407	1.1820	1.2399
Σ4dxz Σ5s	0.8364 0.6598	0.9694 0.6635	1.0145 0.6742
Σ5px	0.2471	0.2921	0.3385
Σ5py Σ5pz	0.1477 0.1276	0.1494 0.1254	0.1498 0.1218

The summation values of AOs in these eleven MOs as given above, clearly reflects maximum nvolvement is of 4d orbital $(4dx^2-y^2> 4dxz > 4dxy)$. Next to this is 5s orbital. The involvements of three p-orbitals are negligible as their summation value is very low in comparison to d orbital and considerably low with respect to s orbital. It is also evident from these data that the involvement of 5p orbital in Ru—X bond is

insignificant and the main role is played by 5s and by 4d orbital. Landis has also force fully deprived of the involvement of np orbital in hybridization in transition metals and supported sdⁿ hybridization (here n = 1) [7]. He has also described the hybridization bond angle and idealized molecular shapes for sdⁿ-hybridization and plotted graph between energy and bond angle.

Fig.4 Plot between energy and bond angle(Å) for sd-hybridization

As can be seen from figure 4 that bond angle (as presented by Landis et al.) has two minima one below 90° and one above 90° . This is because the energy curves are a function of the bond angles. The bond angles as presented in figure also hold up the Landis model of sd^n -hybridization, when n=1. Landis recommended that transition metals in their valency shell can accommodate only 12 electrons, 10e⁻ in five (n-1)d orbitals and 2e⁻ in one ns-orbital. The 18 electrons can be in their valency shell, 10e⁻ in five (n-1)d orbitals, 2e⁻ in one ns-orbital and 6e⁻ in three np orbitals, if they have their participation. Further, a close look at the bottom right side in the figures, 5-7, these very clearly demonstrated that the summation values are highest in case of iodide and lowest in chloride. This is due to cloud expending of halides. For a given metal ion, the ability of ligands to induce this cloud expending increases according to nephelauxetic series: $F < H_2O < NH_3 < en < ox < SCN < Cl^- < Br^ < \Gamma[8]$. Thus, iodide produces greater cloud expending effect than bromide, which intern produces higher than chloride in ruthenium dijodide, ruthenium dibromide and ruthenium dichloride, respectively. In orther words, the effective positive charge on Ru(II) is reduced greater by iodide and lesser by chloride. The result is in good agreement with nephelauxetic series of ligands. This effect can also be related with the difference in energy levels of ns and np orbitals of the halogens. Halogens enter into bonding through their s and p orbitals. These two orbitals differ in energy significantly. The energy difference $\Delta \varepsilon$ in s and p orbitals of the chloride, bromide and iodide are not same.

The s and p orbitals in iodide are close as compared to s and p orbitals of bromide and chloride, as shown below.

Energy (eV)	Cl	Br	Ι
ε _s	-0.9665	-0.8110	-0.6615
ε _p	-0.5218	-0.4814	-0.4867
$\Delta \epsilon_{s-p}$	-0.4447	-0.3296	-0.2148

Iodide, in which s and p orbitals are much close causes greater nephelauxetic effect and thus increases the covalent bond character in the molecule.Percentage of ionic and covalent bond character of Ru(II)Cl₂, Ru(II)Br₂ and Ru(II)I₂ has been calculated by solving equation "% ionic character= $16 \times \Delta \chi + 3.5 \times (\Delta \chi)^{2}$ ", and results are shown below:

Compound	RuCl ₂	RuBr ₂	RuI ₂
% Ionic Character	24.240	5.115	3.340
% Covalent Character	75.760	94.885	96.660

The result is in good agreement with experiment results that covalent character increases in the order: $RuI_2 > RuBr_2 > RuCl_2$.

Table-1. Overlaps between the various AOs of constituents atom in each MO					
NO	AO—AO	NO	AO—AO		
1	(Ru-1)5s—ns(X-2)	45	$(Ru-1)4dz^2$ —ns(X-3)		
2	(Ru-1)5s—npx(X-2)	46	$(Ru-1)4dz^2$ -npx(X-3)		
3	(Ru-1)5s—npy(X-2)	47	$(Ru-1)4dz^2$ —npy(X-3)		
4	(Ru-1)5s—npz(X-2)	48	$(Ru-1)4dz^2 - npz(X-3)$		
5	(Ru-1)5s-ns(X-3)	49	(Ru-1)4dxy—ns (X-2)		
6	(Ru-1)5s-npx(X-3)	50	(Ru-1) 4dxy—npx (X-2)		
7	(Ru-1)5s—npy(X-3)	51	(Ru-1)4dxy-npy(X-2)		
8	(Ru-1)5s-npz(X-3)	52	(Ru-1)4dxy-npz(X-2)		
9	(Ru-1)5px— $ns(X-2)$	53	(Ru-1)4dxy-ns(X-3)		
10	(Ru-1)5px-npx(X-2)	54	(Ru-1)4dxy-npx(X-3)		
11	(Ru-1)5px—npy (X-2)	55	(Ru-1)4dxy-npy(X-3)		
12	(Ru-1)5px—npz (X-2)	56	(Ru-1)4dxy-npz(X-3)		
13	(Ru-1)5px—ns (X-3)	57	(Ru-1)4dxz— $ns(X-2)$		
14	(Ru-1)5px-npx(X-3)	58	(Ru-1)4dxz-npx(X-2)		
15	(Ru-1)5px-npy(X-3)	59	(Ru-1)4dxz-npy(X-2)		
16	(Ru-1)5px-npz(X-3)	60	(Ru-1)4dxz-npz(X-2)		
17	(Ru-1)5py-ns(X-2)	61	(Ru-1)4dxz—ns $(X-3)$		
18	(Ru-1)5py-npx(X-2)	62	(Ru-1)4dxz-npx(X-3)		
19	(Ru-1)5py-npy(X-2)	63	(Ru-1)4dxz-npy(X-3)		
20	(Ru-1)5py-npz(X-2)	64	(Ru-1)4dxz-npz(X-3)		
21	(Ru-1)5py-ns(X-3)	65	(Ru-1)4dyz—ns $(X-2)$		
22	(Ru-1)5py-npx(X-3)	66	(Ru-1)4dyz— $npx(X-2)$		
23	(Ru-1)5py-npy(X-3)	67	(Ru-1)4dyz— $npy(X-2)$		
24	(Ru-1)5py-npz(X-3)	68	(Ru-1)4dyz— $npz(X-2)$		
25	(Ru-1)5pz— $ns(X-2)$	69	(Ru-1)4dyz—ns $(X-3)$		
26	(Ru-1)5pz— $npx(X-2)$	70	(Ru-1)4dyz-npx(X-3)		
27	(Ru-1)5pz - npy(X-2)	71	(Ru-1)4dyz-npy(X-3)		
28	(Ru-1)5pz-npz(X-2)	72	(Ru-1)4dyz-npz(X-3)		
29	(Ru-1)5pz— $ns(X-3)$	73	(X-2)ns— $ns(X-3)$		
30	(Ru-1)5pz— $npx(X-3)$	74	(X-2)ns—npx $(X-3)$		
31	(Ru-1)5pz—npy (X-3)	75	(X-2)ns—npy $(X-3)$		
32	(Ru-1)5pz-npz(X-3)	76	(X-2)ns-npz(X-3)		
33	$(Ru-1)4dx^2-y^2$ ns(X-2)	77	(X-2)npx—ns $(X-3)$		
34	$(Ru-1)4dx^2-y^2-npx(X-2)$	78	(X-2)npx-npx(X-3)		
35	$(Ru-1)4dx^2-y^2-npy(X-2)$	79	(X-2)npx-npy(X-3)		
36	$(Ru-1)4dx^2-y^2-npz(X-2)$	80	(X-2)npx-npz(X-3)		
37	$(Ru-1)4dx^2-y^2-ns(X-3)$	81	(X-2)npv-ns(X-3)		
38	$(Ru-1)4dx^2-y^2-npx(X-3)$	82	(X-2)npy-npx(X-3)		
39	$(Ru-1)4dx^2-y^2-npy(X-3)$	83	(X-2)npy-npy(X-3)		
40	$(Ru-1)4dx^2-y^2-npz(X-3)$	84	(X-2)npy-npz(X-3)		
41	$(Ru-1)4dz^2 - ns(X-2)$	85	(X-2)npz—ns $(X-3)$		
42	$(Ru-1)4dz^2$ —npx(X-2)	86	(X-2)npz— $npx(X-3)$		
43	$(Ru-1)4dz^2 - npv(X-2)$	87	(X-2)npz— $npy(X-3)$		
44	$(Ru-1)4dz^2$ —npz(X-2)	88	(X-2)npz—npz $(X-3)$		

where, X = Cl, Br, I, and n = 3 for Cl, n = 4 for Br and n = 5 for I.

Mulliken population analysis method [2] has been used to measure the contribution of electrons in each occupied MO. For this Eq.2 has been solved for 22e⁻ by putting 2e⁻ in each MO (ϕ_1 - ϕ_{11}). The shape of each $MO(\phi_1,\phi_{17})$ has been determined by the relative magnitudes and signs of the different coefficients. For this the RuX₂ has been decomposed into three parts: Ru-1, X-1 and X-2, and the MO of the complete system has been obtained by allowing the orbitals of Ru-1 (4d, 5s, 5p), X-1 (ns and np) and X-2 (ns and np) to overlap. The possible overlaps between the various AOs of ruthenium (Ru-1) and halogens (X-2 and X-2) in each MO will be 88, as describes in Table-1. The number of electrons is taken as two for ϕ_1 to ϕ_{11} and zero for ϕ_{12} to ϕ_{17} . Finally, Eq.3 has been solved for these eleven MOs with respect to each halide. In order to get a precise description, the sum of overlap populations for the eleven MOs of RuCl₂, RuBr₂ and RuI₂ have been worked out and results are presented in table 1-3, respectively.

-				
	MO No.	$\Sigma n_{r-s,i}$	sign	Nature of MOs
-	1	0.1924	(Positive)	Bonding
	2	0.1237	(Positive)	Bonding
	3	0.4502	(Positive)	Bonding
	4	0.2226	(Positive)	Bonding
	5	0.2228	(Positive)	Bonding
	6	0.0000	(zero)	Nonbonding
	7	0.0000	(zero)	Nonbonding
	8	0.2853	(Positive)	Bonding
	9	0.1182	(Positive)	Bonding
	10	0.1202	(Positive)	Bonding
	11	0.0735	(Positive)	Bonding

Table-3. Nature of occupied molecular orbitals of RuBr ₂				
MO No.	$\Sigma n_{r-s,i}$	sign	Nature of MOs	
1	0.2091	(Positive)	Bonding	
2	0.1371	(Positive)	Bonding	
3	0.2487	(Positive)	Bonding	
4	0.1395	(Positive)	Bonding	
5	0.1395	(Positive)	Bonding	
6	0.0000	(zero)	Nonbonding	
7	0.0000	(zero)	Nonbonding	
8	0.3256	(Positive)	Bonding	
9	0.0941	(Positive)	Bonding	
10	0.0940	(Positive)	Bonding	
11	0.1433	(Positive)	Bonding	

Table-4. Nature of occupied molecular orbitals of RuI₂

MO No.	$\Sigma n_{r-s,i}$	sign	Nature of MOs
1	0.3042	(Positive)	Bonding
2	0.1742	(Positive)	Bonding
3	0.0936	(Positive)	Bonding
4	0.0936	(Positive)	Bonding
5	0.1248	(Positive)	Bonding
6	0.0000	(zero)	Nonbonding
7	0.0000	(zero)	Nonbonding
8	0.3359	(Positive)	Bonding
9	0.1849	(Positive)	Bonding
10	0.0783	(Positive)	Bonding
11	0.0783	(Positive)	Bonding

As can be seen from Table-2 that among the eleven molecular orbital, nine are bonding and two are nonbonding. The bonding molecular orbitals are $\phi_{1-}\phi_5$ and $\phi_{8-}\phi_{11}$. The nonbonding molecular orbital are ϕ_6 and ϕ_7 , which are purely two d atomic orbitals of ruthenium namely dxz and dz². Table-3 shows that among the eleven molecular orbital of RuBr₂, nine are bonding and two are nonbonding. The bonding molecular orbitals are $\phi_{1-}\phi_5$ and $\phi_8-\phi_{11}$. The nonbonding molecular orbitals of seven molecular orbital of RuBr₂, none are bonding and two are nonbonding. The bonding molecular orbitals are $\phi_{1-}\phi_5$ and $\phi_{8-}\phi_{11}$. The nonbonding molecular orbitals of seven molecular orbital are ϕ_6 and ϕ_7 , which are purely two d atomic orbitals of the seven molecular orbital are ϕ_6 and ϕ_7 , which are purely two d atomic orbitals of molecular orbital are ϕ_6 and ϕ_7 , which are purely two d atomic orbitals of molecular orbital are ϕ_6 and ϕ_7 , which are purely two d atomic orbitals of molecular orbital are ϕ_6 and ϕ_7 , which are purely two d atomic orbitals of molecular orbital are ϕ_6 and ϕ_7 , which are purely two d atomic orbitals of molecular orbital are ϕ_6 and ϕ_7 , which are purely two d atomic orbitals of molecular orbital are ϕ_6 and ϕ_7 , which are purely two d atomic orbitals of molecular orbital are ϕ_6 and ϕ_7 .

ruthenium namely dxz and dz². Table-4 shows that among the eleven molecular orbital of RuI₂, nine are bonding and two are nonbonding. The bonding molecular orbitals are $\phi_1 - \phi_5$ and $\phi_8 - \phi_{11}$. The nonbonding molecular orbital are ϕ_6 and ϕ_7 , which are purely two d atomic orbitals of ruthenium namely dxz and dz². A comparative study of table 2 to 4 reflected that in all cases the nonbonding electrons are present in 6th and 7th molecular orbitals. Further, similarity in positions of nonbonding molecular orbitals prompted us to examine the eigenvalues of Ru⁺²ion and to compare them with the eigenvalues of the halides.

Scheme-1. Splitting of d orbitals in Ruthenium(II) halides

Energy (eV)	Ru++	RuCl ₂	RuBr ₂	RuI ₂
-0.4521		4dxz, 4dxy		
-0.4579			4dxy, 4dxz	
-0.4725				4dxy, 4dxz
-0.5476	$4dx^2-y^2$, $4dz^2$, $4dxy$, $4dyz$, $4dxz$	4dyz, 4 dz ²	4dyz, 4 dz ²	4dyz, 4 dz ²
-0.5560				$4dx^2-y^2$
-0.5702			$4dx^2-y^2$	
-0.5934		$4dx^2-y^2$		

The energies of atomic orbitals of Ru^{+2} ion, and in its three halides are demonstrated in scheme 2, which shows that all the d orbitals in Ru^{+2} ion are degenerate and their energy is -0.5476eV. The energy of 4dyz, and $4dz^2$ orbitals (-0.5476 eV) in all the halides are also same, which confirmed non-bonding MOs are these pure d-AOs of Ru-1. In case of chloride the energy of $4dx^2-y^2$ is -0.5934eV and in bromide and iodide, -0.5702eV and -0.5560eV respectively. The 4dxy, and 4dxz are degenerate in all the cases but their energies differ, being – 4521eV in chloride, -0.4579eV in bromide and -0.4725eV in iodide. The energy separation ΔE^- between the energy levels of the nonbonding and antibonding MO is directly link to the strength of the interaction between the ligand orbitals and those on metal. The stronger this interaction, the more the antibonding orbitals are destabilized, so the larger the energy gap ΔE^- . The magnitude of splitting of metal d orbital has also been studiedbycalculatingenergy separationof nonbonding degenerate orbitals(4dyz, $4dz^2$) and $4dx^2-y^2$ or 4dxy, 4dxz. The highest value is in chloride and lowest in iodide and as shown by Scheme-2. This is in agreement with spectrochemical series of ligands [9].

IV. CONCLUSION

- (i) The ∑c_ivalues of AOs of Ru-metal in their halides (RuCl₂, RuBr₂, and RuI₂) show sd-hybridization, which is supported by their bond angles as proposed by Landis et al.
- (ii) Further, summation values follow the trend RuI₂> RuBr₂> RuCl₂, which shows good agreement with nephelauxetic series of ligands.
- (iii) The magnitude of splitting of Ru^{2+} d-orbitals follow the trend $RuCl_2 > RuBr_2 > RuI_2$, which is in good agreement with spectrochemical series of ligands.
- (iv) Population analysis study shows among the seventeen $(\phi_1 \phi_{17})$ MOs formed by LCAO-MO approximation, nine $(\phi_1 - \phi_5 \text{ and } \phi_8 - \phi_{11})$ are bonding, two $(\phi_6 \text{ and } \phi_7)$ are nonbonding and remaining six $(\phi_{12} - \phi_{17})$ are antibonding. The nonbonding MOs, ϕ_6 and ϕ_7 , are purely 4dyx and 4dz² AOs of ruthenium, respectively.
- (v) MOT clearly demonstrates the energy levels of different molecular orbitals, the position of nonbonding MOs and energy gap ΔE^- and ΔE^+ due to splitting. Further, MO diagram reflected that all the MOs $(\phi_1-\phi_{17})$ have definite energy and definite shape due to (a) different contribution $(c_{ri} \text{ and } c_{si})$ of many basis functions $(\chi_1-\chi_{17})$ (b) difference in energies $(\Delta \varepsilon)$ of overlaping AOs (c) difference in overlap integral (S_{r-s}) and (d) symmetry (phase) of overlapping AOs. And, thus provide clear cut electronic picture of the molecule, which more precisely explain or help to explain the various properties of the molecule.

ACKNOWLEDGEMENTS

The authors are thankful to Principal, M.L.K. (P.G.) College, Balrampur (U.P.), India for laboratory facilities.

REFERENCES

- (a) Singh, R.K, Sharma, P.D. and Singh, P. P., "Molecular Mechanics Based Study of Molecular Orbital of Cobalt(II) halides." *Asian J. Chem.* 2007; 19(1), 121.(b) Khan, G. and Tewari, R.P., "Study of Molecular Orbitals of Ruthenium (II) Bromide Based on Molecular Mechanics," Arch. Appl. Sci. Res. 2011; 3(2), 483. (c) Khan, G., Verma, R. N. and Pandey, B.P.Study of Molecular Orbitals of Ruthenium (II) Bromide Based on Molecular Orbitals of Ruthenium (II) Bromide Based on Molecular Orbitals of Ruthenium (II) Bromide Based on Molecular Mechanics," J. Chem. Pharm. Res. 2011; 3(2), 172. (d) Khan, G., Shukla, A. and Tewari, R.P., "Comparative Study of Molecular Orbitals of Ruthenium (II) Bromide and Ruthenium (II) Iodide on Molecular Mechanics," Int.J. ChemTech Res. 2012; 4(1), 445.
- [2]. (a) Mulliken, R.S., "Electronic Population Analysis on LCAO-MO Molecular Wave Function.I." J. Chem. Phys. 1955; 23, 1833. (b) Mulliken, R.S., "Electronic Population Analysis on LCAO-MO Molecular Wave Function.II. Overlap Populations, Bond Order, and Covalent Bond Energies," J. Chem. Phys. 1955; 23, 1841. (c) Mulliken, R.S., "Electronic Population Analysis on LCAO-MO Molecular Wave Function.III. Efffects of Hybridization on Overlap and Gross AO Populations" J. Chem. Phys. 1955; 23, 2338. (d) Mulliken, R.S., "Electronic Population Analysis on LCAO-MO Molecular Wave Function.IV. Bonding and Antibonding in LCAO and Valence-Bond Theories" J. Chem. Phys. 1955; 23, 2343.
- [3]. Heitler, W. and London, F., "WechselwirkungneutralerAtome und homoopolare Binding nach der Quantenmechanik" Z. Physik. 1927; 44, 455.
- [4]. Pauling, L. and Wilson, E.B., "Introduction to Quantum Mechanics," McGraw-Hill Book Company, Inc. New York, 1935, pp340-380.
- [5]. Water, E. and Kimball, "Quantum Chemistry," John Wiley and Sons, Inc., New York, 1944.
- [6]. (a) Pople, J. A. Santry, D. P. and Segal, G. A., "Approximate Self-Consistent Molecular Orbital Theory I. Invariant Procedures." J. Chem. Phys. 1965, 43, 5129. (b) Pople, J. A. and Segal, G. A., "Approximate Self-Consistent Molecular Orbital Theory II. Calculations with Complete Neglect of Differential Overlap," J. Chem. Phys. 1966, 44, 3289.
- [7]. (a) Landis, C. R., Lipkowitz, K. B. and Boyd, D. B. *Reviews in Computational Chemistry*, Vol. 6, VCH, 1995, Chapter 2. (b) Landis, C. R., Cleveland, T. and Firman, T. K., "Making sence of the shape of simple metal hydrides," *J. Am. Chem. Soc.* 1995, *117*, 1859. (c) Landis, C. R., Firman, T. K., Root, D.M. and Cleveland, T., "A valence bond perspective on the molecular shapes of simple metal alkyls and hydrides.," *J. Am. Chem. Soc.* 1998, *120*, 1842. (d) Landis, C. R., Cleveland, T. and Firman, T. K., "Valence bond concepts applied to the molecular mechanics description of molecular shapes.3. Applications to transition metal alkyls and hydrides," *J. Am. Chem. Soc.* 1998, *120*, 2641.
- [8]. Tchougreeff, A. L. and Dronskowski, R., "Nephelauxetic Effect Revisited," Int. J. Quan. Chem. 2009; 109, 2606.
- [9]. Fielder, S.S., Osborne, Lever, A.B.P. AND Pietro, W.J., "First-principle interpretation of ligand electrochemical (EL(L)) parameters. Factorization of the .sigma. and .pi. donor and .pi. acceptor capabilities of ligands," J. Am. Chem. Soc.1995; 117(26), 6990.

Anil Kumar Soni." sd-Hybridization, Population Analysis And MOT In Ru2+. I. Simple Ruthenium Dihalides." IOSR Journal of Engineering (IOSRJEN), vol. 09, no. 12, 2019, pp. 28-37.

International organization of Scientific Research