On Quasi Intuitionistic A-Open Maps

T.A.Albinaa*And Gnanambalilango*

Government Artscollege, CBE Corresponding Author: T.A.Albinaa

Abstract: We introduce the concept of quasi intuitionistic α -open function and quasi intuitionistic α -preopen functions. Further α -normal and α -quasi normal spaces are introduced in intuitionistic topological spaces.

Date of Submission: 26-03-2019

Date of acceptance: 09-04-2019

I. INTRODUCTION

In2011[6]introducedQuasia-Closed,Stronglya-ClosedandWeaklyaIrresolute Functions in topological spaces. In the present paper we define quasi intuitionistic α -open function, quasi intuitionistic α -preopen function, intuitionistic α -normal and intuitionistic α -quasi normal spaces and obtain their basicproperties.

II. PRELIMINARIES

Definition2.1.[4]AnintuitionisticsetAisanobjecthavingtheform<X,A1,A2>where A1 and A2 are subsets of X satisfying A1 \cap A2= ϕ . The set A1 is called the set of members of A, while A2 is called the set of nonmembers of A. Furthermore, let{Ai:iEI}beanarbitrary familyofintuitionisticsetsinX,

where $A_i = \langle X, A_i^1, A_i^2 \rangle$ then

- $\varphi = \langle X, \varphi, X \rangle, X = \langle X, X, \varphi \rangle$
- A if $A_1 \subseteq B_1$ and $A_2 \supseteq B_2$
- $\overline{A} = < X, A2, A1 >$
- $A-B=A\cap \overline{B}$
- [] $A = \langle X, A, A_1^c \rangle$
- $<>A = <X, A_2^c, A_2>$
- $\cap A_i = \langle X, \cap A_i^1, \cup A_i^2 \rangle$ and $\cup A_i = \langle X, \cup A_i^1, \cap A_i^2 \rangle$.

Definition 2.2.[4] An intuitionistic topological space on a nonempty set X is a family τ of intuitionistic sets in X satisfying the following axioms: • $\phi \sim$, $X \sim \in \tau$

- $G_1 \cap G_2 \in \tau$ for $G_1, G_2 \in \tau$
- $\bigcup G_i \in \tau$ for any arbitrary family $\{G_i : i \in J\} \subseteq \tau$

Inthiscasethepair(X,τ)iscalled intuitionistic topological space and any intuitionistic set in τ is known as an intuitionistic open set in X, and the complement of intuitionistic open sets is known as intuitionistic closed set in X.

Definition 2.3.[10] Let (X, τ) be an intuitionistic topological space. An intuitionistic set A of X is said to be

- Intuitionistic semiopen if $A \subseteq I cl(I int(A))$
- Intuitionistic preopen if $A \subseteq I$ int(I cl(A))
- Intuitionistic regular open if A = I int(I cl(A)).

 $The family of all intuition is tic reopen and intuition is tic regular open sets of (X, \tau)$

aredenotedbyIPOS(X)andIROS(X)respectively.

Definition 2.4.[4] Let (X, τ) be an intuitionistic topological space on X and A =<X, A₁, A₂> be an intuitionistic set in X. Then the several topologies generated by (X, τ) are $\cdot \tau_{0,1} = \{[] A : A \in \tau\}$

• $\tau_{0,2} = \{ <> A : A \in \tau \}$

• $\tau_1 = \{A_1 : <X, A_1, A_2 > \in \tau \}$

• $\tau_2 = \{ (A_2)^C : \langle X, A_1, A_2 \rangle \in \tau \}$

Definition 2.5.[4]

• If $B = \langle Y, B_1, B_2 \rangle$ is an intuitionistic set in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the intuitionistic set in X defined by $f^{-1}(B) = \langle X, f^{-1}(B_1), f^{-1}(B_2) \rangle$

• If $A = \langle X, f(A_1), f(A_2) \rangle$ is an intuitionistic set in X, then the image of A under f, denoted by f (A), is the intuitionistic set in Y defined by $f(A) = \langle Y, f(A_1), f_{-}(A_2) \rangle$ where $f_{-}(A_2) = Y - (f(X - A_2))$.

III. ON QUASI INTUITIONISTIC A-OPENMAPS

Definition 3.1. An intuitionistic map $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be quasi intuitionistic α -open if the image of every intuitionistic α - open set in X is intuitionistic open in Y.

Theorem 3.2. Every quasi intuitionistic α -open map is intuitionistic open

Proof.Let U be intuitionistic open in X. Since every intuitionistic open set is intuitionistic α -open, U is intuitionistic α -open in X. Then f (U) is intuitionistic open in Y. Hence f isintuitionistic open.

Theorem3.3.An intuitionistic map $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be quasi intuitionisticaopeniffforevery subset U of X, $f(Ia int(U)) \subset I$ int (f(U))

Proof.Let f be quasi intuitionistic α -open function. For an intuitionistic set U of X,I int(U) \subset U andI α int(U)isanintuitionistic α -openset.Hence,f(I α int(U)) \subset f(U).Asf(I α int(U))isintuitionisticopen,f(I α int(U)) \subset I int(f(U)).

Conversely, assume $f(Iaint(U)) \subset Iint(f(U))$. If U is intuitionistic a-open in X

then $f(U) = f(Iaint(U)) \subset Iint(f(U))$. But we know that $Iint(f(U)) \subset f(U)$.

Therefore f(U) = Iint(f(U)) and so fisquasi intuitionistic α -open.

Lemma 3.4. An intuitionistic function $f : (X, \tau) \to (Y, \sigma)$ is quasi intuitionistic α -open then I α int $f^{-1}(B) \subset f^{-1}(I \text{ int}(B))$ for every set B of Y.

*Proof.*Let *B* be any intuitionistic set in *Y* and *I* α *intf*⁻¹(*B*) is an intuitionistic α -open set in *X*. As *f* is quasi intuitionistic α -open, *f* (*I* α *intf*⁻¹(*B*)) *CI int f*(*f*⁻¹(*B*)) *CI int*(*B*). Thus I α int f⁻¹(B) *Cf*⁻¹(I int(B)).

Definition 3.5. An intuitionistic subset S is called intuitionistic α - neighbourhood of a point x_{α} in X if there exists an intuitionistic α -open set U such that $x_{\alpha} \in U \subset S$

Theorem 3.6.Let (X, τ) and (Y, σ) be intuitionistic topological space and $f : (X, \tau) \rightarrow (Y, \sigma)$ be an intuitionistic function. Then the following are equivalent.

(i) f is quasi intuitionistic α -open.

(ii) For each subset $Uof X, f(Ia int(U)) \subset I int(f(U))$.

(iii) For each $x \in X$ and each intuitionistic α -neighbourhoodU of $x \in X$ there exists intuitionistic neighbourhoodV off(x_{2}) in Y such that $V \subset f(U)$.

Proof.(i))⇒(ii) By Theorem

(ii) \Rightarrow (iii) Assume (*ii*) holds. Let $x_{\sim} \in X$ and U be an arbitrary intuitionistic α - neighbourhood of $x_{\sim} \in X$. Then there exists an intuitionistic α -open set V in X such that $x_{\sim} \in V \subset U$. Then by (ii) $f(V) = f(I(V)) \subset Iint(f(V))$ and hence f(V) = Iint(f(V)). Therefore it follows f(V) is intuitionistic open in Y such that $f(x_{\sim}) \in f(V) \subset f(U)$. Hence (iii) holds.

(iii) \Rightarrow (i) Assume (iii) holds, let U be an arbitrary intuitionistic α -open set in X. Then for each $y_{\sim} \in f(U)$, by (iii) there exists intuitionistic neighbourhood V of y_{\sim} in Y such that $V \subset f(U)$. As V is an intuitionistic neighbourhood of y_{\sim} there exists intuitionistic open set W in Y such that $y \in W \subset V$. Thus $f(U) = \bigcup W/_{y_{\sim}} \in f(U)$ which is intuitionistic open in Y. this implies f is intuitionistic α -open.

Theorem 3.7. An intuitionistic function $f: (X, \tau) \to (Y, \sigma)$ is quasi intuitionistic α -open iff for any subset B of Y and for any intuitionistic α -closed set F of X containing $f^{-1}(B)$ there exists intuitionistic closed set GofY containing B such that $f^{-1}(G) \subset F$.

*Proof.*Let *F* be quasi intuitionistic α -open function. Let *B Y* and *F* be intuitionistic α -closed set of *X* containing $f^{-1}(B)$. Put G = Y - f(X - F). As $f^{-1}(B) \subset F$ we have $B \subset G$. As *f* is quasi intuitionistic α -open, *G* is intuitionistic closed in *Y*. Then $f^{-1}(G) \subset F$. Conversely, let *U* be intuitionistic α -open in *X*. Put B = Y - f(U) then X - U is intuitionistic α -

International organization of Scientific Research

closedinXcontaining $f^{-1}(B)$. By hypothesis, there exists intuitionistic closed set G of Y such that $B \subset G$ and $f^{-1}(G) \subset X - U$. Hence, $f(U) \subset Y - G$. Since $B \subset G, Y - G \subset Y - B = f(U)$ we obtain f(U) = Y - G which is intuitionistic open. Therefore it follows f is quasi intuitionistic α -openfunction.

Theorem 3.8.Let (X, τ) , (Y, σ) and (Z, σ) be intuitionistic topological space and $f : (X, \tau) \to (Y, \sigma)$, $g : (Y, \sigma) \to (Z, \eta)$ be two intuitionistic functions and $g \circ f : (X, \tau) \to (Z, \eta)$ be quasi intuitionistic α -open.Then

(i). If fisintuitionistic α -opensurjective, then gis quasi intuitionistic α -open.

(ii). If gis intuition is tic continuous and injective, then f is quasi intuition is tic α -open.

Proof. (*i*). Let U beintuitionisticopeninX, then f(U) is intuitionistic α -open in Y. As $g \circ f$ is quasi intuitionistic α -open, $g(U) = g \circ f[f(U)]$ is intuitionistic open in Z. Hence g is quasi intuitionistic α -open.

(ii). Let V beintuitionistic α -open in X. As $g \circ f$ is quasi intuitionistic α -open, $g \circ f(V)$ is intuitionistic open in Z. Since gis intuitionistic continuous, $f(V) = g(g \circ f(V))$ is intuitionistic openinZ.

IV. ON QUASI INTUITIONISTIC A-PREOPENFUNCTION

Definition4.1.Let(X, τ) be an intuitionistic topological space and $A = \langle X, A_1, A_2 \rangle$ be an intuitionistic set in X. Then intuitionistic pre-interior of A, denoted by Ip-int(A) is defined as the union of all intuitionistic preopensets contained nA.

Definition 4.2. An intuitionistic map $f: (X, \tau) \to (Y, \sigma)$ is said to be quasi intuitionistic α -preopen if the image of every intuitionistic α -open set in X is intu- itionistic preopen in Y.

Theorem4.3.*An* intuitionisticmap $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be quasi intuitionisticapreopeniffforevery subset Uof X, $f(Ia int(U)) \subset Ipint(f(U))$

*Proof.*Let f be quasi intuitionistic α -preopen function.In general we know that $Ipint(U) \subset U$ and Iaint(U) is an intuitionistic α -

openset.Hence, $f(Iaint(U)) \subset f(U)$.Asf(Iaint(U)) is intuitionistic preopenthen f(Iaint(U))

 $\subset Ipint(f(U))$.Conversely, assume $f(Iaint(U)) \subset Ipint(f(U))$.If U is intuitionistic a open in X then $f(U) = f(Iaint(U)) \subset Ipint(f(U))$. But we know that $Ipint(f(U)) \subset f(U)$. Therefore f(U) = Ipint(f(U)). Therefore f(U) = Ipint(f(U)). Therefore f(U) = Ipint(f(U)).

Lemma4.4. An intuition is tic function $f:(X,\tau) \to (Y,\sigma)$ is quasi intuitionistic α -preopen then $Iaint f^{-1}(G) \subset f^{-1}(Ipint(G))$ for every set tt of Y.

*Proof.*Let G be an intuitionistic set of Y. Then $Iaintf^{-1}(G)$ is an intuitionistic α -open in X.As f is quasi intuitionistic α -preopen, f ($Iaintf^{-1}(G)$) $\subset Ipintf(f^{-1}(G)) \subset Ipint(G)$. Therefore $Iaintf^{-1}(G) \subset f^{-1}(Ipint(G))$

Definition4.5. An intuitionistic set *S* is called intuitionistic pre-neighbourhood of a point x_i in X if there exists an intuitionistic pre-open set U such that $x_i \in U \subset S$

Theorem 4.6.Let (X, τ) and (Y, σ) be intuitionistic topological space and $f : (X, \tau) \rightarrow (Y, \sigma)$ be an intuitionistic function. Then the following are equivalent.

(i) f is quasi intuitionistic α -preopen.

(ii) For each intuitionistic set U of X, $f(Iaint(U)) \subset Ipint(f(U))$.

(iii) For each $x \sim \in X$ and each intuitionistic α -neighbourhoodU of $x_z \in X$ there

exists intuitionistic pre neighbourhoodV of $f(x_{.})$ in Y such that $V \subset f(U)$.

Proof.(i) \Rightarrow (ii) By previous theorem

(ii) \Rightarrow (iii) Assume for an intuition is tic subset $UofX, f(Iaint(U)) \subset Ipint(f(U))$.

Let $x_{\alpha} \in X$ and U be an arbitrary intuitionistic α -neighbourhood of $x_{\alpha} \in X$. Then there exists an intuitionistic α-open set Vin X such that $x \in$ V $\subset U$ Then. $f(V) = f(I_{\alpha}(t(V)) \subset I_{\beta}(t(V)))$ and hence $f(V) = I_{\beta}(t(V))$. Therefore f(V) = W is intuitionistic preopen in *Y* such that $f(x_{-}) \in W \subset f(U)$. Hence (iii) holds.

(iii) \Rightarrow (i) Assume (iii) holds, let U be intuitionistic α -open set in X. Then for every

 $y_{z}f(U)$, by (iii) there exists intuitionistic pre-neighbourhood V of y_{z} in Y such that $V \subset f(U)$. As V is an intuitionistic pre-neighbourhood of y_{z} there exists intuitionistic preopen set in Y. This implies f is quasi intuitionistic α -preopen.

Theorem 4.7. An intuitionistic function $f: (X, \tau) \to (Y, \sigma)$ is quasi intuitionistic α -preopen iff for any subset B of Y and for any intuitionistic α -closed set F of

Xcontainingf⁻¹(*B*)*thereexistsintuitionisticpreclosedsetGofYcontainingB such that* $f^{-1}(G) \subset F$ *Proof.*Let *F* be quasi intuitionistic α -preopen function. Let *B Y* and *F* be intuitionistic α -closed set of X containing $f^{-1}(B)$. Put $G = Y \cdot f(X \cdot F)$. As $f^{-1}(B) \subset F$ we have $B \subset G$. Since f is quasi intuitionistic α -preopen, G is intuitionistic preclosed in Y. Then $f^{-1}(G) \subset F$. Conversely, let U be intuitionistic α -open in X. Put $B = Y \cdot f(U)$ then X - U is intuitionistiv α -closed in X containing $f^{-1}(B)$. By hypothesis, there exists intuitionistic preclosed set G of Y such that $B \subset G$ and $f^{-1}(G) \subset X \cdot U$. Hence, $f(U) \subset Y \cdot G$. On the other hand $B \subset G \cap Y \cdot B = f(U)$. Thus $f(U) = Y \cdot G$ which is intuitionistic preclosed. Therefore f is quasi intuitionistic α -preopen function.

Lemma4.8. Let(X, τ),(Y, σ) and(Z, σ) be intuitionistic topological space and f: $(X, \tau) \rightarrow (Y, \sigma)$, $g:(Y, \sigma) \rightarrow (Z, \eta)$ be two intuitionistic functions and $g:(X, \tau) \rightarrow (Z, \eta)$ be quasiintuitionistic α -preopen. Then

• *Iffisintuitionisticpre irresolute, fisquasiintuitionisticα-preopen.*

*Proof.*Let U be intuitionistic α -open in Y. Then since fisintuitionistic α -continuous, $f^{-1}(U)$ is intuitionistic α -open in X. Since g is quasi intuitionistic α -preopen, $g(U) = g \circ f[f^{-1}(U)]$ is intuitionistic preopen in Z. Hence g is quasi intuitionistic α -preopen.

Let V be intuitionistic α -open in X then gf(V) is intuitionistic

preopenin

Z.Asgisintuitionistic preopen in Y.Hence f is quasi intuitionistic α -preopen.

Theorem 4.9.Let $f : (X,\tau) \to (Y, \sigma)$ and $g : (Y,\sigma) \to (Z, \eta)$ betwointuitionistic functions. Then the following statements arevalid:

• If $f: (X, \tau) \rightarrow (Y, \sigma)$ is intuitionistic α -open and $g: (Y, \sigma) \rightarrow (Z, \eta)$ is Ipre- α -open, then $g f: (X, \tau) \rightarrow (Z, \eta)$ is intuitionistic α -open.

• If $f: (X, \tau) \to (Y, \sigma)$ is Ipre- α -open and $g: (Y, \sigma) \to (Z, \eta)$ is quasi intuitionistic α -open.

• If $f: (X, \tau) \to (Y, \sigma)$ is quasi intuitionistic α -open and $g: (Y, \sigma) \to (Z, \eta)$ is intuitionistic preopen then $g \circ f: (X, \tau) \to (Z, \eta)$ is quasi intuitionistic α -preopen

• If $f: (X, \tau) \to (Y, \sigma)$ is intuitionistic α -open and $g: (Y, \sigma) \to (Z, \eta)$ is quasi intuitionistic α -open then $g \circ f: (X, \tau) \to (Z, \eta)$ is intuitionistic open.

5. Intuitionistic α -Normal And α -Quasi Normal

Definition 5.1. An intuitionistic topological space (X, τ) is intuitionistic normal iff for every pair *L*, *M* of disjoint intuitionistic closed sets of *X* there exists intuitionistic open sets *G* and *H* such that $L \subset G, M \subset H$ and $G \subseteq H^c$.

Definition5.2. An intuitionistic topological space (X, τ) is intuitionistic α -normal if for every pair F_1 , F_2 of disjoint intuitionistic closed sets of X there exists disjoint intuitionistic α -open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$ and $U \subseteq V^C$.

Definition 5.3. An intuitionistic topological space (X, τ) is intuitionistic*a*-quasi normalifforevery pair of disjoint intuitionistic closed set *A* and intuitionistic*a*-closed set *B* of *X* there exists intuitionistic α -open sets *U* and *V* such that $A \subseteq U, B \subseteq V$ and $U \subseteq V^{c}$.

Theorem

normalthenforevery pair of intuitionistic opensets U and V whose union is $X_{there exists intuition is tica-closed sets}$ A and B such that $A \subset U$, $B \subset V$ and $A \cup B = X_{there}$.

*Proof.*Let U and V be a pair of intuitionistic open sets in intuitionistic α -normal space (X, τ) such that $U \cup V = X_{\sim}$. Then U^c and V^c are intuitionistic closed sets. Since (X, τ) is intuitionistic α -normal there exist intuitionistic α -open sets U_1 and V_1 such that $U^c \subset U_1$, $V^c \subset V_1$ and $U_1 \subset V^c$. Let $A = U^c$ and $B = V^c$. Then A and B are intuitionistic α -closed sets such that $A \subset U, B \subset V$ and $A \cup B = X_{\sim}$.

Theorem 5.5. An intuitionistic topological space (X, τ) is intuitionistic α -quasi normaliffevery intuitionistic closed set A and intuitionistic α -openset V containing A there is intuitionistic α -open set U such that $A \subseteq U \subseteq Iacl(U) \subseteq V$

*Proof.*Suppose (X, τ) is intuitionistic α quasi-normal in which A is intuitionistic closed and V is intuitionistic α -open containing A. Then V^c is intuitionistic α -closed such that $A \cap V^c = \varphi_{\lambda}$. Since (X, τ) is intuitionistic α quasi-normal there exists intuitionistic α -open sets U and W such that $A \subseteq U, V$ $c \subseteq W$ and $U \subset W^c$.i.e. $A \subseteq U \subseteq W^c \subseteq V$. Since W^c is intuitionistic α -closed set Ucontaining intuitionistic α -open set U, $U \subseteq Iacl(U) \subseteq W^c$. Therefore $A \subseteq U \subseteq Iacl(U) \subseteq V$. Conversely, let A and B be disjoint pair of intuitionistic closed set and intuitionistic α -closed set respectively. Then $A \cap B = \varphi \implies A \subseteq B^c$ and B^c is intuitionistic α -open. Then by hypothesis, there exists intuitionistic α -open

5.4. *If*(X, τ)*isintuitionistic* α -

[•] If f is intuitionistic α -continuous, preopen then g is quasi intuitionistic

α-preopen.

set U such that $A \subseteq U \subseteq Iacl(U) \subseteq B^{c}$. This implies $A \subseteq U$, $B \subseteq [Iacl(U)]^{c}$ and $U \subset Iacl(U)$. Hence (X, τ) is intuitionistica-quasinormal.

Theorem 5.6.*Intuitionistic* α*-quasi normality is a topological property*

*Proof.*Let (*X*, *τ*) be intuitionistic *α* quasi-normal and let (*Y*, *σ*) be intuitionistic *α*-homeomorphic image of (*X*, *τ*) under intuitionistic *α*-homeomorphism *f*. Toshow that (*Y*, *σ*) is intuitionistic *α* quasi-normal, let *A* and *B* be pair of disjoint intuitionistic closed and intuitionistic *α*-closed sets in *Y*. Since *f* is intuitionistic *α*-continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are intuitionistic *α*-closed int*X*. Also $f^{-1}(A) \cap f$ $f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(\varphi_{-}) = \varphi_{-}$. So, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint intuitionistic *α*closed of *X*. Since *X* is intuitionistic *α*-quasinormal, there exists intuitionistic *α*-because the disjoint intuitionistic *α*closed of *X*. Since *X* is intuitionistic *α*-quasinormal, there exists intuitionistic *α*closed of *X*. Since *X* is intuitionistic *α*-quasinormal, there exists intuitionistic *α*copensets *U* and *V* such that $f^{-1}(A) \subseteq U, f^{-1}(B) \subseteq V$ and $U \cap V = \varphi_{-}$. But $f^{-1}(A) \subseteq U \Longrightarrow f(f^{-1}(A)) \subseteq f(U) \cong f(U) \cong f(U)$ (*U*) ⇒ *A* ⊆ *f* (*U*). Similarly *B* ⊆ *f*(*V*). Also since fisbijective intuitionistic *α*open, *f*(*U*) and *f*(*V*) are intuitionistic *α*-opensets of *Y* such that *f*(*U*) $\cap f(V) \subseteq f(U \cap V) = \varphi_{-} \Longrightarrow f(U)$ $\subset (f(V))^{C}$. Hence (*Y*, *σ*) is intuitionistic *α*-quasinormal. So, intuitionistic *α*-quasinormalisatopological property.

REFERENCES

- [1] And rijevic D, Some properties of the topology of α -sets, Mat. Vesnik, 36 (1984), 1-10.
- [2] CokerD, Anoteonintuitionistic sets and intuitionistic points, TurkishJ. Math (1996), 343-351.
- [3] Coker D, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, (1997),81-89.
- [4] Coker D, An introduction to intuitionistic topological spaces, Busefal, (2000), 51-56.
- [5] C.Duraisamy,M.Dhavamani,IntuitionisticNon-ContinuousFunctions,AppliedMathematical Sciences, 6(21)(2012),1021-1029.
- [6] GovindappaNavalagi, Quasi *alpha*-Closed, Strongly α -Closed and Weakly α Irresolute Functions, International Journal of General Topology, 4(2011),49-55.
- [7] Olav Njastad, On Some Classes of Nearly Open Sets, Pacific Journal of Mathematics, 15, (1965), 961-970.
- [8] SadikBayhan and Coker, On Separation Axioms in intuitionistic topological spaces, IJMMS 27:10, (2001), 621-630.
- [9] Selvanayaki and Gnanamballlango,Strong and Weak Forms of IGPR Continuity InIntuition- istic Topological Spaces,IJPAM,Vol106,No.7,(2016),45-55.
- [10] Younis.J.Yaseen and Asmaa G. Raouf, On generalization of closed set and generalized conti- nuity on intuitionistic topological spaces, J.of Al-Anbar University for Pure Science, (2009), 3(1).
- [11] Zadeh L.A, Fuzzy Sets, Information and Control, 8,(1965), 338-353.

IOSR Journal of Engineering (IOSRJEN) is UGC approved Journal with Sl. No. 3240, Journal no. 48995.

T.A.Albinaa. "Protocol for Evaluating Sand Dam Water Quality in Semi-Arid Areas: A Case Study of Makueni County." IOSR Journal of Engineering (IOSRJEN), vol. 09, no. 04, 2019, pp. 18-22.