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Abstract: In general, transportation from origin to final destination can’t be made in a single transportation. In 
this paper, a multi stage transportation problem (MSTP) is formed where the unit transportation costs are fuzzy 
random in nature. Using dynamic programming approach, the problem first converted into a single stage problem. 
Such single stage problem optimized with minimized the expected total cost and expected total variance. The 
problem is solved for both with and without limitation of the intermediate depots. Here a numerical example is 
solved to check the validity of the proposed method. 
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I. INTRODUCTION 
The transportation problem (TP) means shipping of commodities from different sources to destinations 

under the objective to determine the shipping schedule that minimizes that total shipping cost while satisfying 
supply and demand limits. The TP finds application in communication network, scheduling, industry, planning, 
transportation and allotment system etc. In general transportation processes may not be performed directly 
between the suppliers and customers. There may exist different warehouses in different stages. Such type of 
transportation problems is known as multi stage transportation problems (MSTP). Geoffrion and Graves [1] were 
the pioneers who studied the two-stage distribution problem. Brezina and Istvanikova [9] presented a way of 
solving two-stage transportation problem. Das [4] describes cost varying multistage transportation problem. 
Malhotra and Malhotra [15] proposed a polynomial bound algorithm for a two-stage time minimization problem 
to obtain optimal schedules for stage I and stage II. The main objective of the multi-stage transportation problem 
is similar to single stage transportation problem under the satisfaction of all intermediate warehouse’s limit. 

Now, the concept of fuzzy-random-variable (FRV) was introduced by Kwakernaak [7], where all the 
calculations and theories are done under the consideration of independency nature of the variables. In his next 
article [8] several algorithms about conversion of fuzzy random variable to deterministic variable is performed 
with a lot of examples for the discrete case. Puri and Ralescu [13] developed the new idea to generate the fuzziness 
and they stated that the expected value could be fuzzy but the variance should be scalar. The occurrence of fuzzy-
random variable/parameter makes the combination of randomness and fuzziness more persuasive. These are some 
decision making problems formuled and solved with fuzzy random parameter/ variables. Very few TPs have been 
formulated and solved with fuzzy-random costs/resources. A system involving both randomness and fuzziness 
[18] which can be characterized by random variables and fuzzy variables separately. Gani and Razak [2] solved 
a two-stage cost minimizing fuzzy transportation problem in which supplies and demands are trapezoidal fuzzy 
numbers, where a parametric approach has been used for the imprecise nature. Pandian et al. [14] proposed a 
method namely, zero-point method, for finding a fuzzy optimal solution for a fuzzy transportation problem where 
all parameters are trapezoidal fuzzy numbers. Ritha and Vinotha [17] proposed a method for finding a best 
compromise solution to a multi-objective two-stage fuzzy transportation problem using geometric programming 
approach. Ojha et al. [3] considered mean chance in same transportation problems with fuzzy stochastic cost. 
These works illustrate the great significance of mean chance measure in the area of fuzzy random optimizations. 
A comparison of the existing literature is presented here to represent the new contribution of this paper. 
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Table 1: Summary of related literature 
Author(s) Type of the TP Stage of the TP Nature of cost Solution Procedure 
Ojha. et.al. TP Single stage fuzzy-stochastic cost Genetic algorithm 
W. Ritha, 

J. M. Inotha 
Fuzzy TP Two stage transportation cost Fuzzy geometric 

programming approach 
I. Berzina, 

A. Stranikova 
TP Two stage transportation cost Parametric approach 

C. B. Das TP Multi-stage varying cost Parametric approach 
S. Malhotra, 
R. Malhotra 

Time minimizing TP Two stage crisps Polynomial time 
algorithm 

A. N. Gani, 
K.A. Razak 

Fuzzy TP Two stage transportation cost Parametric approach 

P. Pandian, 
G. Natarajan 

Fuzzy TP Single fuzzy cost Parametric approach 

This paper TP Multi stage Fuzzy random cost Dynamic programming 
 

II. PRELIMINARY CONCEPTS 
2.1 Fuzzy Number: A fuzzy number refer to a set of possible values characterize by its membership function 
𝝁𝝁𝒂𝒂�:ℝ → [𝟎𝟎,𝟏𝟏], which satisfies the following conditions; 
(i) 𝜇𝜇𝑎𝑎�  is normal. i.e., ∃ 𝑥𝑥0 ∈ ℝ, 𝜇𝜇𝑎𝑎�(𝑥𝑥0) = 1. 
(ii) 𝜇𝜇𝑎𝑎�  is convex. i.e., 𝜇𝜇𝑎𝑎�(𝑡𝑡𝑡𝑡 + (1 − 𝑡𝑡)𝑦𝑦) ≥ min{𝜇𝜇𝑎𝑎�(𝑥𝑥),𝜇𝜇𝑎𝑎�(𝑦𝑦)}∀𝑡𝑡 ∈ [0,1], 𝑥𝑥,𝑦𝑦 ∈ ℝ. 
(iii) 𝜇𝜇𝑎𝑎�  is upper semi-continuous on ℝ. i.e.,∀ 𝜀𝜀 > 0,∃ 𝛿𝛿 > 0 such that 𝜇𝜇𝑎𝑎�(𝑥𝑥) − 𝜇𝜇𝑎𝑎�(𝑥𝑥0) < 𝜀𝜀, |𝑥𝑥 − 𝑥𝑥0| < 𝛿𝛿. 
(iv) 𝜇𝜇𝑎𝑎�  is compactly supported. i.e., 𝑐𝑐𝑐𝑐{ 𝑥𝑥 ∈ ℝ, 𝜇𝜇𝑎𝑎� > 0} is compact, where 𝑐𝑐𝑐𝑐(𝐴̃𝐴) denotes the closer of the   set 
𝐴̃𝐴. 
𝛼𝛼 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: Let 𝐴̃𝐴 be the set of all fuzzy numbers. The set(crisp) of elements that belong to the fuzzy set 𝐴̃𝐴 at least 
to the degree 𝛼𝛼 is called the 𝛼𝛼-cut or 𝛼𝛼-level set and defined by 𝐴𝐴𝛼𝛼 = {𝑥𝑥 ∈ 𝑋𝑋: 𝐴̃𝐴(𝑥𝑥) ≥ 𝛼𝛼, 0 ≤ 𝛼𝛼 ≤ 1 = [𝐴𝐴𝛼𝛼𝐿𝐿 ,𝐴𝐴𝛼𝛼𝑅𝑅], 
where 𝐴𝐴𝛼𝛼𝐿𝐿 = min {𝑥𝑥 ∈ ℝ: 𝐴̃𝐴(𝑥𝑥) ≥ 𝛼𝛼} and 𝐴𝐴𝛼𝛼𝑅𝑅 = max {𝑥𝑥 ∈ ℝ: 𝐴̃𝐴(𝑥𝑥) ≥ 𝛼𝛼}. The addition and scalar multiplication on 
𝐴𝐴𝛼𝛼  be defined by [𝑎𝑎 + 𝑏𝑏]𝛼𝛼 = 𝑎𝑎𝛼𝛼 + 𝑏𝑏𝛼𝛼  and 𝜆𝜆𝜆𝜆𝛼𝛼 = 𝜆𝜆𝜆𝜆𝛼𝛼  for all 𝑎𝑎�, 𝑏𝑏� ∈ 𝐴𝐴, 𝜆̃𝜆 ∈ ℝ ,𝛼𝛼 ∈ [0,1] . A matric on 𝐴̃𝐴  is 
defined by 𝑑𝑑�𝑎𝑎�,𝑏𝑏�� = 1

2 ∫ (|𝑎𝑎𝛼𝛼𝐿𝐿 − 𝑏𝑏𝛼𝛼𝐿𝐿|2 +1
0 |𝑎𝑎𝛼𝛼𝑅𝑅 − 𝑏𝑏𝛼𝛼𝑅𝑅|2)𝑑𝑑𝑑𝑑 ,∀𝑎𝑎�, 𝑏𝑏� ∈ 𝐴𝐴 where 𝑎𝑎𝛼𝛼𝐿𝐿 ,𝑎𝑎𝛼𝛼𝑅𝑅 are the left and right end points 

of 𝐴𝐴𝛼𝛼, then the ordered pair (𝐴̃𝐴,𝑑𝑑) is a complete matric space. 
 
2.2 Fuzzy random variable (FRV) 
Let (Ω, F, P) be a complete probability space and A denote the set of all fuzzy real number. A fuzzy random 
variable is a function 𝑋𝑋��:Ω → 𝑨𝑨 such that for any Borel set B of ℝ, 𝐶𝐶𝐶𝐶{𝑋𝑋��(𝑤𝑤) ∈ 𝑩𝑩} is a measurable function of w. 
Let A be a fuzzy real number system, then 𝑋𝑋�� is a f.r.v if and only if 𝑋𝑋𝛼𝛼𝐿𝐿 and 𝑋𝑋𝛼𝛼𝑈𝑈 are ordinary random variable ∀𝛼𝛼 ∈
[0,1]. 
The Kwakernaak FRV: Let a FRV is a mapping 𝑋𝑋��:Ω → 𝑨𝑨 such that for any a 𝛼𝛼 ∈ [0,1]. X and all w ∈ Ω, the real 
valued mapping. 
𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝛼𝛼:Ω → ℝ, satisfying 𝑖𝑖𝑖𝑖𝑖𝑖{𝑋𝑋𝛼𝛼(𝑤𝑤)} =   𝑖𝑖𝑖𝑖𝑖𝑖{(𝑋𝑋(𝑤𝑤))𝛼𝛼} and   
𝑆𝑆𝑆𝑆𝑆𝑆𝑋𝑋𝛼𝛼:Ω → ℝ, satisfying 𝑆𝑆𝑆𝑆𝑆𝑆{𝑋𝑋𝛼𝛼(w)} =   𝑖𝑖𝑖𝑖𝑖𝑖{(𝑋𝑋(𝑤𝑤))𝛼𝛼} are real valued random variables 
Given w the unique characteristic of the Kwakernaak FRV is captured by its 𝛼𝛼 − 𝑐𝑐𝑐𝑐𝑐𝑐, which is shown below 

 
Figure 1: 𝛼𝛼 − 𝑐𝑐𝑐𝑐𝑐𝑐 of a Kwakernaak FRV 
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Definition: Let (Ω, F, Pos) be a possibility space and 𝑋𝑋�� be a fuzzy random variable with membership function µ 
and B a set of real numbers. Then the credibility of a fuzzy event {𝑤𝑤 ∈ Ω: 𝑋𝑋��}(𝑤𝑤) ∈ 𝐵𝐵}  is defined by 

𝐶𝐶𝐶𝐶(𝑋𝑋�� ∈ 𝐵𝐵) =
1
2
� 𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋�� ∈ 𝐵𝐵) + 𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋�� ∈ 𝐵𝐵)� 

where Pos and Nes represent the possibility measure and the necessity measure [11, 10], respectively. 
Let 𝑋𝑋�� be a fuzzy random variable defined on the probability space (Ω, F, P). Then The upper expected value of 
the fuzzy random variable  𝑋𝑋��� is defined as 

𝐸𝐸� �𝑋𝑋��� = � �� 𝑃𝑃𝑃𝑃𝑃𝑃 �𝑋𝑋��(𝑤𝑤) ≥ 𝑟𝑟�𝑑𝑑𝑑𝑑
∞

0
− � 𝑁𝑁𝑁𝑁𝑁𝑁 �𝑋𝑋��(𝑤𝑤) ≤ 𝑟𝑟�𝑑𝑑𝑑𝑑

0

−∞
�𝑃𝑃(𝑟𝑟)𝑑𝑑𝑑𝑑

Ω
 

And the lower expected value of the fuzzy random variable is defined by 

𝐸𝐸 �𝑋𝑋��� = � �� 𝑁𝑁𝑁𝑁𝑁𝑁 �𝑋𝑋��(𝑤𝑤) ≥ 𝑟𝑟� 𝑑𝑑𝑑𝑑
∞

0
− � 𝑃𝑃𝑃𝑃𝑃𝑃 �𝑋𝑋��(𝑤𝑤) ≤ 𝑟𝑟�𝑑𝑑𝑑𝑑

0

−∞
�𝑃𝑃(𝑟𝑟)𝑑𝑑𝑑𝑑

Ω
 

The expected value of the fuzzy random variable is defined as 

 𝐸𝐸 �𝑋𝑋��� = � �� 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤) ≥ 𝑟𝑟�𝑑𝑑𝑑𝑑
∞

0
− � 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤) ≤ 𝑟𝑟�𝑑𝑑𝑑𝑑

0

−∞
� 𝑃𝑃(𝑟𝑟)𝑑𝑑𝑑𝑑

Ω
      

Provided at least of the two integrals is finite. If 𝑋𝑋��(𝑤𝑤) is a non-negative fuzzy random variable, its expected value 
will be   

𝐸𝐸 �𝑋𝑋��� = � � 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤) ≥ 𝑟𝑟�𝑑𝑑𝑑𝑑
∞

0
𝑃𝑃(𝑟𝑟)𝑑𝑑𝑑𝑑

Ω
 

If 𝑋𝑋�� be a fuzzy random variable with the probability distribution 𝑃𝑃 �𝑋𝑋�� = 𝑤𝑤𝑖𝑖� = 𝑝𝑝�𝑖𝑖; 𝑖𝑖 = 1,2, …, then its expectation 
is defined by 

 𝐸𝐸 �𝑋𝑋��� = �𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤𝑖𝑖) ≥ 𝑟𝑟�𝑑𝑑𝑑𝑑
∞

0
−�𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤𝑖𝑖) ≤ 𝑟𝑟�𝑑𝑑𝑑𝑑
0

−∞
 

                           = �𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�� 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤𝑖𝑖) ≥ 𝑟𝑟� 𝑑𝑑𝑑𝑑
∞

0
− � 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤𝑖𝑖) ≤ 𝑟𝑟�𝑑𝑑𝑑𝑑

0

−∞
�                     

                         = �𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝐸𝐸 �𝑋𝑋��(𝑤𝑤𝑖𝑖)�                                                                                             

where [𝐸𝐸(𝑋𝑋��(𝑤𝑤𝑖𝑖)] is the expected value of fuzzy variable 𝑋𝑋��(𝑤𝑤𝑖𝑖). 
Theorem: Let 𝑋𝑋��  be a fuzzy random variable, then the expected value 𝐸𝐸[𝑋𝑋��(𝑤𝑤)] of fuzzy 𝑋𝑋��(𝑤𝑤) is a random 
variable. 
Proof: In order to prove that the expected value of 𝑋𝑋��(𝑤𝑤)  is an r.v., it suffices to prove that  𝐸𝐸[𝑋𝑋��(𝑤𝑤)]  is a 
measurable function of 𝑤𝑤. 
In fact, by 

       𝐸𝐸 �𝑋𝑋��(𝑤𝑤)� = � 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤) ≥ 𝑟𝑟�𝑑𝑑𝑑𝑑
∞

0
− � 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤) ≤ 𝑟𝑟� 𝑑𝑑𝑑𝑑

0

−∞
     

                                                                    = lim
𝑁𝑁→∞

lim
𝑁𝑁→∞

��
𝑁𝑁
𝑛𝑛

𝑛𝑛

𝑘𝑘=1

𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤) ≥
𝑘𝑘𝑘𝑘
𝑛𝑛
� −�

𝑁𝑁
𝑛𝑛

𝑛𝑛

𝑘𝑘=1

𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤) ≤
−𝑘𝑘𝑘𝑘
𝑛𝑛

��                

and the measurability 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤) ≥ 𝑘𝑘𝑘𝑘
𝑛𝑛
� of and 𝐶𝐶𝐶𝐶 �𝑋𝑋��(𝑤𝑤) ≤ −𝑘𝑘𝑘𝑘

𝑛𝑛
�, we deduce that 𝐸𝐸[𝑋𝑋��(𝑤𝑤)] an r.v.. The proof of 

the theorem is complete. 
Definition: Let 𝑋𝑋�� = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 be a fuzzy random vector and 𝑓𝑓𝑗𝑗:ℝ𝑛𝑛 → ℝ continuous function for j = 1,2,...,m. 
Then the mean chance, denoted by 𝐶𝐶ℎ𝑐𝑐, of fuzzy random event in additive measure is defined as 
 

𝐶𝐶ℎ𝑐𝑐 �𝑓𝑓𝑗𝑗(𝑋𝑋��) ≤ 0� = � 𝐶𝐶𝐶𝐶 �𝑓𝑓𝑗𝑗(𝑋𝑋��(𝑤𝑤)) ≤ 0� 𝑃𝑃𝑃𝑃𝑃𝑃
Ω

 , 𝑗𝑗 = 1,2, … ,𝑚𝑚 

Similarly 

𝐶𝐶ℎ𝑝𝑝 �𝑓𝑓𝑗𝑗(𝑋𝑋��) ≤ 0� = � 𝑃𝑃𝑃𝑃𝑃𝑃 �𝑓𝑓𝑗𝑗(𝑋𝑋��(𝑤𝑤)) ≤ 0� 𝑃𝑃𝑃𝑃𝑃𝑃
Ω

 , 𝑗𝑗 = 1,2, … ,𝑚𝑚 

𝐶𝐶ℎ𝑝𝑝 �𝑓𝑓𝑗𝑗(𝑋𝑋��) ≤ 0� = � 𝑁𝑁𝑁𝑁𝑁𝑁 �𝑓𝑓𝑗𝑗(𝑋𝑋��(𝑤𝑤)) ≤ 0� 𝑃𝑃𝑃𝑃𝑃𝑃
Ω

 , 𝑗𝑗 = 1,2, … ,𝑚𝑚 
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Criptization of fuzzy random parameter: Let 𝐶̂̃𝐶𝑖𝑖𝑖𝑖 = (𝐶𝐶𝑖𝑖𝑖𝑖1 ,𝐶𝐶𝑖𝑖𝑖𝑖2 ,𝐶𝐶𝑖𝑖𝑖𝑖3) be the fuzzy random parameter. Then the 
membership function 𝜇𝜇𝐶̂̃𝐶𝑖𝑖𝑖𝑖(𝑦𝑦):ℝ → [0,1] 

𝜇𝜇𝐶̂̃𝐶𝑖𝑖𝑖𝑖(𝑦𝑦) =

⎩
⎪
⎨

⎪
⎧ 𝑦𝑦 − 𝐶𝐶𝑖𝑖𝑖𝑖1

𝐶𝐶𝑖𝑖𝑖𝑖2 − 𝐶𝐶𝑖𝑖𝑖𝑖1
   𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝑖𝑖𝑖𝑖1 < 𝑦𝑦 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖2

𝐶𝐶𝑖𝑖𝑖𝑖3 − 𝑦𝑦
𝐶𝐶𝑖𝑖𝑖𝑖3 − 𝐶𝐶𝑖𝑖𝑖𝑖2

   𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝑖𝑖𝑖𝑖2 < 𝑦𝑦 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖3

0     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 

The mean of this membership function is 𝑚𝑚�𝐶̂̃𝐶𝑖𝑖𝑖𝑖� =
𝐶𝐶𝑖𝑖𝑖𝑖
1+4𝐶𝐶𝑖𝑖𝑖𝑖

2+𝐶𝐶𝑖𝑖𝑖𝑖
3

6
 

Definition :Let 𝑋𝑋��  be an f.r.v. with finite expected value 𝐸𝐸[𝑋𝑋��] . The variance 𝑉𝑉𝑉𝑉𝑉𝑉 �𝑋𝑋���of 𝑋𝑋��  is defined as the 

expected value of f.r.v (𝑋𝑋�� − 𝐸𝐸[𝑋𝑋��])2. i.e., 
𝑉𝑉𝑉𝑉𝑉𝑉 �𝑋𝑋��� = 𝐸𝐸[(𝑋𝑋�� − 𝐸𝐸[𝑋𝑋��])2] 

Definition: Assume that𝑓𝑓: ℝ𝑛𝑛 → ℝ is a measurable function, and 𝜉𝜉𝑖𝑖 is a f.r.vs on the probability spaces (Ω𝑖𝑖, 𝐹𝐹𝑖𝑖, 
𝑃𝑃𝑖𝑖), i=1,2,…,n respectively. Then 𝑋𝑋�� = 𝑓𝑓(𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑛𝑛) is a f.r.v on the product probability space of (Ω𝑖𝑖, 𝐹𝐹𝑖𝑖, 𝑃𝑃𝑖𝑖), 
i=1,2,…,n,   defined by 𝑋𝑋��(𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛) = 𝑓𝑓�𝜉𝜉1(𝑤𝑤1), 𝜉𝜉2(𝑤𝑤2), … , 𝜉𝜉𝑛𝑛(𝑤𝑤𝑛𝑛)�,∀ (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛) ∈ ∏ Ω𝑖𝑖𝑛𝑛

𝑖𝑖=1  
 
Definition:𝐷𝐷:𝐹𝐹(ℝ) × 𝐹𝐹(ℝ) → [0,∞)be the equation 

𝐷𝐷𝑝𝑝,𝑞𝑞�𝐴̃𝐴,𝐵𝐵�� = ��� |𝑞𝑞(𝐴𝐴𝛼𝛼𝑅𝑅 − 𝐵𝐵𝛼𝛼𝑅𝑅) + (1 − 𝑞𝑞)(𝐴𝐴𝛼𝛼𝐿𝐿 − 𝐵𝐵𝛼𝛼𝐿𝐿)|𝑝𝑝𝑑𝑑𝑑𝑑
1

0
�
1/𝑝𝑝

 𝑖𝑖𝑖𝑖 1 ≤ 𝑝𝑝 < ∞

𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼∈[0,1]|𝑞𝑞(𝐴𝐴𝛼𝛼𝑅𝑅 − 𝐵𝐵𝛼𝛼𝑅𝑅) + (1 − 𝑞𝑞)(𝐴𝐴𝛼𝛼𝐿𝐿 − 𝐵𝐵𝛼𝛼𝐿𝐿)|      𝑖𝑖𝑖𝑖 𝑝𝑝 = ∞
 

 
Where 𝐷𝐷𝑝𝑝,𝑞𝑞 is the distance defined on the set of fuzzy numbers. 

Definition: Let �𝑋𝑋��𝑛𝑛,𝑋𝑋��:𝑛𝑛 ≥ 1� be a sequence of fuzzy random variables of real value. If 𝑋𝑋��𝑛𝑛
𝑎𝑎.  𝑠𝑠.  𝑑𝑑
�⎯⎯⎯� 𝑋𝑋��, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒  

𝑋𝑋��𝑛𝑛
𝑖𝑖.  𝑃𝑃.  𝐷𝐷
�⎯⎯⎯� 𝑋𝑋��, where a.s.D means almost surly based on 𝐷𝐷𝑝𝑝,𝑞𝑞. 

Definition: Let �𝑋𝑋��𝑛𝑛,𝑋𝑋��:𝑛𝑛 ≥ 1� be a sequence of fuzzy random variables of real value. If 𝑋𝑋��𝑛𝑛 → 𝑋𝑋��, then 𝐸𝐸 �𝑋𝑋��𝑛𝑛� =
𝐸𝐸[𝑋𝑋] 
Theorem: Let �𝑋𝑋��𝑛𝑛,𝑋𝑋��:𝑛𝑛 ≥ 1� be a sequence of fuzzy random variables and Y be independent random variable 

such that 𝑌𝑌 ∈ 𝐿𝐿1,𝑋𝑋�� ∈ 𝐿𝐿1(𝐹𝐹),𝑋𝑋��𝑛𝑛 ∈ 𝐿𝐿1(𝐹𝐹).  If 𝑋𝑋��𝑛𝑛
𝑎𝑎.  𝑠𝑠.  𝑑𝑑
�⎯⎯⎯� 𝑋𝑋�� , then𝐸𝐸[𝑋𝑋��𝑛𝑛𝑌𝑌]

𝐷𝐷
→ 𝐸𝐸 �𝑋𝑋��� 𝐸𝐸[𝑌𝑌] , Where L1 is the fuzzy 

integrable space.  
Proof: By the above two definition, 𝐸𝐸[𝑋𝑋��𝑛𝑛]

𝐷𝐷
→ 𝐸𝐸[𝑋𝑋], since 𝑋𝑋��𝑛𝑛

𝑎𝑎.  𝑠𝑠.  𝑑𝑑
�⎯⎯⎯� 𝑋𝑋��.  

Therefore, 𝐸𝐸 �𝑋𝑋��𝑛𝑛� 𝐸𝐸[𝑌𝑌]
𝐷𝐷
→ 𝐸𝐸[𝑋𝑋��] 𝐸𝐸[𝑌𝑌]. 

Now, to complete the proof we show that 𝐸𝐸[𝑋𝑋��𝑛𝑛]𝐸𝐸[𝑌𝑌]
𝐷𝐷
→ 𝐸𝐸[𝑋𝑋��𝑛𝑛𝑌𝑌]. For all fuzzy random variables, we have, 

𝑋𝑋��𝑛𝑛(𝑤𝑤) = �[𝑋𝑋��𝑛𝑛𝑛𝑛𝐿𝐿 (𝑤𝑤),𝑋𝑋��𝑛𝑛𝑛𝑛𝑅𝑅 (𝑤𝑤): 𝛼𝛼 ∈ [0,1]]� ∀𝑤𝑤 ∈ Ω. 

Thus, 𝜎𝜎 �𝑋𝑋��𝑛𝑛� = 𝜎𝜎 �{𝑋𝑋��𝑛𝑛𝑛𝑛: 0 ≤ 𝛼𝛼 ≤ 1}�. We also know that a fuzzy random variable 𝑋𝑋��𝑛𝑛 and areal-valued random 

variable Y are independent if and only if 𝜎𝜎(𝑋𝑋��𝑛𝑛) and 𝜎𝜎(𝑌𝑌) are independent for 𝑛𝑛 ≥ 1, i.e, for any 𝐴𝐴 ∈ 𝜎𝜎(𝑋𝑋��𝑛𝑛) and 
𝐵𝐵 ∈ 𝜎𝜎(𝑌𝑌) , 𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵). 
Therefore, it is enough to show that 𝐸𝐸 �𝑋𝑋��𝑛𝑛𝑛𝑛� 𝐸𝐸[𝑌𝑌] = 𝐸𝐸 �𝑋𝑋��𝑛𝑛𝑛𝑛𝑌𝑌� ,∀𝛼𝛼 ∈ [0,1] 

Now, let 𝑌𝑌 = 𝐼𝐼𝐴𝐴 for 𝐴𝐴 ∈ 𝜎𝜎(𝑌𝑌).  Since 𝐼𝐼𝐴𝐴 is a random set thus 𝐼𝐼𝐴𝐴𝑋𝑋��𝑛𝑛𝑛𝑛 is a random set. By Aumann integral we have,  
𝐸𝐸[𝑋𝑋��𝑛𝑛𝑛𝑛] = {𝐸𝐸(𝑍𝑍):𝑍𝑍(𝑤𝑤)  ∈ 𝑋𝑋��𝑛𝑛𝑛𝑛(𝑤𝑤)} and  

𝐸𝐸 �𝑋𝑋��𝑛𝑛𝑛𝑛𝐼𝐼𝐴𝐴� = �𝐸𝐸(𝑍𝑍𝐼𝐼𝐴𝐴):𝑍𝑍(𝑤𝑤) ∈ 𝑋𝑋��𝑛𝑛𝑛𝑛(𝑤𝑤)� 

                          = �𝐸𝐸(𝑍𝑍)𝑃𝑃(𝐴𝐴):𝑍𝑍(𝑤𝑤) ∈ 𝑋𝑋��𝑛𝑛𝑛𝑛(𝑤𝑤)� 

                            = 𝑃𝑃(𝐴𝐴) �𝐸𝐸(𝑍𝑍):𝑍𝑍(𝑤𝑤) ∈ 𝑋𝑋��𝑛𝑛𝑛𝑛(𝑤𝑤)� 

= 𝐸𝐸[𝑌𝑌]𝐸𝐸[𝑋𝑋��𝑛𝑛𝑛𝑛]      
Now, if 𝑌𝑌 = ∑ 𝑎𝑎𝑖𝑖𝐼𝐼𝐴𝐴𝑛𝑛

𝑖𝑖=1 , then we have 
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𝐸𝐸 �𝑌𝑌𝑋𝑋��𝑛𝑛𝑛𝑛� = 𝐸𝐸 ��𝑎𝑎𝑖𝑖𝐼𝐼𝐴𝐴𝑖𝑖𝑋𝑋�
�
𝑛𝑛𝑛𝑛

𝑛𝑛

𝑖𝑖=1

�                  

= �𝑎𝑎𝑖𝑖𝐸𝐸[𝐼𝐼𝐴𝐴𝑖𝑖𝑋𝑋�
�
𝑛𝑛𝑛𝑛

𝑛𝑛

𝑖𝑖=1

] 

      = �𝑎𝑎𝑖𝑖𝑃𝑃(𝐴𝐴𝑖𝑖)𝐸𝐸[𝑋𝑋��𝑛𝑛𝑛𝑛]
𝑛𝑛

𝑖𝑖=1

 

     = �𝑎𝑎𝑖𝑖𝐸𝐸�𝐼𝐼𝐴𝐴𝑖𝑖�𝐸𝐸[𝑋𝑋��𝑛𝑛𝑛𝑛]
𝑛𝑛

𝑖𝑖=1

 

    = 𝐸𝐸[�𝑎𝑎𝑖𝑖𝐼𝐼𝐴𝐴𝑖𝑖]𝐸𝐸[𝑋𝑋��𝑛𝑛𝑛𝑛]
𝑛𝑛

𝑖𝑖=1

 

Hence the theorem. 
Addition: The addition of the two fuzzy random parameters 𝑎𝑎�𝑖𝑖𝑖𝑖1  and 𝑎𝑎�𝑖𝑖𝑖𝑖2 , each of which can be represented by the 
following triangular fuzzy number and their associated probabilities, 

𝑎𝑎�𝑖𝑖𝑖𝑖1 = �(𝑎𝑎11,𝑎𝑎12,𝑎𝑎13)  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝1
(𝑎𝑎21,𝑎𝑎22,𝑎𝑎23)  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝2

 

𝑎𝑎�𝑖𝑖𝑖𝑖2 = �(𝑎𝑎31,𝑎𝑎32,𝑎𝑎33)  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝3
(𝑎𝑎41,𝑎𝑎42,𝑎𝑎43)  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝4

 

Adding these two fuzzy random parameters we get 

𝑎𝑎�𝑖𝑖𝑖𝑖1 + 𝑎𝑎�𝑖𝑖𝑖𝑖2 =

⎩
⎨

⎧
(𝑎𝑎11 + 𝑎𝑎31 ,   𝑎𝑎12 + 𝑎𝑎32 ,   𝑎𝑎13 + 𝑎𝑎33)   𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝1𝑝𝑝3
(𝑎𝑎11 + 𝑎𝑎41 ,   𝑎𝑎12 + 𝑎𝑎42 ,   𝑎𝑎13 + 𝑎𝑎43)  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝1𝑝𝑝4
(𝑎𝑎21 + 𝑎𝑎31 ,   𝑎𝑎22 + 𝑎𝑎32 ,   𝑎𝑎23 + 𝑎𝑎33)  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦 𝑝𝑝2𝑝𝑝3
(𝑎𝑎21 + 𝑎𝑎41 ,   𝑎𝑎22 + 𝑎𝑎42 ,   𝑎𝑎23 + 𝑎𝑎43)  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝2𝑝𝑝4

 

Scalar multiplication: Let 𝑎𝑎�𝑖𝑖𝑖𝑖 is a f.r.v represented as a triangular fuzzy number its probability(𝑝𝑝𝑖𝑖) 

𝜆𝜆𝑎𝑎�𝑖𝑖𝑖𝑖1 = �(𝜆𝜆𝜆𝜆11, 𝜆𝜆𝜆𝜆12, 𝜆𝜆𝜆𝜆13)  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦 𝑝𝑝1
(𝜆𝜆𝜆𝜆21, 𝜆𝜆𝜆𝜆22, 𝜆𝜆𝜆𝜆23)  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝2

 

Then, adding two f.r.vs we get 𝑎𝑎�𝑖𝑖𝑖𝑖 = {(𝑋𝑋1,𝑃𝑃1), (𝑋𝑋2,𝑃𝑃2), (𝑋𝑋3,𝑃𝑃3), (𝑋𝑋4,𝑃𝑃4)}. Then expectation of 𝑎𝑎�𝑖𝑖𝑖𝑖 is 
𝐸𝐸�𝑎𝑎�𝑖𝑖𝑖𝑖� = 𝑋𝑋1𝑃𝑃1 + 𝑋𝑋2𝑃𝑃2 + 𝑋𝑋3𝑃𝑃3 + 𝑋𝑋4𝑃𝑃4 

Example 1: Let 𝐶̂̃𝐶𝑖𝑖𝑖𝑖  be the f r.v whose fuzzy parameters represented by TFN and individual probabilities are 
discreate as given below: 

𝐶̂̃𝐶𝑖𝑖𝑖𝑖 = �𝐶𝐶11
1 ,𝐶𝐶122 ,𝐶𝐶133 )  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  0.6

𝐶𝐶211 ,𝐶𝐶222 ,𝐶𝐶233 )  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  0.4
 

Then the expected value is 

𝐸𝐸 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖� =
𝐶𝐶111 + 4𝐶𝐶122 + 𝐶𝐶133

6
0.6 +

𝐶𝐶211 + 4𝐶𝐶222 + 𝐶𝐶233

6
0.4 

Example 2: Same as Example-1, where individual probabilistic are continuous. The mean chance of these fuzzy 
number are: 
For 0 ≤ 𝑦𝑦 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖1  

𝐶𝐶ℎ𝑐𝑐 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦� = 𝐶𝐶𝐶𝐶 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑃𝑃𝑃𝑃 + 𝐶𝐶𝐶𝐶 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑃𝑃𝑃𝑃;  𝐶𝐶𝑖𝑖𝑖𝑖1 ≤ 𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖3 ,𝐶𝐶𝑖𝑖𝑖𝑖3 ≤ 𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖5  
Similarly, for 𝐶𝐶𝑖𝑖𝑖𝑖1 ≤ 𝑦𝑦 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖3  

𝐶𝐶ℎ𝑐𝑐 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦� = 𝐶𝐶𝐶𝐶 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑃𝑃𝑃𝑃 + 𝐶𝐶𝐶𝐶 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑃𝑃𝑃𝑃;  𝐶𝐶𝑖𝑖𝑖𝑖1 ≤ 𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖3 ,𝐶𝐶𝑖𝑖𝑖𝑖3 ≤ 𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖5  
Similarly, for 𝐶𝐶𝑖𝑖𝑖𝑖3 ≤ 𝑦𝑦 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖5  

𝐶𝐶ℎ𝑐𝑐 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦� = 𝐶𝐶𝐶𝐶 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑃𝑃𝑃𝑃 + 𝐶𝐶𝐶𝐶 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑃𝑃𝑃𝑃;  𝐶𝐶𝑖𝑖𝑖𝑖1 ≤ 𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖3 ,𝐶𝐶𝑖𝑖𝑖𝑖3 ≤ 𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖5  
Similarly, for 𝐶𝐶𝑖𝑖𝑖𝑖5 ≤ 𝑦𝑦 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖6  

𝐶𝐶ℎ𝑐𝑐 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦� = 𝐶𝐶𝐶𝐶 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑃𝑃𝑃𝑃 + 𝐶𝐶𝐶𝐶 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦�𝑃𝑃𝑃𝑃;  𝐶𝐶𝑖𝑖𝑖𝑖1 ≤ 𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖3 ,𝐶𝐶𝑖𝑖𝑖𝑖3 ≤ 𝐶̂̃𝐶𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖𝑖𝑖5  
Then according to the mean chance the expected value is 

𝐸𝐸 �𝐶̂̃𝐶𝑖𝑖𝑖𝑖� = � 𝑑𝑑𝑑𝑑
𝐶𝐶𝑖𝑖𝑖𝑖
1

0
+ � 𝜇𝜇𝑐𝑐𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝐶𝐶𝑖𝑖𝑖𝑖
3

𝐶𝐶𝑖𝑖𝑖𝑖
1

+ � 𝜇𝜇𝑐𝑐𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑
𝐶𝐶𝑖𝑖𝑖𝑖
5

𝐶𝐶𝑖𝑖𝑖𝑖
3
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2.3 Dynamic programming 
This method or technique can be used to solve different types of optimization problems. D.P. obtains solutions by 
working forward and/or backward from the beginning and/or end of a problem towards the end and/or beginning. 
Thus, it breaking up a large unwieldy problem into a series of smaller, more tractable and inter related problems, 
such sub-problems are called stages. Where each stage is connected together by state variables. After solving 
every sub-problem, the solution of original problem can be achieved by combining them using the state variables. 
It is a general strategy for optimization rather than a specific set of rules. Consequently, the particular equation 
must be developed to fit each problem. Abdelwali H. A. [6] introduced parametric multi-objective dynamic 
programming to solve some of automotive problems. 
In this paper, the D.P. technique is applied to find the shortest route between each source of the first stage to each 
destinations of the last stage of a multistage transportation problem. Here, the shortest route means having the 
minimum transportation cost from any source of the first stage to any destinations of the last stage of the 
transportation network. 
Regarding to find the fuzzy random costs of the shortest routes, the algebraic operation proposed by H. Kwakernak 
is used here. Then find out the expected cost of each route and corresponding variance. After that with respect to 
total expected cost and total expected variance, the model is optimized. 
 

III. Mathematical Formulation 
Let us consider a K-stage transportation problem. Also 𝑚𝑚𝑘𝑘 be the number of depots (if k = 1, then if is 

terms as origin/ source) of the k−th level and 𝑛𝑛𝑘𝑘be the number of depots (if k = K, then it is called as destination) 
of the (k + 1)-th level. The associate cost is 𝑐̂̃𝑐𝑗𝑗𝑘𝑘+1

𝑖𝑖𝑘𝑘  required to transported the unit commodity from 𝑖𝑖𝑘𝑘 − 𝑡𝑡ℎ depot 
(𝑖𝑖𝑘𝑘 = 1,2, … ,𝑚𝑚𝑘𝑘) to 𝑗𝑗𝑘𝑘 − 𝑡𝑡ℎ depot (𝑗𝑗𝑘𝑘 = 1,2, … ,𝑛𝑛𝑘𝑘), which is fuzzy random in nature. The K stage fuzzy random 
transportation problem can be formulated as 

 
Figure 2: Multi stage transportation problem 

 
min
𝑋𝑋1∈𝑆𝑆

�𝑇𝑇��1(𝑋𝑋1) + min
𝑋𝑋2∈𝑆𝑆1

�𝑇𝑇��2(𝑋𝑋2)� + ⋯+ min
𝑋𝑋𝑛𝑛∈𝑆𝑆𝑛𝑛−1

�𝑇𝑇��𝐾𝐾(𝑋𝑋𝐾𝐾)�� 

As each 𝑇𝑇𝑘𝑘(𝑋𝑋𝑘𝑘)is linear homogeneous of this form, ∑∑ 𝑐̂̃𝑐𝑗𝑗𝑘𝑘+1
𝑖𝑖𝑘𝑘 𝑥𝑥𝑗𝑗𝑘𝑘+1

𝑖𝑖𝑘𝑘 then this problem is equivalent to 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇�� = �� � 𝑐̂̃𝑐𝑗𝑗𝑘𝑘+1
𝑖𝑖𝑘𝑘

𝑚𝑚𝑘𝑘+1

𝑗𝑗𝑘𝑘+1=1

𝑚𝑚𝑘𝑘

𝑖𝑖𝑘𝑘=1

𝐾𝐾

𝑘𝑘=1

�1 − � 𝜆𝜆𝑖𝑖𝑘𝑘
𝑝𝑝𝑘𝑘−1

𝑚𝑚𝑘𝑘−1

𝑝𝑝𝑘𝑘−1=1

�𝑥𝑥𝑗𝑗𝑘𝑘+1
𝑖𝑖𝑘𝑘                                       (1) 

Depending on the availabilities of the origins/ sources and demand of the destinations the constrains of such 
transportation system is given by: 

� 𝑥𝑥𝑗𝑗2
𝑖𝑖1

𝑚𝑚2

𝑗𝑗2=1

= 𝑎𝑎𝑖𝑖1;  𝑖𝑖1 = 1,2, … ,𝑚𝑚1                                                                          (2) 

� 𝑥𝑥𝑗𝑗𝐾𝐾
𝑖𝑖𝐾𝐾−1

𝑚𝑚𝐾𝐾

𝑖𝑖𝐾𝐾−1=1

= 𝑏𝑏𝑗𝑗𝑘𝑘; 𝑗𝑗𝑘𝑘 = 1,2, … ,𝑚𝑚𝐾𝐾                                                                   (3) 

𝑥𝑥𝑗𝑗𝑘𝑘
𝑖𝑖𝑘𝑘 ≥ 0,∀𝑖𝑖, 𝑗𝑗                                                                                                        (4) 

If ∑ 𝑎𝑎𝑖𝑖1
𝑚𝑚1
𝑖𝑖1=1 = ∑ 𝑏𝑏𝑗𝑗𝑘𝑘

𝑚𝑚𝑘𝑘+1
𝑗𝑗𝑘𝑘+1=1

, then the problem is said to be balance and constraints (4) is due to the feasibility 
condition of the MSTP. 
Here, the fuzzy random unit transportation cost denoted as 𝑐̂̃𝑐𝑗𝑗𝑘𝑘+1

𝑖𝑖𝑘𝑘  is of the form 𝑐̂̃𝑐𝑗𝑗𝑘𝑘+1
𝑖𝑖𝑘𝑘 =

��𝑐𝑐𝑗𝑗𝑘𝑘
(1)𝑖𝑖𝑘𝑘 , 𝑐𝑐𝑗𝑗𝑘𝑘

(2)𝑖𝑖𝑘𝑘 , 𝑐𝑐𝑗𝑗𝑘𝑘
(3)𝑖𝑖𝑘𝑘� ,𝑝𝑝𝑖𝑖𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘� is the set of triangular fuzzy numbers occurred probability 𝑝𝑝𝑖𝑖𝑘𝑘𝑝𝑝𝑗𝑗𝑘𝑘. 

Other notation represents, 𝑎𝑎𝑖𝑖1= availabilities of the commodity present for the first state. 
𝑗𝑗𝑘𝑘= demand of commodity for the first state. 
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𝑥𝑥𝑗𝑗𝑘𝑘+1
𝑖𝑖𝑘𝑘 = amounts transported from 𝑖𝑖𝑘𝑘-th to𝑗𝑗𝑘𝑘+1-th destinations. 
𝜆𝜆𝑖𝑖𝑘𝑘
𝑝𝑝𝑘𝑘−1= rate of defective to transport the quantity from𝑝𝑝𝑘𝑘−1interpot to depot 𝑖𝑖𝑘𝑘. 

 
3.1 Recursive Equation for solving dynamic programming problem: 
As mentioned above, the dynamic programming technique will be used to convert the multistage problem into a 
single-stage problem. The recursive equations for the backward dynamic program for the shortest route problem 
are illustrated in equations (5) and (6). For minimum transportation cost to a certain destination from all the 
sources at the last stage, is given by the following formula. 
Let, for the last stage K, 

𝐹𝐹��𝐾𝐾(𝑖𝑖𝐾𝐾−1) = 𝑐̂̃𝑐𝑗𝑗𝐾𝐾
𝑖𝑖𝐾𝐾−1 , 𝑖𝑖𝐾𝐾 = 1,2, … ,𝑚𝑚𝐾𝐾 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗𝐾𝐾 = 2,3, … ,𝑛𝑛𝐾𝐾                                         (5) 

Then calculate 𝐹𝐹��𝑘𝑘(𝑖𝑖𝑘𝑘) = min �𝑐̂̃𝑐𝑗𝑗𝑘𝑘+1
𝑖𝑖𝑘𝑘 + 𝐹𝐹��𝑘𝑘+1(𝑖𝑖𝑘𝑘)�                                                              (6) 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑘𝑘 = 1,2, … ,𝑚𝑚𝑘𝑘 , 𝑗𝑗𝑘𝑘 = 2, … ,𝑛𝑛𝑘𝑘;𝑘𝑘 = 𝐾𝐾 − 1,𝐾𝐾 − 2, … ,1 
Where 
K: number of stages in general, k=1,2,3,...,K 
𝑖𝑖𝑘𝑘: the source number at any stage. 
𝑗𝑗𝑘𝑘: the destination number at any stage. 
𝑚𝑚𝑘𝑘: the total number of sources at stage k.  
𝑛𝑛𝑘𝑘: the total number of destinations at stage k. 
𝑐̂̃𝑐𝑗𝑗𝑘𝑘+1
𝑖𝑖𝑘𝑘 : fuzzy random transportation cost of stage k from its sources 𝑖𝑖𝑘𝑘to its destination 𝑗𝑗𝑘𝑘+1. 

𝐹𝐹��𝑘𝑘(𝑖𝑖𝑘𝑘): fuzzy random optimum value of the studied objective for each source at any stage k. 
Therefore, the reduced single-stage transportation problem with fuzzy random cost coefficient are 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍�̂ = � � 𝑑̂̃𝑑𝑗𝑗𝐾𝐾
𝑖𝑖1

𝑛𝑛𝐾𝐾

𝑗𝑗𝐾𝐾=1

𝑚𝑚1

𝑖𝑖1=1

𝑌𝑌𝑗𝑗𝐾𝐾
𝑖𝑖1                                                                            (7) 

Where 𝑌𝑌𝑗𝑗𝐾𝐾
𝑖𝑖1 = min{𝑥𝑥𝑗𝑗2

𝑖𝑖1 , 𝑥𝑥𝑗𝑗3
𝑖𝑖2 , … , 𝑥𝑥𝑗𝑗𝐾𝐾

𝑖𝑖𝑘𝑘−1}  and 𝑑̂̃𝑑𝑗𝑗𝐾𝐾
𝑖𝑖1  are calculated through equations (5) and (6) is represented by 

�𝑑𝑑𝑗𝑗𝐾𝐾
(1)𝑖𝑖1 ,𝑝𝑝𝑖𝑖

(𝑙𝑙)� , 𝑙𝑙 = 1,2, . . , 𝐿𝐿    
Model-1: Now, the fuzzy Expectation of (7) is given by 

𝐸𝐸 �𝑍𝑍�̂� = ��
𝑍𝑍𝑙𝑙 + 4𝑍𝑍𝑀𝑀 + 𝑍𝑍𝑅𝑅

6
�

𝑛𝑛

𝑖𝑖=1

𝑝𝑝𝑖𝑖                                                                      (8) 

Following the expression of expected value of fuzzy random variable. So, the problem become minimization if 
𝐸𝐸 �𝑍𝑍�̂� subject to (2) and (3). 
Model-2: The fuzzy variance of (7) is given by 

𝑉𝑉𝑉𝑉𝑉𝑉 �𝑍𝑍�̂� = �[𝐸𝐸(𝑍𝑍�̂2)
𝑛𝑛

𝑖𝑖=1

− �𝐸𝐸 �𝑍𝑍�̂��
2

] (𝑌𝑌𝑗𝑗𝐾𝐾
𝑖𝑖1)2                                                      (9) 

The expression of (9) is the variance of fuzzy random variable. So, the problem become minimization if 
𝑉𝑉(𝑍𝑍�̂) subject to (2) and (3). 

IV. NUMERICAL EXAMPLE 
Example-1: Let us consider a 3-stage transportation problem. The availabilities of sources at stage-1 equal are 
those values of (𝑎𝑎1 = 120,𝑎𝑎2 = 70 and 𝑎𝑎3 = 60). The requirement of the destinations at the last stage are those 
values of (𝑏𝑏1 = 95, 𝑏𝑏2 = 103  and 𝑏𝑏3 = 52) . There are no transportation restrictions on the middle stages 
availabilities or requirement. 

 
Figure 3: Multi stage transportation problem 
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Table-2: fuzzy random unit transportation cost 

𝑐̃𝑐14 (8,9,12) 
 (4,7,10) 

with probability 0.2 
with probability 0.8 

𝑐̃𝑐56 (6,7,8) 
(10,11,12) 

with probability 0.9 
with probability 0.1 

𝑐̃𝑐15 (3,5,7) 
(4,7,9) 

with probability 0.7 
with probability 0.3 

𝑐̃𝑐57 (9,12,15) 
(13,15,17) 

with probability 0.6 
with probability 0.4 

𝑐̃𝑐24 (5,8,11) 
(6,9,12) 

with probability 0.8 
with probability 0.2 

𝑐̃𝑐68 (8,11,14) 
(7,10,13) 

with probability 0.4 
with probability 0.6 

𝑐̃𝑐25 (7,11,13) 
(5,6,7) 

with probability 0.4 
with probability 0.6 

𝑐̃𝑐69 (9,11,13) 
(6,8,10) 

with probability 0.6 
with probability 0.4 

𝑐̃𝑐34 (11,12,13) 
10,13,16) 

with probability 0.6 
with probability 0.4 

𝑐̃𝑐610 (7,9,11) 
(6,8,10) 

with probability 0.4 
with probability 0.6 

𝑐̃𝑐35 (12,15,20) 
(11,12,13) 

with probability 0.9 
with probability 0.1 

𝑐̃𝑐78 (5,9,12) 
(12,14,16) 

with probability 0.7 
with probability 0.3 

𝑐̃𝑐46 (9,12,15) 
(11,14,17) 

with probability 0.7 
with probability 0.3 

𝑐̃𝑐79 (4,6,8) 
(5,7,9) 

with probability 0.7 
with probability 0.3 

𝑐̃𝑐47 (13,17,18) 
(11,14,17) 

with probability 0.4 
with probability 0.6 

𝑐̃𝑐710 (3,5,7) 
(2,4,6) 

with probability 0.2 
with probability 0.8 

 
Now we using the dynamic programming problem to convert 3-stage transportation problem to single stage 
transportation problem and we get the shortest route of the given 3- stage transportation problem. 
 

Table 3: DPP and fuzzy random variable 
shortest route fuzzy random cost with probability 

𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻7 − 𝐻𝐻8 {(17,26,34),0.294},{(24,31,38),0.196},{(21,29,36),0.126}, {(28,34,40),0.084},  
{(18,28,36),0.126},{(25,33,40),0.084},{(22,31,38),0.054},{(29,36,42),0.036} 

𝐻𝐻2 − 𝐻𝐻 4 − 𝐻𝐻6 − 𝐻𝐻8 {(22,31,40),0.224}, {(24,33,42),0.096}, {(21,30,39),0.336}, {(23,32,41),0.144},  
{(23,32,41),0.056},{(25,34,43),0.024},{(22,31,40),0.084},{(24,33,42),0.036} 

𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻6 − 𝐻𝐻8 {(28,35,42),0.168},{(30,37,44),0.072},{(27,34,41),0.252},{(29,36,43),0.108}, 
{(27,36,45),0.112}, {(29,38,47),0.048},{(26,35,44),0.168},{(28,37,46),0.072} 

𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻9 {(25,32,38),0.056},{(26,33,39),0.024},{(23,29,37),0.084},{(24,30,39),0.036}, 
{(21,30,36),0.224}, {(22,31,37),0.096},{(19,27,35),0.336}, {(20,28,37),0.144} 

𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻7 − 𝐻𝐻9 {(22,29,34),0.216},{(19,26,31),0.144},{(26,33,38),0.024},{(23,30,35),0.016}, 
{(20,24,28),0.324}, {(17,21,25),0.216},{(24,28,32),0.036}, {(21,25,29),0.024} 

𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻7 − 𝐻𝐻9 {(24,32,38),0.168},{(25,33,39),0.072},{(22,29,37),0.252},{(23,30,39),0.108}, 
{(25,34,40),0.112}, {(26,35,41),0.048},{(23,31,39),0.168}, {(24,32,41),0.072} 

𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻7 − 𝐻𝐻8 {(14,19,24),0.252},{(18,23,28),0.028},{(15,20,25),0.378},{(19,24,29),0.042}, 
{(15,21,24),0.108},{(19,25,30),0.012)},{(16,22,27),0.162},{(20,26,31),0.018} 

𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻7 − 𝐻𝐻8 {(18,25,30),0.144},{22,29,34),0.016},{(19,26,31),0.216},{(23,30,35),0.024},  
{(16,20,24),0.216}, {(20,24,28),0.024},{(17,21,25),0.324},{(21,25,29),0.036} 

𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻7 − 𝐻𝐻8 {(23,31,37),0.048},{(21,28,36),0.072},{(22,30,36),0.192},{(20,27,35),0.288}, 
{(24,33,39),0.032},{(22,30,38),0.048},{(23,32,38),0.128},{(21,29,37),0.192} 

 
All the shortest routes according to their unit transportation cost(which is also a fuzzy random parameters) are 
shown in the figure 

 
Figure 4: single stage transportation problem 
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To find optimal transportation unit at first, we find out the expected cost of each route then the converted 
transportation problem minimized through Lingo-14.0 subject to the constraints (2) and (3). The optimal solution 
is 

Table 4: Optimum transportation for Model-1 
Route Trans. Unit (min) Exp. Value(min) 

𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻7 − 𝐻𝐻8 0 6554.1 
𝐻𝐻2 − 𝐻𝐻 4 − 𝐻𝐻6 − 𝐻𝐻8 35 
𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻6 − 𝐻𝐻8 60 
𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻9 103 
𝐻𝐻2 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻9 0 
𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻7 − 𝐻𝐻9 0 
𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻10 17 
𝐻𝐻2 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻10 35 
𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻7 − 𝐻𝐻10 0 

 
And for model-2: 

Table 5: Optimum transportation for Model-2 
Route Trans. Unit (min) Var.(min) 

𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻7 − 𝐻𝐻8 0 4675.05 
𝐻𝐻2 − 𝐻𝐻 4 − 𝐻𝐻6 − 𝐻𝐻8 35 
𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻6 − 𝐻𝐻8 60 
𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻9 68 
𝐻𝐻2 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻9 35 
𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻7 − 𝐻𝐻9 0 
𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻10 52 

𝐻𝐻2 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻10 0 
𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻7 − 𝐻𝐻10 0 

 
 
Example-2: Example-2 is similar as example-1, where the internal depots are not in infinite capacity. Instead of 
that, internal depots have finite capacity of storing. Let the capacity of the depots are 

Depots 𝐻𝐻 4 𝐻𝐻 5 𝐻𝐻 5 𝐻𝐻7 
Capacity 55 65 50 60 

Then the optimal solution is 
 

Table 6: optimum result with capacity of depots 
Route Transportation Unit min cost 

𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻7 − 𝐻𝐻8 20 5933.6 
𝐻𝐻2 − 𝐻𝐻 4 − 𝐻𝐻6 − 𝐻𝐻8 25 
𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻6 − 𝐻𝐻8 50 
𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻9 50 
𝐻𝐻2 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻9 43 
𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻7 − 𝐻𝐻9 10 
𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻10 0 
𝐻𝐻2 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻10 2 
𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻7 − 𝐻𝐻10 0 
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Example-3: Let us consider an example, same as example-1 with the positive defective rate, and corresponding 
results are 
 

Table 7: Optimum results with defectiveness of the item 
Defective Shortest Route transportation 

unit of stage-1 
Transportation 
unit of stage-2 

transportation 
unit of stage-3 

min cost 

λ15 = 0.3, λ57 = 0.3 𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻7 − 𝐻𝐻8 35 24.5 14 4475.32 
λ24 = 0.3, λ46 = 0.3 𝐻𝐻2 − 𝐻𝐻 4 − 𝐻𝐻6 − 𝐻𝐻8 0 0 0 
λ34 = 0.4, λ46 = 0.3 𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻6 − 𝐻𝐻8 60 36 18 
λ15 = 0.3, λ56 = 0.2 𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻9 33 23.1 16.5 
λ25 = 0.4, λ56 = 0.2 𝐻𝐻2 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻9 70 42 28 
λ34 = 0.4, λ56 = 0.2 𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻7 − 𝐻𝐻9 0 0 0 
λ15 = 0.3, λ56 = 0.2 𝐻𝐻1 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻10 52 36.4 26 
λ25 = 0.4, λ56 = 0.2 𝐻𝐻2 − 𝐻𝐻 5 − 𝐻𝐻6 − 𝐻𝐻10 0 0 0 
λ34 = 0.4, λ47 = 0.3 𝐻𝐻3 − 𝐻𝐻 4 − 𝐻𝐻7 − 𝐻𝐻10 0 0 0 

 
V. DISCUSSION 

The mathematical form and its numerical illustration help the decision maker to take the following 
decisions: (i) As these are several paths from an origin 𝐻𝐻1,𝐻𝐻2,𝐻𝐻3 to final destination 𝐻𝐻8,𝐻𝐻9,𝐻𝐻10, the dynamic 
programming problem help us to find the path with minimum cost, such paths with their fuzzy random costs are 
display in table-3. (ii) The optimum results to minimize the expected total cost and variance of total of total cost 
are shown in Table-4 and Table-5. (iii) Here the optimum paths are non-degenerate in nature and solution are 
balanced. (iv) It is also seen that in the middle stage 𝐻𝐻7 depots are not used, since to transport the quantity to 𝐻𝐻9 
and 𝐻𝐻10through 𝐻𝐻7 gives the more expected cost (31.23, 29.1 respectively) than that through 𝐻𝐻6((22.75.25.06), 
(20.51,22.86) respectively). Similarly, when the amount is transport from 𝐻𝐻1 gives the larger value than 𝐻𝐻6. (v) 
But, if we assign the capacity of depots then through 𝐻𝐻7 , quantity also transport. In this case the number of 
allocations is more than without that of without capacity. (vi) From table-7, it is also seen that if defectiveness of 
the items is introduced then as expected total transportation amount reduce. 
 

VI. CONCLUSION AND FUTURE RESEARCH WORK 
In reality, the last user i.e., retailer shop or seller can’t get the commodity directly from the origin. There 

may present one or more intermediate depots. So, in general a single stage transportation problem is not realistic 
in nature. Such a multi stage transportation problem is constructed here. The multi stage problem create multi 
paths from one origin to one destination. From these multiple available paths unique path is determined here 
through dynamic programming problem. Here the unit cost terms are taken with vagueness presented by fuzzy 
random variable, which has been transformed into a deterministic one using expected value of credibility measure 
of the fuzzy random variable. The model can be extended with solid transportation problem, problem with 
deteriorating item, model with fixed charge, model with more vehicle cost, etc. Not only that, the similar problem 
can be formulate and examine with another type of vagueness, like- rough measures, fuzzy rough measures, type-
2 fuzzy parameters, etc.  
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