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Abstract: In this paper, the author establishes four interesting theorems exhibiting interconnections between
images and originals of related functions in the Laplace transform. Further, we obtain five new and general
integrals by the application of the theorems. Two known results are also given as a direct consequence of the
third theorem. The importance of our findings lies in the fact that they involve the X -function which are very
general in nature and are capable of yielding a large number of simpler and useful integrals merely by
specializing the parameters in them.
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l. INTRODUCTION
The Laplace transform occurring in the paper will be defined in the following usual manner:

T(s)=L{f(x);s} :Tesx f (x)dx (1.1)

Where Re(s)>0 and the function f (X) is such that the integral on the R.H.S. of (1.1) is absolutely convergent.
The well known Parseval Goldstein theorem for the transform will be in the sequel:

If f,(s)=L{f,(x);s} and f,(s)=L{f(x);s}
Then [ £,00 F,(x)dx = [ £,00 ,(x) dx (1.2)
0 0
The N - function introduced by Suland et.al. [6] defined and represented in the following form:

SE] 8 N 1 O

Py .07 P .Gizr (bJ ) ﬂj )1,m1[Ti (bji , ﬂji)]mﬂyqi
= L J 0(s)z°ds
2@ L3)
Where @ = -1;
Hr(bj _ﬂjs)]:[r(l— a, +aj5)
0= q s (L4)
ZTi { H C(-b; + B;s) H ['(a; —ajis}
i=1 j=m+1 j=n+1

We shall use the following notation:
A* = (a‘j ' aj )l,n '[Ti (aji ’ aji )]n+1, p; ! B* = (b] ' ﬁj )l,m '[Ti (bji ' ﬂji )]m+1,qi

The following Laplace transforms will be required to prove our theorems.
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Where mln{mln Re(p+;tr ; J Re(s), }
ji

m,n -4
S NG [28
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Nl s} (1.6)

a.
Where max R({;tri -+ —pj <0,{Re(s),A}>0

IKj<
Jsm ji

Il. THE THEOREMS:
Theorem 2.1:
It L{f(x);s}="f(s) (D)
And
{x”‘l fOONDS e [2X  Be i)];s} =h(s) (2.2)
Then

j (X+5)" f (X)N™ |2 1dx = h(s) (2.3)

quTr

b.
Where min Re(/lr i+p} >0, min{Re(s), A} > 0 and the integrals involved in equations (2.1), (2.2)

1<J<m N
n

and (2.3) are absolutely convergent.

Theorem 2.2:
If L{f(x);s}="f(s) (24)
And
L{Xp 1 B f (X)Np J0i Lz r[ZX B*, (1—p /1)]; S} = h(S) (25)
Then
[Oc+s)7 £ (x—a)Npt  [2(x+s)7 |&]dx=h(s)  (26)
0
1-a; i
Where 1mln Re(ﬂr + pJ >0, min{Re(s), 4} >0,a>0 and the integrals involved are absolutely
<J<n .
ji
convergent.
Theorem 2.3:
If L{f(x);s}="(s) 2.7)
And
L{x* e TOONDT, . [2x |46 P s} = h(s) 8)
Then
j (x+8)7 F N [2(x+5)"| s]dx =h(s) (2.9)

1I<j<m

b; :
Where max Re(ﬂr - p] <0, min{Re(s),A}>0,a> 0 and the integrals involved are absolutely
ji

convergent.
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Theorem 2.4:

It L{f(x);s}="T(s) (2.10)

And

L{x"’ ?(X)NT)1 P b Gl b s} =h(s) (2.12)

Then

j (x+8)" FOONDY L [2x* |6,y T1dx = h(s) (2.12)

b. _
Where max Re[lri - p] <0, min{Re(s), A} > 0,b >0 and the integrals involved are absolutely

I<j<m -
ji

convergent.

1. INTEGRALS:
By specializing f(x), in the above theorem/ corollaries we can obtain new integrals involving X -functions.

Thus, in Theorem 2.1, if we take  (X) = (x* + 2ax)" ™2,
The following integral follows after a little simplification Wlth the help of ([5], p.138, eqg. (13)):

I(x2+2ax)v’1’2(x+s) PR [z(x+8) 7| A ]dx
0

Pi Giiiir
4—

—I(v+1/2)(2a) [

i (a/ 2)v+2r

" 2sin )" W H N (—v+r+1)(s—a)”
1 2v+2r,1), A*
N';'I -Cirql +Lz;r [Z(S a) f?;i (o, ;.) " ]
0 a/ 2 v+2r .
>l RPN I CoR e o e DI B0

(s- a)P S0 (—v + 1 +1)(s—a)” N g e
b;

Provided v >—1/2 and|arg(a) |< 7, mln{mln Re£p+ﬂr 7 J Re(s), /1}>0
ji

If we reduce the X -functions involved in (3.1) to ¥ -function, we get the result in a very elegant form, after a
little simplification:

I(x2 +2ax) " (x+s)” PN z(x+s) | £]dx
0

Jr F(v+1/2)(2a)r£ a }

2sinvr (s—a)”" 2(s—a)
&o 1;m,n;L,0 2(s—a)* | (p-2v+2r,A),(p-2v+2r, 1), A*
[ 1,0;p; G +1;0,2:7; [ a 2IBR(pA)DA-v) ]
{2

NO 1;m,n1,0 [z(s—a)‘}'

1,0;p;,0;+1,0,2:7;:r a Y
[2(54))

Again taking f(X) = X" in Theorem 2.2 yields after a little simplification:

(p,4).(p,2), A*
Ba,(p,}'f)),(l,l)(l—v,l)] ] (3.2)

5] dx

Pi 07T

T(x—a)v(x+s) PR [z(x+s)

F(V) m,n+1

oy ) A
T (e Ayl PG (“L+p—v,2), A ]
(s+a)

A
[z(s+a) Be (o)

(3.3)
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1<j<m

b;

Provided that min< min Re[p v-1+A4r, 5 J Re(v+15),4
ji

Similarly, if we take f(X) = (L+a/x)"'* pf(L+2x/a) where PX(X) is the Legendre function

([3],p-1009,eqn(8.771(1)), in theorem 2.3, simply using ([2],p.216,eq.(16);p.294,eqn(5)), we have an interesting
integral:

I(1+a/x)k’2Pnk(1+a/x)(x+a) PN [2(x+8) | gl dx
0
n+1 r
a"m & (s—a) (n+1-k Qe * (1 ket 2) (1
T Z( s j ( ri & No sz [20) | Crentine] (34)
=0 :

Provided that
1-a

(24

Re(k) <1, max Re(/lri o+ n] <0, min{Re(s),A}>0,|arg (@) > 0
<j<n

ji

Next, taking (X) = X" in Theorem 2.4, a little simplification yields the following integral:
[ocra)y 0Nt L [2(0)°
0

r) . «
:WNE,;LTi;r[Z(S +a)” ‘(Al—v+p,ﬂ),B*] (3.5)

A*
S L

1-a; b.
max Re| A L+p-v|<0,2>0 , minRe| Ar,—+p,s|>0

I<j<n aji 1<j<m ji
Also, in Theorem 2.3, if we take f (X) =X""X]"% . [2x"], and reduce the N7, . involved in
(2.8) to Np gror o We get a known result ([3],p.34), after a little simplification.
Again, ifwetake A =1, p=f,7,=1Lr =1 and Nr; o OCCUITing in (2.9) as

2,0 (1-a)
Ni2er [Z(X +85) ‘ (1-y 1),(1-5,1) ] :
We shall easily arrive at a result by Jain ([4], p.192) after a little simplification.
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