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Abstract: In this paper, we introduce a new class W, (a, b, a, ) consists of multivalent function which is
analytic in the open unit disk with negative coefficient defined with the help of Hohlov operator.
Characterization property, distortion theorems and some other interesting results of this class are investigated.
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I. INTRODUCTION
Let A denote the class of functions defined as (1), (2)

fz)=z+ a, z"
1) B
g@)=z+ ) b, z"
)

which are analytic and univalent in open unit disk U = {z:|z| < 1} isin A.
Then convolution or Hadmard product of f(z) and g(z) is defined by

F*9)(@) =z+X i, a, b, 2" z€eU. 3)
Let W, (a, b, a, B) denote the subclass of A consisting of functions of the form
f@) = 2" =35 -1 2" (@ngk—1 > 0:k €N) (4)

which are analytic and k-valent in the open unit disk U = {z: zec,|z| < 1}.
Definitionl. Generalized hypergeometric  function pFgis defined in [5] as follows for
ay,Qy ... Gy, by,by .....bg € N
- (@)n-12""

H]"I=1(bj)n—1(n - 1)'

ﬁpF@[al,az .....ap;bl,bz bq,Z] =1 +Z

n=2

()
(p<q+1), lz] <1
where (a),, is pochhammer symbol defined, in terms of the Gamma function, by
_F(a+n)_ 1,if (n=0)
(@n = I'(a) {a(a+ D...a+n-1),if (n€ N)}'

Definition 2: Let f(z)e(a,b,a,) be of the form (4) then the Hohlov operator
((I(a, b)f(z)), [(I(a,b)f(2)): W, = W,)] [4] is defined by means of a Hadmard product below:

Hf:1(ai)n—1 Zn_1 n+k—1

(I(a,b)f(z)) = kaFcL[al,az weesGy; by, by .....bq;z] * f(z) =zF - ; ;'I:l(bj)n—l(n Y Apii—12

(aq,a; .....ap,bl,bz .....bq € N&keN,zel).
(6)
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Definition 3: A function f(z) is in the class W, (a, b, @, B) if it satisfies the condition

22 (I(a, b)f (2))"

227 (1(a,b)f (2))" = 2(1 — @)z'~*(I(a, b)f (2))’
where0 <a<1,0<B<1,keN,zeU. (7)

<B.

1. CHARACTERIZATION PROPERTY
We now investigate the characterization property for the function f(z) belongs to the class Wy (a,b,a, )
thereby, obtaining the coefficient bound.
Theorem 1: Let the function f be defined by (4) then f(z)eW, (a, b, @, B) if and only if

l (a')n
Z Tty (= DI k=20 =)+ 201 = @l
<k[(k—=1)(A -5+ 281 - a)]
where0<a<1,0<f<1,a,44-1>0keN (8)
the result is sharp for the below function.
F@) =2k — k[(k = 1D(A =) + 281 — )] 1T, (B)p-1(n — 1!
(n+k=Dln+k—-2)(1-B)+201 -]} (a)n1
Proof : Suppose that the inequality (8) holds true and let |z| < 1. Then we obtain
|227%(1(a, b)f (2))"| = B|z*>* (1(a, b)f(2))" — 2(1 — @)z} *(I(a, b)f(2)) |
‘k(k -1 -Ti 2%(”"‘16 — 1) (1 + k= 2y s

0

n+k—1

L 1(a')n 1

(b) 1(71—1)'( +k—1)an+k—1[(n+k—2)_2(1_a)]
] =1 n—

B K[tk = 1) = 2(1 - @)] z

Z T 1(}) ;Ea-l)(r; 1_ o m+k—D[n+k—-2)1-B)+2801—)]ay,—1 —k[(k—1)(A - )

+28(1 — )]
<0
by our hypothesis. Hence by the maximum modulus principle f (z)eW, (a, b, a, B).
To prove the converse, assume that f(z) is defined by (4) and is in the classW, (a, b, a, B) so by the condition (7).

2% (I(a, b)f (2))" <p
72~ k(l(a b)f(z))" —2(1—a)zl- k(l(a b)f(z))

_ R o Hizl(at)n—l
= ‘k(k 2 Z"=2n‘7 INCHNTER]

m+k—1) (n+k—2)a, ,_12" |

‘k(k - Z i 1(; ;:a'l)(’; 1 Sk D (k= Dy 2

-1

[T @)n-1 <p

]'qzl(bj)n—l (n - 1)!

- _;(@)n—1 _ _ n-1 _ _
= |¥r_, —l'lf=1(b,-)n-1(n—1)! m+k-1)(n+k—-2)ay,x_12 k(k—1)|.

—2(1-0) {k—zn n+k-1) an+k_lz“'1}
n=2

-1
0 Hip=1(ai)n—1
=2 (b)) —1(n—1)!

m+k—Da, 2" (n+k-2)-21-a)] —k(k—1) +2k(1—a)| <p

(9)
since |Re(z)| < |z| for any z, we find from (9) that

b TP@na 3 3 nel_ i _ o M@
Re {[anz (11t m+k-—1Dn+k-2)a,14-12 k(k—1)|. |Xn=2 THERCS A= (n+
#—1an+r—1zn—1In+k—2-21-a— k- 1+24(1-a) - 1<f
(10)

Choose values of z on the real axis so that (I(a, b)f (2))is real. Taking z — 1 through real values, we have

International organization of Scientific Research 39 | Page



A New Class of Analytic and Multivalent Function Associated With a Fractional Calculus

m+k—1D(m+k—-2)a, 12" —k(k—1)

N H?=1(ai)n—1
H;'Z:l(bj)n—l (n —1)!

N H?=1(ai)n—1
=F [ =2 H]'q=1(b]')n—1(n - 1!

(M +k—Dayy 2" [ +k—2) —2(1 — )] — k(k — 1)

+2k(1 — o)
= (ke = DI+ k= 2)(1 = B) + 26— @)y s < k(= DA =)+
26(1 - a)

desired assertion (8) is proved .
Finally, we note that the assertion (8) of theorem 1 is sharp for the function

k[ =11 =B+ 2801 — )T (B)p1(n — D!

(Z) =gk _ n+k-1
4 + k= DI+ k=2 - ) + 280 — DI @0

(11)
Corollary 1. Let the function f(z) defined by (4) belong to the class W, (a, b, a, B) then

. k[(k = DA = B) + 281 — )] T}, (B)p-1(n — 1! N
LS G k= DI+ k= D — ) + 280 — DT 1@
(12)
if we put k=1, i=1, j=1, b=1, a = y, then its reduced to [1]
2p(1—vy)
(n)[(n -DA-p+21-y)la
if n=2 then [1]
0 < B —vy)
2T +pA-2p]a
Theorem 2: Let the function f(z) be defined by (4) and g(z) defined by
9() =2 - z by iy 2!

(bn4r-1 > 0:keN) (13)
be in the class W, (a, b, @, B), then the function h(z) is defined by

BG) = (1=0)f () +09(2) = 7% = ) ey 274

n=2
(Chok—1 =0 —0)ay -1 +0byyy1;0<60<1,k€eEN) (14)

is also in the class W, (a, b, a, B).
Proof: By the hypothesis of theorem 2 we find from (8) that

N H?:l(ai)n—l
n=2 H]q:1(bj )n—l (Tl - 1)'

(n+k—-Dln+k—-2)A-B)+2p(1 - a)lcysk—

Z I’ (}, ;(all)(r;l 1_ D1 m+k—D[m+k—-2)A1-B)+28(1— )1 —0)a, i
=1 n

[T7-1(a)n—
+ Z; H}’Zl(bj;n_l(n S (k= DI k= 2)(1 = B) + 261~ @)16b, s
SA-0k[(k-1DA-p+28(0—a)]+ 0 k[(k— 1)1 - p) +2(1 —a)]
<k[(k-—1DA-p)+28(1 - a)]
Hence the function h(z) satisfies the condition (7) & h(z) € W (a, b, @, B).
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1. DISTORTION THEOREM
Following [8] we can easily prove the results given below:
Theorem 3: Let0 < ¢ < 1,0 < B < 1,k € N .If the function f(z) defined by (4) being the class W, (a, b, @, )
then
k[(k =11 =pB) +2p(1 —a)]
(k+ DA - B) +2(1 — a)]
(15)
k[(k =11 = p) +28(1 - a)]

ol <1+ G S a =+ 280 —lT "k“
(16)

q .
=1 b} | |k+1

If @) = |zI* -

Proof :- Since f(z)eW, (a, b, a, ) By theorem 1 we have
(k + DK = B) + 280 - I, @
q b. Z An+k—1

]=1 ] n=2

N l 1(a')n 1
Z 7, (B)- 1(n_1)|( n+k—1)[Mn+k-2)1-p8)+2801-a)lay i

. = k[(k—l)(l—ﬁ)+2[3(1—a)]
Z k[(k —1)(1 - p) +2p(1 - a)]
£, = G D0 - B) + 2B T
Consequently, we obtain If ()| = |z|* = |z|* T X0, ap -1
k[(k —1)(1 - p) +2p(1 - a)]

) k+
1= - G oa - p s - ol e

and

o0

@ < lal* + 12141 Z -

[(k _ 1)(1 — ﬁ) + 2,8(1 - a)]
k k+1
@< 4 G oG =7 + 260~ Ty e

Which prove the assertions (15), (16) of theorem 3.
Corollary 2- Under the hypothesis of theorem 3, f(z) is included in an open unit disk with its center at the origin
and radius r given by:

N K[(k=1)(1 = p) +2p(1 — o)]. l'l, 1b)
(k+ D[k —B) + 2B(1 — )]

V. FURTHER PROPERTIES OF Wi (a,b,a, 3)
Now we study some interesting properties of the class W, (a, b, a, 8). The proof of each of the following results
in this section runs parallel to that of the corresponding assertion made by Srivastava and Aouf [11]. We skip
details involved.
Theorem 4: Let the conditions given by (4) be satisfiedand 0< a’' < 1,0 < 8'< 1, then
Wk (a' b' a, ﬁ) :Wk (av b: a,l.B’):

- B(1—a) p'(1—a)
If and only if = 17
y A-p)+2p(1-0)  (A-pH+2p'(1—a) A7)

Theorem5: Let0< a; <a, <1 and 0 < B <1,then
Wi(a, b, a1, B) 2 Wy (a,b,az ) (18)

Theorem 6: Let0< 8; <, <1 and 0 <a <1,then
Wk(al b' a'ﬂl) c Wk (a, b, a’,ﬂz) (19)
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