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Abstract: This paper aims to develop a steady state thermoelastic solution for an infinite functionally graded 

layer of finite thickness with a crack in it lying in the middle of the layer and parallel to the faces of the layer. 

The faces of the layer are maintained at constant temperature of different magnitude. The layer surfaces are 

supposed to be acted on by symmetrically applied concentrated forces of magnitude  
P

2
  with respect to the centre 

of the crack. The applied concentrated force may be compressive or tensile in nature. The problem is solved by 

using integral transform technique. The solution of the problem has been reduced to the solution of a Cauchy 

type singular integral equation, which requires numerical treatment. Both normalized thermo-mechanical stress 

intensity factor (TMSIF), thermal stress intensity factor (TSIF) and the normalized crack opening displacement 

are determined. Thermal effect and the effects of non-homogeneity parameters of the graded material on various 

subjects of physical interest are shown graphically. 
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I. INTRODUCTION 
Every solid material has its own characteristics in respect of its elastic behavior, density, porosity, 

thermal and electrical conductivity, magnetic permeability, and so on. In numerous situations, a particular solid 

does not necessarily fulfill all the criteria for a particular purpose. For example, aerospace industry requires light 

materials with high strength; the outer part of a space craft body should be a non-conductor of heat such that the 

heat generated due to friction does not disturb the interior part made of high strength metal. It is difficult to find 

materials with light weight but high strength or high strength metal with zero heat conductivity. These 

difficulties are overcome at present using two or more solids at a time to generate a new solid which will fulfill 

most of our requirements. Composite materials, fibre-reinforced materials and functionally graded materials 

(FGM) are some of newly manufactured materials which are used at present in various areas of applications. 

Two solids say A and B with specific properties are used to form a FGM in such a way that the composition 

gradually vary in space following a definite designed rule. This means that at a particular point in the medium 

the FGM shows (100 - x) % of A's property and x% of B's property, (0 ≤ x ≤ 100). The idea was originated in 

Japan in early part of the eighties in the last century and has been found to be very useful in respect of 

applications in various areas like resisting corrosiveness, controlling thermal activity, increasing strength and 

toughness in materials etc. FGMs have also several biomedical applications. 

Thermal loading on solids has significant effects in their after load behavior and so should be dealt with 

utmost care. As such, the study of thermoelastic problems has always been an important branch in solid 

mechanics
1,2

. In the design of a structure in engineering field , considerable attention on thermal stress is a 

natural task, because many structural components are subjected to severe thermal loading which might cause 

significant thermal stresses in the components, especially around any defect present in the solid. Thermal 

stresses along with the stresses due to mechanical loadings can give rise to stress concentration in an around the 

defects and can lead to considerable damage in the structure.  

In literature, problems related to defects such as cracks in solids have been studied in detail for various 

kinds of solid medium. Cracks in a solid may be generated due to several reasons such as uncertainties in the 

loading process, compositional defects in materials, inadequacies in the design, deficiencies in construction or 

maintenance of environmental conditions, and several others. Consequently, almost all structures contain cracks, 

either due to manufacturing defects or due to inappropriate thermal or mechanical loading. If proper attention to 
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load condition is not paid, the size of the crack grows, catastrophically leading to a structure failure. A list of 

work on crack problems by earlier investigators has been provided 
3,4,5,6,7,8,9,10,11,12

 etc. Among the recent works 

on crack problems in solids of above mentioned characteristics, notable are the works 
13,14,15,16,17,18,19,20,21

  etc. 

For a solid with a crack in it loaded mechanically or thermally, determination of stress intensity factor 

(SIF) becomes a very important task in fracture mechanics. The SIF is a parameter that gives a measure of 

stress concentration around cracks and defects in a solid. SIF needs to be understood if we are to design fracture 

tolerant materials used in bridges, buildings, aircraft, or even bells. Polishing just won't do if we detect crack. 

For a thermoelastic crack problem thermal stress intensity factor (TSIF) is a very important subject of physical 

interest. Literature survey shows good number of papers dealing with thermal stress intensity factors. Among 

them mention may be made of the works 
22,23,24,25,26

 etc.  

The present investigation aims to find the elastostatic solution in an infinite layer with a crack in it and 

is under steady state thermal loading as well as mechanical loading. Following the integral transform technique 

the problem has been reduced to a problem of Cauchy type singular integral equation , which has been solved 

numerically. Finally , the stress-intensity factors and the crack opening displacements are determined for various 

thermal and mechanical loading conditions and the associated numerical results have been shown graphically. 

 

II. NOMENCLATURE 

λ , μ                :       Lame's constants for isotropic elastic material 

ν                   :      Poisson's ratio of elastic material 

αt                  :      Thermal expansion coefficient of the material 

σx  ;  τxy  ;  σy  :      Stress components in cartesian co-ordinate system 

κ                   :      Thermal diffusivity of the material 

P                  :       Applied load in isothermal problem 

δ(:)               :       Dirac delta function 

p0                 :       Internal uniform pressure along crack surface 

β                   :       Non homogeniety parameter for elastic coefficients 

k(:)               :       Stress intensity factor in a medium with a crack in it 

T                  :      Absolute temperature 

T0                 :       Reference temperature 

T1  ; T2           :       Constant temperature supplied to the material in the lower and upper surfaces respectively 

 

III. FORMULATION OF THE PROBLEM 

We consider an infinitely long functionally graded layer of thickness  2h  weakened by the presence of 

an internal crack. Cartesian system co-ordinates will be used in our analysis. We shall take y-axis along the 

normal to the layer surface. The layer is infinite in a direction perpendicular to y-axis. A line crack of length 

2b is assumed to be present in the middle of the layer. We shall take x-axis along the line of the crack with 

origin at the center of the crack and investigate the problem as a two dimensional problem in the x-y plane. The 

crack faces are supposed to be acted upon by tensile force p0 and the layer surfaces are acted upon by 

concentrated forces at points on the layer surfaces at distance 2a , symmetrically positioned with respect to the 

center of the crack. The concentrated forces are either of compressive in nature or tensile in nature. Fig.1 

displays the geometry of the problem.  

In this figure two sided arrows actually correspond to two distinct problems: the inward drawn arrows 

correspond to compressive loading , while outward drawn arrows correspond to tensile loading. The two 

different types of loading are (i) a pair of concentrated compressive loads each of magnitude 
P

2
  applied 

symmetrically with respect to the center of the crack at a distance 2a apart , (ii) a pair of concentrated tensile 

loads each of magnitude 
P

2
  applied symmetrically with respect to the center of the crack at a distance 2a apart. 

The gravitational force has not been taken into consideration. In deriving analytical solution in the present study 

the elastic parameters  λ and μ have been assumed to vary exponentially in the direction perpendicular to the 

plane of the crack , following the law 

              

                                              λ = λ0eβ y  , μ = μ0eβ y  , −h ≤ y ≤ h,                                                       (1) 

where λ0  and μ0  are the elastic parameters in the homogeneous medium and β  is the non-homogeneity 

parameter controlling the variation of the elastic parameters in the graded medium.  
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Fig.1: Geometry of the problem. 

 

The strain displacement relations , linear stress-strain relations and equations of equilibrium are , respectively , 

given by 

εx =
∂u

∂x
 , εy =

∂v

∂y
 , γ

xy
=

1

2
 

∂u

∂y
+

∂v

∂x
  ,                                                                            (2)   

 

                                            𝜎𝑥 =
𝜇

𝜅−1
   1 + 𝜅 𝜀𝑥 +  3 − 𝜅 𝜀𝑦  ,                                                    

 

                                             𝜎𝑦 =
𝜇

𝜅−1
   3 − 𝜅 𝜀𝑥 +  1 + 𝜅 𝜀𝑦 ,                                                   

   

𝜏𝑥𝑦 = 2𝜇𝛾𝑥𝑦 .                                                                                                                   (3) 

   
𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
= 0,                                                                                                                (4) 

 
𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
= 0,                                                                                                                (5) 

 

 where 𝜅 = 3 − 4𝜐 and  𝜈 is Poisson's ratio. Before further proceeding it will be convenient to adopt 

non-dimensional variables by rescaling all length variables by the problem's length scale 𝑏 and the temperature 

variable by the reference temperature scale 𝑇0  : 
 

                                                                            𝑢′ =
𝑢

𝑏
 , 𝑣 ′ =

𝑣

𝑏
 , 𝑥 ′ =

𝑥

𝑏
 , 𝑦 ′ =

𝑦

𝑏
 , ′ =



𝑏
,                                               

 

𝑇 ′ =
𝑇

𝑇0
 , 𝑇1

′ =
𝑇1

𝑇0
 , 𝑇2

′ =
𝑇2

𝑇0
 , 𝛼𝑡

′ = 𝛼𝑡𝑇0.                                             (6) 

 

 In the analysis below, for notational convenience , we shall use only dimensionless variables and shall 

ignore the dashes on the transformed non-dimensional variables. Mathematically, the problem under 

consideration is reduced to the solution of thermoelasticity equations with thermal expansion coefficient 𝛼𝑡   and 

the quantity H , the dimensionless thermal conductivity of the crack surface defined 
 
by Carslaw and Jaeger

27
.
  

(𝑖) Equilibrium equations: 

2 1 − 𝜈 
𝜕2𝑢

𝜕𝑥2 +  1 − 2𝜐 
𝜕2𝑢

∂𝑦2 +
𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝛽 1 − 2𝜈  

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
 = 2 1 + 𝜈 𝛼𝑡

𝜕𝑇

𝜕𝑥
 ,                     (7) 

 

 1 − 2𝜈 
𝜕2𝑣

𝜕𝑥2 + 2 1 − 𝜐 
𝜕2𝑣

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝛽  2 1 − 𝜈 

𝜕𝑣

𝜕𝑦
+ 2𝜈

𝜕𝑢

𝜕𝑥
 = 2 1 + 𝜈 𝛼𝑡

𝜕𝑇

𝜕𝑦
 ,                (8) 

 

(𝑖𝑖) Steady state heat conduction equation: 
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇 

𝜕𝑦2 = 0,  0 < 𝑥 <  ∞  ,                                             (9) 
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and 

(𝑖𝑖𝑖) The boundary conditions:  

(𝑎) Thermal boundary conditions: 

𝑇 𝑥 , − = 𝑇1 ,  0 < 𝑥 <  ∞  ,                                                                 (10) 

 

    𝑇 𝑥 ,  = 𝑇2 ,  0 < 𝑥 <  ∞  ,                                                                   (11) 

 
𝜕

𝜕𝑦
𝑇 𝑥, 0+ =

𝜕

𝜕𝑦
𝑇 𝑥, 0− = 𝐻 𝑇 𝑥, 0+ − 𝑇 𝑥, 0−  ,  0 < 𝑥 <  1  ,    (12) 

 

𝑇 𝑥, 0+ = 𝑇 𝑥, 0− ,    𝑥 ≥  1  ,                                                               (13) 

 
𝜕

𝜕𝑦
𝑇 𝑥, 0+ =

𝜕

𝜕𝑦
𝑇 𝑥, 0− ,    𝑥 ≥  1  ,                                                      (14) 

(𝑏) Elastic boundary conditions: 

 

𝜏𝑥𝑦  𝑥 , 0 = 0,  0 < 𝑥 <  ∞  ,                                                                (15) 

 

𝜏𝑥𝑦  𝑥 ,  = 0,  0 < 𝑥 <  ∞  ,                                                                (16) 

 

𝜎𝑦 𝑥 ,  = ∓
𝑃

2
𝛿 𝑥 − 𝑎 ,  0 < 𝑥 <  ∞  ,                                              (17) 

 
𝜕

𝜕𝑥
 𝑣 𝑥, 0  =  

𝑓 𝑥 , 0 < 𝑥 < 1
0 ,               𝑥 > 1

  ,                                                           (18) 

 

𝜎𝑦 𝑥, 0 = −𝑝0  ,    0 ≤ 𝑥 ≤ 1  ,                                                            (19) 

 where u and v are the x and y components of the displacement vector ; 𝜎𝑥 , 𝜎𝑦  , 𝜏𝑥𝑦   are the normal and 

shearing stress components ; 𝑓(𝑥) is an unknown function and 𝛿 𝑥  is the Dirac delta function. In Eq. (17) 

positive sign indicates tensile force while negative sign corresponds to compressive force. 

 

IV. METHOD OF SOLUTION 
(𝑎) Thermal part:  

To determine temperature field 𝑇(𝑥, 𝑦) from Eq. (9) and boundary conditions (10)-(14) we assume 

 

𝑇 𝑥 , 𝑦 = 𝑈 𝑥, 𝑦 + 𝑊 𝑦 ,                                                                (20) 

where 𝑈(𝑥, 𝑦) and 𝑊(𝑦) are two unknown functions satisfying the conditions 

 

𝑈 𝑥 , − = 𝑈 𝑥,  = 0,                                                                  (21) 

and 

𝑊 − = 𝑇1  , 𝑊  = 𝑇2 ,                                                                (22) 

Under these considerations we get 

𝑊 𝑦 =
 𝑇2−𝑇1 

2
𝑦 + 

𝑇1+𝑇2

2
 ,                                                                (23) 

 

and 

  

𝑈 𝑥, 𝑦 =  
 𝑒𝜂𝑦 − 𝑒𝜂 2−𝑦  𝐴1   ,                      𝑦 ≥ 0;

  𝑒𝜂𝑦 − 𝑒−𝜂 2+y  
1+𝑒2𝜂

1+𝑒−2𝜂 𝐴1   ,     𝑦 ≤ 0.   
                                         (24) 

for certain constant 𝐴1. 

The appropriate temperature field satisfying the boundary conditions and regularity condition can be expressed 

as: 

 

𝑇 𝑥 , 𝑦 =   𝑒𝜂𝑦 − 𝑒𝜂 2−𝑦  
∞

−∞
𝐷 𝜂 𝑒𝑖𝑥𝜂𝑑𝜂 + 𝑊 𝑦 , 𝑦 ≥ 0 ,                            (25) 

 

𝑇 𝑥 , 𝑦 =   𝑒𝜂𝑦 − 𝑒−𝜂 2+𝑦  
∞

−∞
𝑟𝑎𝑏 𝐷 𝜂 𝑒−𝑖𝑥𝜂𝑑𝜂 + 𝑊 𝑦 , 𝑦 ≤ 0 ,                  (26) 

where 𝐷 𝜂  is an unknown function to be determined and 
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𝑟𝑎𝑏 =
1+𝑒2𝜂

1+𝑒−2𝜂  ,                                                                                                      (27) 

 

Let us introduce the density function  𝛩 𝑥 , as 

 

𝛩 𝑥 =
𝜕

𝜕𝑥
𝑇 𝑥, 0+ −

𝜕

𝜕𝑥
𝑇 𝑥, 0−  ,                                                                    (28) 

 

It is clear from the boundary conditions (13) and (14) that 

 

 𝛩 𝑠 𝑑𝑠
1

−1
= 0 ,                                                                                               (29) 

and 

 

𝛩 𝑥 = 0 ,  𝑥 ≥ 1  ,                                                                                      (30) 

 

Substituting  Eqs. (25) and (26) into Eq. (28) and using Fourier inverse transform , we have 

 

𝐷 𝜂 =
𝑖 1+𝑒−2𝜂  

4𝜋𝜂  𝑒−2𝜂−𝑒2𝜂  
  𝛩 𝑠 𝑒𝑖𝑠𝜂 𝑑𝑠 

1

−1
,                                                      (31) 

 

Substituting Eqs. (25) and (26) into Eq. (12) and applying the relation (31) , we get the singular integral 

equation for 𝛩 𝑥  as follows 

 
1

𝜋
  

1

𝑠−𝑥
+ 𝑘1 𝑥, 𝑠  𝛩 𝑠 𝑑𝑠

1

−1
=

𝑇1−𝑇2


 ,                                                          (32) 

where 

 

𝑘1 𝑥, 𝑠 =    1 −
2𝐻

𝜂
+

2+𝑒2𝜂 +𝑒−2𝜂

𝑒−2𝜂−𝑒2𝜂  𝑠𝑖𝑛 𝜂 𝑥 − 𝑠 𝑑𝜂 
∞

0
,                           (33) 

 

After determining  𝛩 𝑠   from the singular integral equation (32) we have the temperature field along the axes 

as 

 

 

𝑇 𝑥, 0 =  

1

4
 𝑠𝑖𝑔𝑛 𝑥 − 𝑠 𝛩 𝑠 𝑑𝑠 +

𝑇1+𝑇2

2

1

−1
   ,        𝑦 ≥ 0;

−  
1

4
 𝑠𝑖𝑔𝑛 𝑥 − 𝑠 𝛩 𝑠 𝑑𝑠 +

𝑇1+𝑇2

2

1

−1
    ,          𝑦 ≤ 0.   

                                                                (34) 

 

𝑇 0, 𝑦 =  
−

1

4𝜋
 

1+𝑒−2𝜂

𝑒−4𝜂−1
 𝑒−𝜂 2−𝑦 − 𝑒−𝜂𝑦  

𝑠𝑖𝑛   𝑠𝜂  

𝜂
𝑑𝜂  𝛩 𝑠 𝑑𝑠

1

−1
+

𝑇2−𝑇1

2
+

𝑇1+𝑇2

2

∞

0
   ,        𝑦 ≥ 0;

  −
1

4𝜋
 

1+𝑒−2𝜂

𝑒−4𝜂−1
 𝑒𝜂𝑦 − 𝑒−𝜂 2+𝑦  

𝑠𝑖𝑛   𝑠𝜂  

𝜂
𝑑𝜂  𝛩 𝑠 𝑑𝑠

1

−1
+

𝑇2−𝑇1

2
+

𝑇1+𝑇2

2

∞

0
  ,          𝑦 ≤ 0.   

      (35) 

 

(𝑏) Elastic part: 

First of all we observe that due to symmetry of the crack location with respect to the layer and of the applied 

load with respect to the crack , it is sufficient to consider the solution of the problem in the regions 0 ≤ 𝑥 < ∞  

and 0 ≤ 𝑦 ≤  . To solve the partial differential equations (7) and (8), Fourier transform is applied to the 

equations with respect to the variable x. 

Utilizing the symmetric condition the displacement components  𝑢 , 𝑣 may be written as 

 

𝑢 𝑥 , 𝑦 =
2

𝜋
 𝛷 𝜉, 𝑦 𝑠𝑖𝑛 𝜉𝑥 𝑑𝜉

∞

0

 ,                                                                                           (36) 

 

𝑣 𝑥 , 𝑦 =
2

𝜋
 𝛹 𝜉, 𝑦 𝑐𝑜𝑠 𝜉𝑥 𝑑𝜉

∞

0

 ,                                                                                          (37) 

  

where  𝛷 𝜉, 𝑦   and 𝛹 𝜉, 𝑦  are Fourier transforms of  𝑢(𝑥, 𝑦) and 𝑣 𝑥, 𝑦  , respectively with  respect to the 

coordinate 𝑥 , and 𝜉 is the transformed parameter. 
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Substituting 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) from Eqs. (36) and (37) into the equations of equilibrium (7) and (8) we obtain 

the differential equation for the determination of 𝛷 𝜉, 𝑦   , 
 

                 𝐹 𝐷1 𝛷 = 𝛼𝑡𝜉
 𝜅 − 1  7 − 𝜅 

𝜅 + 1
 
𝜕2𝑇𝑐

 

𝜕𝑦2
+

1

2
𝛼𝑡𝜉   7 − 𝜅  3 − 𝜅 + 𝛽

 7 − 𝜅  𝜅 − 1 2

𝜅 + 1
 
𝜕𝑇𝑐

 

𝜕𝑦
 

 

+
7 − 𝜅

4 𝜅 + 1 
𝛼𝑡𝜉 𝛽 3 − 𝜅  𝜅 + 1  𝜅 − 1 + 𝛽 + 4𝜉2 𝑇𝑐

 ,                                                           (38) 

 

where 

 

𝐹 𝐷1 = 𝐷1
4 + 2𝛽𝐷1

3 −  2𝜉2 − 𝛽2 𝐷1
2 − 2𝜉2𝛽𝐷1 + 𝜉2  𝜉2 −

 𝜅 − 3 

 𝜅 + 1 
𝛽2  ,                                      (39) 

 

and 𝑇𝑐
  𝜉, 𝑦  is the Fourier Cosine transform of 𝑇(𝑥, 𝑦) defined by 

 

𝑇𝑐
  𝜉 , 𝑦 =  𝑇 𝑥, 𝑦 𝑐𝑜𝑠 𝜉𝑥 𝑑𝑥

∞

0

 ,                                                                                            (40) 

 

                                                                               

The solution of the Eq. (38) is of the form 

 

𝛷 𝜉, 𝑦 =   𝐴𝑖 𝜉 𝑒𝑚 𝑖𝑦 + 𝑓𝑖
 𝑗  

 𝜉  

4

𝑖=1

 , 𝑗 = 1,2                                                                    (41) 

                                                     

where 𝐴𝑖 𝜉  ,  𝑖 = 1, … . ,4  are constants to be determined from the boundary conditions , 𝑚𝑖 𝑖 = 1, … . ,4  are 

the four complex roots of two biquadratic equation 

 

𝑚4 + 2𝛽𝑚3 −  2𝜉2 − 𝛽2 𝑚2 − 2𝜉2𝛽𝑚 + 𝜉2  𝜉2 −
𝜅 − 3

𝜅 + 1
𝛽2 = 0,                            (42) 

 

 

 

 

 

                        

and 

                                 𝑓1
 𝑗  

 𝜉 =
1

𝐹 𝐷1 
  

 7−𝜅 𝛼𝑡𝜉

4 𝜅+1 
 𝛽 3 − 𝜅  𝜅 + 1  𝜅 − 1 + 𝛽 + 4  𝜉2   

∞

−∞
                                                   

                                                 +
𝜂

2
  7 − 𝜅  3 − 𝜅 𝛼𝑡𝜉 +

𝛼𝑡𝛽 𝜅−1 2 7−𝜅 𝜉

 𝜅+1 
  

 

                                                 +  𝜂
2 𝜅−1  7−𝜅 𝛼𝑡𝜉

 𝜅+1 
 

𝑖𝜂

𝜉2−𝜂2 𝐷 𝜂  𝑟𝑎𝑏   2−𝑗 𝑒𝜂𝑦𝑑𝜂 , 𝑗 = 1,2                                           (43)                                           

 

                                   𝑓2
 𝑗  

 𝜉 =
1

𝐹 𝐷1 
  −

 7−𝜅 𝛼𝑡𝜉

4 𝜅+1 
 𝛽 3 − 𝜅  𝜅 + 1  𝜅 − 1 + 𝛽 + 4  𝜉2   

∞

−∞
                                  

 

                                                  +
𝜂

2
  7 − 𝜅  3 − 𝜅 𝛼𝑡𝜉 +

𝛼𝑡𝛽 𝜅−1 2 7−𝜅 𝜉

 𝜅+1 
                                                            

 

                                                   −  𝜂
2 𝜅−1  7−𝜅 𝛼𝑡𝜉

 𝜅+1 
 

𝑖𝜂

𝜉2−𝜂2 𝐷 𝜂  𝑟𝑎𝑏   2−𝑗 𝑒 −1 𝑗 .𝜂 2−𝑦 𝑑𝜂 , 𝑗 = 1,2                         (44)    

 

𝑓3
 𝑗  

 𝜉 =
1

𝐹 𝐷1 

 7−𝜅 𝛼𝑡𝜉

4 𝜅+1 
 𝛽 3 − 𝜅  𝜅 + 1  𝜅 − 1 + 𝛽 + 4𝜉2 

 𝑇2−𝑇1 

𝜋
𝛿 𝜉 𝑦 ,   𝑗 = 1,2     (45) 

 

                                     𝑓4
 𝑗  

 𝜉 =
1

𝐹 𝐷1 
 

1

2
  7 − 𝜅  3 − 𝜅 𝛼𝑡𝜉 +

𝛼𝑡𝛽 𝜅−1 2 7−𝜅 𝜉

𝜅+1
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−
 7−𝜅 𝛼𝑡𝜉

4 𝜅+1 
  𝛽 3 − 𝜅  𝜅 + 1  𝜅 − 1 + 𝛽 + 4𝜉2  

 𝑇2−𝑇1 

𝜋
𝛿 𝜉 , 𝑗 = 1,2                (46) 

where 𝑗 =  1, 2 are for the lower and upper region respectively. 

The function 𝛹 𝜉, 𝑦  can then be determined as 

 

𝛹 𝜉, 𝑦 =   𝑀𝑖 𝜉 𝐴𝑖 𝜉 𝑒𝑚 𝑖𝑦 + 𝑁𝑖𝑓𝑖
 𝑗  

 𝜉  

4

𝑖=1

 , 𝑗 = 1,2                                          (47)  

 

where 

 

       𝑀𝑖 𝜉 =
 𝜅−1 𝑚 𝑖

2+𝛽 𝜅−1 𝑚 𝑖−𝜉2 𝜅+1 

𝜉 2𝑚 𝑖+𝛽 𝜅−1  
 ,  𝑖 = 1, … . ,4 ,                                           (48) 

 

𝑁𝑖 =
 𝜅−1 𝐷1

2+𝛽 𝜅−1 𝐷1−𝜉2 𝜅+1 

𝜉 2𝑚 𝑖+𝛽 𝜅−1  
 ,  𝑖 = 1, … . ,4 ,                                           (49) 

 

It follows from Eq. (42) that 𝑚3 = 𝑚 1  and  𝑚4 = 𝑚 2 where 

 

𝑚1 = −
𝛽

2
+  𝜉2 +

𝛽2

4
+ 𝑖𝜉𝛽 

3−𝜅

𝜅+1
  ,                                                            (50) 

 

𝑚2 = −
𝛽

2
−  𝜉2 +

𝛽2

4
+ 𝑖𝜉𝛽 

3−𝜅

𝜅+1
  ,                                                            (51) 

 

Substituting  Eqs. (36) and (37) into Eqs. (2) and (3) and utilizing Eqs. (41) and (47) we obtain 

 

1

2𝜇
𝜎𝑥 𝑥, 𝑦 =

2

𝜋
  

1

2 1 − 𝜅 
   − 1 + 𝜅 𝜉 −  3 − 𝜅  𝑚𝑖𝑀𝑖 𝐴𝑖𝑒

𝑚 𝑖𝑦    
4

𝑖=1

∞

0

 

                                                    +  −𝜉 1 + 𝜅 𝑓𝑖
 𝑗  

−  3 − 𝜅 𝐷1
   𝑁𝑖𝑓𝑖

 𝑗  
   𝑐𝑜𝑠 𝜉𝑥 𝑑𝜉 , 𝑗 = 1,2                           (52) 

 

1

2𝜇
𝜎𝑦 𝑥, 𝑦 =

2

𝜋
  

1

2 1 − 𝜅 
   − 1 + 𝜅 𝑚𝑖𝑀𝑖 −  3 − 𝜅  𝜉 𝐴𝑖𝑒

𝑚 𝑖𝑦    
4

𝑖=1

∞

0

 

                                                     +  − 1 + 𝜅 𝐷1  𝑁𝑖𝑓𝑖
 𝑗  

 −  3 − 𝜅 𝜉   𝑓𝑖
 𝑗  

  𝑐𝑜𝑠 𝜉𝑥 𝑑𝜉 , 𝑗 = 1,2                          (53) 

 

                                          
1

2𝜇
𝜏𝑥𝑦  𝑥, 𝑦 =

2

𝜋
     −

𝜉

2
𝑀𝑖 +  𝑚𝑖

2
 𝐴𝑖𝑒

𝑚 𝑖𝑦    
4

𝑖=1

∞

0

 

                                                             +  −
𝜉

2
𝑁𝑖𝑓𝑖

 𝑗  
+

1

2
𝐷1

   𝑓𝑖
 𝑗  

   𝑠𝑖𝑛 𝜉𝑥 𝑑𝜉 , 𝑗 = 1,2                                          (54) 

 

From the boundary conditions (15)-(18),the unknown constants 𝐴𝑖   𝑖 = 1, … ,4  can be found out from the 

following linear algebraic system of equations expressed in matrix form: 

 

𝐿𝐴 = 𝐵 ,                                                                                                                            (55) 

 

where the matrices  𝐿 , 𝐴 , 𝐵  are 

 

𝐿 =

 
 
 
 
𝑆1𝑒𝑚1 𝑆2𝑒𝑚2 𝑆3𝑒𝑚3

𝐺1𝑒𝑚1 𝐺2𝑒𝑚2 𝐺3𝑒𝑚3

𝑚1 − 𝐺1 𝑚2 − 𝐺2 𝑚3 − 𝐺3

   

𝑆4𝑒𝑚4

𝐺4𝑒𝑚4

𝑚4 − 𝐺4

𝐺1        𝐺2                    𝐺3         𝐺4  
 
 
 

   ,   𝐴 =  

𝐴1

𝐴2

𝐴3

𝐴4

  ,          𝐵 =  

−𝑅1 − 𝑃1

𝑃2

−𝑅2 − 𝑃3

𝑃4

  

 

and 
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𝑅1 𝜉 = ±
 𝜅 − 1 

2𝜇
𝑃 𝑐𝑜𝑠 𝑎𝜉 + 𝑐𝑜𝑠 −𝑎𝜉   , 𝑃1 =  𝐷4𝑖

′ 𝑓𝑖
 𝑗  

 ,

4

𝑖=1

 

                                                 𝑅2 𝜉 =  𝑓 𝑥 𝑠𝑖𝑛 𝜉𝑥 𝑑𝑥 ,                 𝑃2 =  𝐷4𝑖𝑓𝑖
 𝑗  

 ,

4

𝑖=1

∞

0

 

              𝑃3 =  𝑁𝑖𝑓𝑖0
 𝑗  

 ,                                       𝑃4 =  𝐷4𝑖𝑓𝑖0
 𝑗  

 , 𝑗 = 1,2,

4

𝑖=1

4

𝑖=1

                                        (56) 

 

                                                  𝑆𝑖 =  1 + 𝜅 𝑚𝑖𝑀𝑖 +  3 − 𝜅 𝜉 , 
 

                                                  𝐺𝑖 = −𝜉𝑀𝑖 + 𝑚𝑖  ,       𝑖 = 1, … . . ,4 . 
 

  𝐷4𝑖 = 𝜉  𝑁𝑖 −
1

𝜉
𝐷1  , 𝑖 = 1, … … ,4 ,                                                                                        (57) 

 

𝐷4𝑖
′ =  1 + 𝜅 𝐷1𝑁𝑖 +  3 − κ 𝜉 , 𝑖 = 1, … … ,4 .                                                                   (58) 

 

Eq. (55) yields 

 

𝐴𝑖 𝜉 = 𝐷1𝑖 𝜉 𝑅1 𝜉 + 𝐷2𝑖 𝜉 𝑅2 𝜉 + 𝐷3𝑖 𝜉  , 𝑖 = 1, … … . . ,4 ,                                    (59) 

 

where  𝐷𝑘𝑖  𝑘 = 1,2,3   𝑎𝑛𝑑  𝑖 = 1, … … . . ,4  are shown in  Appendix. Substitution of these values into the Eq. 

(19) will lead to the following singular integral equation: 

 

1

𝜋
  𝑓 𝑡  

1

𝑡 − 𝑥
+ 𝑘2 𝑥, 𝑡  𝑑𝑡 =

 𝜅 − 1 

𝜇𝜒
 −𝑝0 ±

𝑃

2𝜋
𝑘3 𝑥 + 𝑝0𝑘4 𝑥   ,  −𝑏 < 𝑥 < 𝑏           (60)

𝑏

−𝑏

 

where 

 

𝑘2 𝑥, 𝑡 =
1

𝜒
   𝐷2𝑖𝑆𝑖 − 𝜒 𝑠𝑖𝑛 𝜉 𝑡 − 𝑥 𝑑 𝜉 , 𝜒 = 𝑙𝑖𝑚

𝜉→∞
 𝐷2𝑖𝑆𝑖 = 4𝜈 ,                                              (61)

4

𝑖=1

4

𝑖=1

∞

0

 

𝑘3 𝑥 = −2   𝐷1𝑖𝑆𝑖 𝑐𝑜𝑠 𝜉 𝑎 + 𝑥 𝑑𝜉 ,                                                                                                    (62)

4

𝑖=1

∞

0

 

 

𝑘4 𝑥 = −
2𝜇

𝜋𝑝0 𝜅 − 1 
   𝐷3𝑖𝑆𝑖 − 𝐷4𝑖

′ 𝑓𝑖0
 𝑗  

 𝑐𝑜𝑠 𝜉𝑥 𝑑𝜉 , 𝑗 = 1,2                                                      63 

4

𝑖=1

∞

0

 

The kernels 𝑘2(𝑥 , 𝑡) and 𝑘3 𝑥  , 𝑘4(𝑥) are bounded and continuous in the closed interval −𝑏 ≤  𝑥 ≤ 𝑏. The 

integral equation must be solved under the following single-valuedness condition 

 

 𝑓 𝑡 𝑑𝑡 = 0 ,                                                                                                                            (64)

𝑏

−𝑏

 

 

Before further proceeding it will be convenient to introduce non-dimensional variables  𝑟 and 𝑠 by rescaling all 

lengths in the problem by length scale 𝑏: 

 

𝑥 = 𝑏𝑟 , 𝑡 = 𝑏𝑠 ,                                                                                                                       (65) 

 

𝑓 𝑡 = 𝑓 𝑏𝑠 =  
𝑝0 𝜅 − 1 

𝜇𝜒
𝜙 𝑠 , 𝜔 = 𝜉𝑏 ,                                                                         (66) 

 

In terms of non-dimensional variables the integral equation (60) and single valuedness condition (64) become 
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1

𝜋
  

1

𝑠 − 𝑟
+ 𝑘2

∗ 𝑟, 𝑠  𝜙 𝑠 𝑑𝑠 = −1 ±
𝑄

𝜋
𝑘3

∗ 𝑟 + 𝑘4
∗ 𝑟  ,  −1 < 𝑟 < 1  ,              (67)

1

−1

 

where 

 

𝑘2
∗ 𝑟, 𝑠 =

1

𝜒
   𝐷2𝑖𝑆𝑖 − 𝜒

4

𝑖=1

 𝑠𝑖𝑛 𝜔 𝑠 − 𝑟 𝑑𝜔 ,                                                         (68)

∞

0

 

𝑘3
∗ 𝑟 = −2   𝐷1𝑖𝑆𝑖 𝑐𝑜𝑠 𝜔 𝑟 + 𝑎∗ 𝑑𝜔 ,                                                                  (69)

4

𝑖=1

∞

0

 

𝑘4
∗ 𝑟 = −

2𝜇0

𝜋𝑝0𝑏 𝜅 − 1 
   𝐷3𝑖𝑆𝑖 − 𝐷4𝑖

′ 𝑓𝑖0
 𝑗  

 𝑐𝑜𝑠 𝜔𝑟 𝑑𝜔 ,                               (70)

4

𝑖=1

∞

0

 

𝑎∗ =
𝑎

𝑏
 and 𝑄 is the load ratio defined as: 

 

                                        𝑄 =
𝑃

2𝑏𝑝0
 ,                                                                                                                       (71) 

 

𝑓𝑖0
 𝑗  

≡  𝑓𝑖
 𝑗  

 
𝑦=0 ,

 𝑓𝑖
 𝑗  

≡  𝑓𝑖
 𝑗  

 
𝑦= ,

  𝑖 = 1, 2,3 ; 𝑗 = 1, 2 , 𝐷1 ≡
𝜕

𝜕𝑦
 .                       (72) 

               

 

V. SOLUTION OF THE INTEGRAL EQUATIONS 
(𝑎) Thermal part: 

The singular integral equation (32) is a Cauchy-type singular integral equation for an unknown function  𝛩 𝑠 . 

For the evaluation of thermal stress it is necessary to solve the integral equation (32). For this purpose we write 

𝛩 𝑠 =
𝛶 𝑠 

 1 − 𝑠2
 ,  −1 < 𝑠 < 1  ,                                                                     (73) 

 

where 𝛶 𝑠  is a regular and bounded unknown function. Substituting Eq. (73) into Eq. (32) and using Gauss-

Chebyshev formula
28

  , we obtain 

 

1

𝑁
   

1

𝑠𝑘 − 𝑥𝑖

+ 𝑘1 𝑥𝑖 , 𝑠𝑘  𝛶 𝑠𝑘 

𝑁

𝑘=1

 =
𝑇1 − 𝑇2


 , 𝑖 = 1,2, … … … . , 𝑁 − 1 ,             (74) 

and 

𝜋

𝑁
 𝛶 𝑠𝑘 = 0 ,                                                                                                                 (75)

𝑁

𝑘=1

 

 

where 𝑠𝑘  and 𝑥𝑖  are given by 

 

𝑠𝑘 = 𝑐𝑜𝑠  
2𝑘 − 1

2𝑁
𝜋  ,  𝑘 = 1,2,3, … … , 𝑁                                                                    (76) 

 

𝑥𝑖 = 𝑐𝑜𝑠  
𝜋𝑖

𝑁
  ,  𝑖 = 1,2,3, … … , 𝑁 − 1                                                                         (77) 

 

We observe that corresponding to (𝑁 −  1) collocation points 𝑥𝑖 = 𝑐𝑜𝑠  
𝑖𝜋

2 𝑁+1 
  , 𝑖 = 1,2, … … … ,  𝑁 − 1  we 

have a set of  𝑁 linear equations in 𝑁 unknowns   𝛶 𝑠1  , 𝛶 𝑠2  , … … … … … … . , 𝛶 𝑠𝑁  . This linear algebraic 

system of equations is solved numerically by utilizing Gaussian elimination method. 

 

(𝑏) Elastic part: 

The singular integral equation (67) is a Cauchy-type singular integral equation for an unknown function 𝜙 𝑠 . 

Expressing now the solution of Eq. (67) in the form 
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𝜙 𝑠 =
𝜓 𝑠 

 1 − 𝑠2
 ,  −1 < 𝑠 < 1  ,                                                                               (78) 

where  𝜓(𝑠) is a regular and bounded unknown function and using Gauss-Chebyshev formula
28

 to evaluate the 

integral equation (67) , we obtain , 

 

1

𝑁
   

1

𝑠𝑘 − 𝑟𝑖

+ 𝑘2
∗ 𝑟𝑖 , 𝑠𝑘  𝜓 𝑠𝑘 

𝑁

𝑘=1

 = −1 ±
𝑄

𝜋
𝑘3

∗ 𝑟𝑖 + 𝑘4
∗ 𝑟𝑖 , 𝑖 = 1,2, … … . . , 𝑁 − 1           (79) 

 

𝜋

𝑁
 𝜓 𝑠𝑘 = 0 ,                                                                                                                                      (80)

𝑁

𝑘=1

 

where   𝑟𝑖  is given by 

 

𝑟𝑖 = 𝑐𝑜𝑠  
𝑖𝜋

𝑁
  ,  𝑖 = 1,2,3, … … . , 𝑁 − 1                                                                                              (81) 

 

We observe that corresponding to (𝑁 −  1) collocation points 𝑥𝑟 = 𝑐𝑜𝑠  
𝑟𝜋

2 𝑁+1 
  , 𝑟 = 1,2, … … … ,  𝑁 − 1  the 

Eqs. (79)  and (80)  represent a set of  𝑁 linear equations in 𝑁 unknowns   𝜓 𝑠1  , 𝜓 𝑠2  , … … … … … … . , 𝜓 𝑠𝑁  . 
This linear algebraic system of equations are solved numerically by utilizing Gaussian elimination method. 

 

VI. DETERMINATION OF STRESS-INTENSITY FACTOR 
 Presence of a crack in a solid significantly affects the stress distribution compared to the state when 

there is no crack. While the stress distribution in a solid with a crack in the region far away from the crack is not 

much disturbed , the stresses in the neighbourhood of the crack tip assumes a very high magnitude. In order to 

predict whether the crack has a tendency to expand further , the stress intensity factor (SIF) , a quantity of 

physical interest , has been defined in fracture mechanics. In our present problem the solid under consideration 

is acted upon by two types of loading: (𝑎) Thermal loading (𝑏) Mechanical loading (concentrated forces of 

magnitude  
𝑃

2
  applied symmetrically on the crack faces). The stress components  𝜎𝑥  , 𝜎𝑦  , 𝜏𝑥𝑦   given by Eqs. 

(52)-(54) do not have closed form expressions. As they are expressed in taking of infinite integrals , they are to 

be evaluated numerically. In our present discussion we shall be interested to determine the SIF when both the 

thermal and mechanical loadings are present (thermomechanical stress intensity factor) and also the stress 

intensity factor when only thermal loading is present (thermal stress intensity factor). The stress intensity factor 

is defined as 

𝑘 𝑏 = 𝑙𝑖𝑚
𝑟→1

 2𝑏 𝑟 − 1 𝜎𝑦
∗ 𝑟, 0 . 

The non-dimensional stress intensity factor when both mechanical and thermal load are present (TMSIF) , can 

be obtained interms of the solution of the integral equation (67) as 

𝑇𝑀𝑆𝐼𝐹 = 𝑘′ 𝑏 =
1

𝑝0 𝑏
  𝑙𝑖𝑚

𝑟→1
 2𝑏 𝑟 − 1 𝜎𝑦

∗ 𝑟, 0 = −𝜓 1 ,            (82)   

When there is only thermal loading , the TSIF can be extracted following the same procedure as discussed 

above. In this case the Eq.(67) will be modified to 

1

𝜋
  

1

𝑠 − 𝑟
+ 𝑘2

∗ 𝑟, 𝑠  𝜙 𝑠 𝑑𝑠 = −1 + 𝑘4
∗ 𝑟  ,  −1 < 𝑟 < 1  ,          (83)

1

−1

 

The TSIF at the crack tip can be expressed in terms of the solution of the integral equation (83) as 

𝑇𝑆𝐼𝐹 =
1

𝑝0 𝑏
  𝑙𝑖𝑚

𝑟→1
 2𝑏 𝑟 − 1 𝜎𝑦

∗ 𝑟, 0 = −𝛺 1 ,                              (84)   

in this case we assume 

𝜙 𝑠 =
𝛺 𝑠 

 1 − 𝑠2
 , −1 < 𝑠 < 1,                                                                  (85) 

where 𝛺(𝑠) is regular and bounded unknown function and  𝜓 1 , 𝛺(1) can be found out from  𝜓 𝑠𝑘  and 

𝛺 𝑠𝑘   𝑘 = 1,2,3, … … … . . , 𝑁  using the interpolation formulas given by Krenk
29

 . 

Following the method as in Gupta and Erdogan
30

  we obtain the crack surface displacement in the form 

𝑣′ 𝑟, 0 =  
𝜓 𝑠 

 1 − 𝑠2
𝑑𝑡 ,  −1 < 𝑠 < 1 ,                                 (86)

𝑟

−1

 

where 
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𝑣′ 𝑟, 0 =
𝑣 𝑟, 0 

𝑏

4𝜇𝜈

𝑝0 𝜅 − 1 
,                                                     (87) 

which can be obtained numerically , using say , Simpson's  
1

3
 integration formula and appropriate interpolation 

formula. 

 

VII. NUMERICAL RESULTS AND DISCUSSIONS 
 The present study is related to the study of an internal crack problem in an infinite functionally graded 

layer under thermal effect. The main objective of the present discussion is to study the effects of temperature , 

graded parameter as well as of applied loads on stress intensity factor and crack opening displacement. 

Following the standard numerical method described , the normal displacement component and the stress 

intensity factor are computed and shown graphically. 

 Before analyzing our numerical results we denote the regions −  ≤ 𝑦 ≤ 0 and 0 ≤ 𝑦 ≤  below and 

above the line of crack in the layer by 𝑅1 and 𝑅2 respectively. Fig. 2(a) shows the temperature distribution on 

the crack faces for various values of   
𝑏


 . As expected , the result shows that the temperature increases with the 

decrease of layer thickness. Fig. 2(b) shows the temperature distribution along  𝑥 =  0 ,taking 𝑇1  >  𝑇2  . 
Temperature decreases linearly from the region 𝑅1 to the region 𝑅2 . There is one point to note here that the 

variations of temperature at a particular point on  𝑥 =  0 below and above the line of crack are opposite in 

nature in respect of the values of  
𝑏


 . 

 

 

Fig.2(a) Temperature distribution on crack face and extension line for different  
𝑏


  when 𝜅 = 1.8 , 𝐻 = 1.0, 𝛼𝑡 =

1.5, 𝑇1 = 2.5, 𝑇2 = 1.0.  (b) Temperature distribution on the line 𝑥 = 0 for different 
𝑏


  when 𝜅 = 1.8, 𝐻 = 1.0,

𝛼𝑡 = 1.5, 𝑇1 = 2.5, 𝑇2 = 1.0. 
 

 The variation of normalized thermo-mechanical stress intensity factor (TMSIF) 𝑘′(𝑏) with crack length  
𝑏


 are shown in Fig. 3 for both the cases of two symmetric transverse pair of compressive and tensile 

concentrated forces. It is observed from Figs. 3(a , b) that for compressive concentrated forces the TMSIF 

decreases with the increase of the load ratio 𝑄, and the increase of  𝑘′(𝑏) is quite significant for smaller values 

of 𝑄. It is also observed from Figs. 3(a,b) that the load ratio 𝑄 does not have much effect on 𝑘′(𝑏) when the 

crack length is sufficiently small. Contrary to this , where the force is of tensile nature , 𝑘′(𝑏)  increases with 𝑄. 

For small crack length , the behavior of 𝑘′(𝑏) is similar to the case of compressive concentrated load. 

In Fig. 4 , TMSIF experiences the effect of graded parameter 𝛽 for fixed load ratio 𝑄 for both the regions 𝑅1 and 

𝑅2. It is observed that in both compressive and tensile load conditions 𝑘′(𝑏) increases slightly with graded 

parameter 𝛽 upto a certain distance from the center of the crack , while the effect is reversed and significant 

afterward. Fig. 5 displays the variation of 𝑘′(𝑏) for different position of loading. It is noted that in the case of 

compressive concentrated forces , 𝑘′(𝑏) increases with increasing 
𝑎

𝑏
  , but it decreases in the case of tensile 

concentrated forces. 
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Fig.3(a) Variation of TMSIF, 𝑘′ 𝑏  with 
𝑏


  for different loads 𝑄 in both cases in the region 𝑅2 when ( 

𝑎

𝑏
=

0.0, 𝜅 = 1.8, 𝛽 = 0.1, 𝐻 = 1.0, 𝛼𝑡 = 1.5, 𝑇1 = 2.5, 𝑇2 = 1.0). (b) Variation of TMSIF, 𝑘′ 𝑏  with 
𝑏


  for different 

loads 𝑄 in both cases in the region 𝑅1 when (
𝑎

𝑏
= 0.0, 𝜅 = 1.8, 𝛽 = 0.1, 𝐻 = 1.0, 𝛼𝑡 = 1.5, 𝑇1 = 2.5, 𝑇2 = 1.0). 
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Fig.4(a) Effect of graded parameter 𝛽 on TMSIF, 𝑘′ 𝑏  for both cases in the region 𝑅2 (

𝑎

𝑏
= 0.0, 𝑄 = 12.0, 𝜅 =

1.8, 𝐻 = 1.0, 𝛼𝑡 = 1.5, 𝑇1 = 2.5, 𝑇2 = 1.0). (b) Effect of graded parameter 𝛽 on TMSIF,𝑘′ 𝑏  for both cases in 

the region 𝑅1(
𝑎

𝑏
= 0.0, 𝑄 = 1.0 (Compressive),𝑄 =  2.0 (Tensile),𝜅 = 1.8, 𝐻 = 1.0, 𝛼𝑡 = 1.5, 𝑇1 = 2.5, 𝑇2 =

1.0). 

 
Fig.5(a)Variation of TMSIF,𝑘′ 𝑏  for different values of  

𝑎

𝑏
 for both cases in the region 𝑅2 (𝑄 = 16.0  

(Compressive), 𝑄 =  12.0(Tensile),𝛼 = 1.8, 𝛽 = 0.1, 𝐻 = 1.0, 𝛼𝑡 = 1.5, 𝑇1 = 2.5, 𝑇2 = 1.0). (b) Variation of 

TMSIF,  𝑘′ 𝑏  for different values of  
𝑎

𝑏
 for both cases in the region 𝑅1(𝑄 = 2.0, 𝜅 = 1.8, 𝛽 = 0.1, 𝐻 =

1.0, 𝛼𝑡 = 1.5, 𝑇1 = 2.5, 𝑇2 = 1.0). 
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 Fig. 6 depicts the variation of normalized crack surface displacement 𝑣′ 𝑟, 0  with 𝑟 for diffeerent 

values of load ratio 𝑄. It is clear from Figs. 6(a , b) that for compressive nature of forces 𝑣′ 𝑟, 0  decreases as 

load ratio 𝑄 increases, but for tensile nature of loading 𝑣′ 𝑟, 0  decreases as load ratio 𝑄 decreases. For both the 

cases of compressive and tensile concentrated forces the graphs show that the normalized crack surface 

displacement is symmetrical with respect to origin. The effect of graded parameter 𝛽 on 𝑣′ 𝑟, 0  is observed in 

Fig. 7 for both the cases of compressive and tensile concentrated forces for the both the regions 𝑅1 and 𝑅2. 

 

 
Fig.6(a) Normalized crack surface displacement 𝑣′ 𝑟, 0  for various values of 𝑄 for both cases in the region 

𝑅2  (
𝑎

𝑏
= 0.0,

𝑏


= 1.0 , 𝜅 = 1.8, 𝛽 = 0.1, 𝐻 = 1.0, 𝛼𝑡 = 1.5, 𝑇1 = 2.5, 𝑇2 = 1.0). (b) Normalized crack surface 

displacement 𝑣′ 𝑟, 0 for various values of 𝑄 for both cases in the region 𝑅1(
𝑎

𝑏
= 0.0,

𝑏


= 1.0, 𝜅 = 1.8, 𝛽 =

0.1, 𝐻 = 1.0, 𝛼𝑡 = 1.5, 𝑇1 = 2.5, 𝑇2 = 1.0). 
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Fig.7(a) Effect of graded parameter 𝛽 on normalized crack surface displacement 𝑣′ 𝑟, 0  for both cases in the  

region 𝑅2 ( 
𝑎

𝑏
= 0.0,

𝑏


= 1.0, 𝑄 = 6 (Compressive), 𝑄 =  16 (Tensile),  𝜅 = 1.8, 𝐻 = 1.0, 𝛼𝑡 = 1.5, 𝑇1 =

2.5, 𝑇2 = 1.0). (b) Effect of graded parameter 𝛽  on normalized crack surface displacement 𝑣′ 𝑟, 0  for both 

cases in the region 𝑅1 ( 
𝑎

𝑏
= 0.0,

𝑏


= 1.0, 𝑄 = 1, 𝜅 = 1.8, 𝐻 = 1.0,  𝛼𝑡 = 1.5,  𝑇1 = 2.5, 𝑇2 = 1.0). 

 

 Fig. 8 illustrates the role of the point of application of loading on the normalized crack surface 

displacement for a particular load ratio 𝑄 =  6.0 for the compressive forces while 𝑄 =  12.0 for the tensile 

forces for the region 𝑅2 and the load ratio 𝑄 =  1.0 for both types of compressive and tensile forces for the 

region 𝑅1 with 
𝑏


 =  1.0. It is observed in Figs. 6.8 (a , b) , that for compressive concentrated loading the 

normalized crack surface displacement increases with the increased values of  
𝑎

𝑏
  but behavior is just opposite for 

tensile concentrated loading. 
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Fig.8(a)Normalized crack surface displacement 𝑣′ 𝑟, 0  for various values of  

𝑎

𝑏
  for both cases in the region 

𝑅2 (𝑄 =  6.0 (Compressive),𝑄 =  12(Tensile),  
𝑏


= 1.0, 𝜅 = 1.8, 𝛽 = 0.1, 𝐻 = 1.0, 𝛼𝑡 = 1.5, 𝑇1 = 2.5,

𝑇2 = 1.0). (b) Normalized crack surface displacement 𝑣′ 𝑟, 0  for various values of  
𝑎

𝑏
  for both cases in the 

region  𝑅1 (𝑄 = 1.0,
𝑏


= 1.0, 𝜅 = 1.8, 𝛽 = 0.1, 𝐻 = 1.0, 𝛼𝑡 = 1.5, 𝑇1 = 2.5, 𝑇2 = 1.0). 

 

Fig. 9 displays the comparison of the variation of thermo-mechanical stress intensity factor (TMSIF) and 

thermal stress intensity factor (TSIF) with  
𝑏


  for both the regions 𝑅1  and  𝑅2  . 

 

 
Fig.9 Comparison of TMSIF and TSIF for both the regions 𝑅1 and 𝑅2 (

𝑎

𝑏
= 0.0 , 𝜅 = 1.8, 𝛽 = 0.1, 𝐻 = 1.0,

𝛼𝑡 = 1.5, 𝑇1 = 2.5,  𝑇2 = 1.0). 
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VIII. CONCLUSION 
The present discussion relating thermo-mechanical loading on a functionally graded layer with a crack in it 

yielded the following observations: 

(a) The SIF and the crack surface displacement 𝑣(𝑥, 0) are very much affected by thermal loading. 

(b) The position and the magnitude of mechanical loading affects the SIF and 𝑣(𝑥, 0). 

(c) Grading of medium has significant effects on SIF and 𝑣(𝑥, 0). Both 𝑣(𝑥, 0) and SIF increase with increase of 

rigidity. 

(d) The crack length to layer thickness ratio also plays important roles on the behavior of SIF and 𝑣(𝑥, 0). 

 

IX. APPENDIX 
We set 𝛥 =  𝐿 −1 , then for 𝐷𝑘𝑖  (𝑘 = 1,2,3  and 𝑖 = 1, … … ,4) we have the following expressions: 

 

𝐷11 𝜉 = 𝛥  𝑚4𝐺2𝐺3 − 𝑚3𝐺2𝐺4 𝑒𝑚2 +  𝑚2𝐺3𝐺4 − 𝑚4𝐺2𝐺3 𝑒𝑚3 +  𝑚3𝐺2𝐺4 − 𝑚2𝐺3𝐺4 𝑒𝑚4  , 
 

𝐷12 𝜉 = 𝛥  𝑚3𝐺1𝐺4 − 𝑚4𝐺1𝐺3 𝑒𝑚1 +  𝑚4𝐺1𝐺3 − 𝑚1𝐺3𝐺4 𝑒𝑚3 +  𝑚1𝐺3𝐺4 − 𝑚3𝐺1𝐺4 𝑒𝑚4  , 
 

𝐷13 𝜉 = 𝛥  𝑚4𝐺1𝐺2 − 𝑚2𝐺1𝐺4 𝑒𝑚1 +  𝑚1𝐺2𝐺4 − 𝑚4𝐺1𝐺2 𝑒𝑚2 +  𝑚2𝐺1𝐺4 − 𝑚1𝐺2𝐺4 𝑒𝑚4  , 
 

𝐷14 𝜉 = 𝛥  𝑚2𝐺1𝐺3 − 𝑚3𝐺1𝐺2 𝑒𝑚1 +  𝑚3𝐺1𝐺2 − 𝑚1𝐺2𝐺3 𝑒𝑚2 +  𝑚1𝐺2𝐺3 − 𝑚2𝐺1𝐺3 𝑒𝑚3  , 
 

𝐷21 𝜉 = 𝛥  𝐺3𝐺4𝑆2 − 𝐺2𝐺3𝑆4 𝑒 𝑚2+𝑚4  +  𝐺2𝐺3𝑆4 − 𝐺2𝐺4𝑆3 𝑒 𝑚3+𝑚4    
 + 𝐺2𝐺4𝑆3 − 𝐺3𝐺4𝑆2 𝑒 𝑚2+𝑚3  , 

 

𝐷22 𝜉 = 𝛥  𝐺1𝐺3𝑆4 − 𝐺3𝐺4𝑆1 𝑒 𝑚1+𝑚4  +  𝐺1𝐺4𝑆3 − 𝐺1𝐺3𝑆4 𝑒 𝑚3+𝑚4    
 + 𝐺3𝐺4𝑆1 − 𝐺1𝐺4𝑆3 𝑒 𝑚1+𝑚3  , 

 

𝐷23 𝜉 = 𝛥  𝐺2𝐺4𝑆1 − 𝐺1𝐺2𝑆4 𝑒 𝑚1+𝑚4  +  𝐺1𝐺2𝑆4 − 𝐺1𝐺4𝑆2 𝑒 𝑚2+𝑚4    
 + 𝐺1𝐺4𝑆2 − 𝐺2𝐺4𝑆1 𝑒 𝑚1+𝑚2  , 

 

𝐷24 𝜉 = 𝛥  𝐺1𝐺2𝑆3 − 𝐺2𝐺3𝑆1 𝑒 𝑚1+𝑚3  +  𝐺1𝐺3𝑆2 − 𝐺1𝐺2𝑆3 𝑒 𝑚2+𝑚3    
 + 𝐺2𝐺3𝑆1 − 𝐺1𝐺3𝑆2 𝑒 𝑚1+𝑚2  , 

 

𝐷31 𝜉 = 𝛥  𝑚4𝑃2𝑆2𝐺3 + 𝑚4𝑃1𝐺2𝐺3 − 𝑚3𝑃2𝑆2𝐺4 − 𝑚3𝑃1𝐺2𝐺4 𝑒𝑚2   
              + 𝑚2𝑃2𝑆3𝐺4 + 𝑚2𝑃1𝐺3𝐺4 − 𝑚4𝑃2𝑆3𝐺2 − 𝑚4𝑃1𝐺2𝐺3 𝑒𝑚3  

              + 𝑚3𝑃2𝑆4𝐺2 + 𝑚3𝑃1𝐺2𝐺4 − 𝑚2𝑃2𝑆4𝐺3 − 𝑚2𝑃1𝐺3𝐺4 𝑒𝑚4  

              + 𝑚4𝑃4𝑆3𝐺2 − 𝑚4𝑃4𝑆2𝐺3 + 𝑃3𝑆3𝐺2𝐺4 − 𝑃4𝑆3𝐺2𝐺4 − 𝑃3𝑆2𝐺3𝐺4 + 𝑃4𝑆2𝐺3𝐺4 𝑒 𝑚2+𝑚3   

              + −𝑚3𝑃4𝑆4𝐺2 − 𝑃3𝑆4𝐺2𝐺3 + 𝑃4𝑆4𝐺2𝐺3 + 𝑚3𝑃4𝑆2𝐺4 + 𝑃3𝑆2𝐺3𝐺4 − 𝑃4𝑆2𝐺3𝐺4 𝑒 𝑚2+𝑚3   
               + 𝑚2𝑃4𝑆4𝐺3 + 𝑃3𝑆4𝐺2𝐺3 − 𝑃4𝑆4𝐺2𝐺3 − 𝑚2𝑃4𝑆3𝐺4 − 𝑃3𝑆3𝐺2𝐺4 + 𝑃4𝑆3𝐺2𝐺4 𝑒 𝑚3+𝑚4  , 
 

 

𝐷32 𝜉 = 𝛥  −𝑚4𝑃2S1𝐺3 − 𝑚4𝑃1𝐺1𝐺3 + 𝑚3𝑃2𝑆1𝐺4 + 𝑚3𝑃1𝐺1𝐺4 𝑒𝑚1   
              + 𝑚4𝑃2𝑆3𝐺1 + 𝑚4𝑃1𝐺1𝐺3 − 𝑚1𝑃2𝑆3𝐺4 − 𝑚1𝑃1𝐺3𝐺4 𝑒𝑚3  

              + −𝑚3𝑃2𝑆4𝐺1 + 𝑚1𝑃2𝑆4𝐺3 − 𝑚3𝑃1𝐺1𝐺4 + 𝑚1𝑃1𝐺3𝐺4 𝑒𝑚4  

              + −𝑚4𝑃4𝑆3𝐺1 + 𝑚4𝑃4𝑆1𝐺3 − 𝑃3𝑆3𝐺1𝐺4 + 𝑃4𝑆3𝐺1𝐺4 + 𝑃3𝑆1𝐺3𝐺4 − 𝑃4𝑆1𝐺3𝐺4 𝑒 𝑚1+𝑚3   

              + 𝑚3𝑃4𝑆4𝐺1 + 𝑃3𝑆4𝐺1𝐺3 − 𝑃4𝑆4𝐺1𝐺3 − 𝑚3𝑃4𝑆1𝐺4 − 𝑃3𝑆1𝐺3𝐺4 + 𝑃4𝑆1𝐺3𝐺4 𝑒 𝑚1+𝑚4   
               + −𝑚4𝑃4𝑆4𝐺3 − 𝑃3𝑆4𝐺1𝐺3 + 𝑃4𝑆4𝐺1𝐺3 + 𝑚1𝑃4𝑆3𝐺4 + 𝑃3𝑆3𝐺1𝐺4 − 𝑃4𝑆3𝐺1𝐺4 𝑒 𝑚3+𝑚4  , 
 

𝐷33 𝜉 = 𝛥  𝑚4𝑃2𝑆1𝐺2 + 𝑚4𝑃1𝐺1𝐺2 − 𝑚2𝑃2𝑆1𝐺4 − 𝑚2𝑃1𝐺1𝐺4 𝑒𝑚1   
               + −𝑚4𝑃2𝑆2𝐺1 − 𝑚4𝑃1𝐺1𝐺2 + 𝑚1𝑃2𝑆2𝐺4 + 𝑚1𝑃1𝐺2𝐺4 𝑒𝑚2  

               + 𝑚2𝑃2𝑆4𝐺1 − 𝑚1𝑃2𝑆4𝐺2 + 𝑚2𝑃1𝐺1𝐺4 − 𝑚1𝑃1𝐺2𝐺4 𝑒𝑚4  

               + 𝑚4𝑃4𝑆2𝐺1 − 𝑚4𝑃4𝑆1𝐺2 + 𝑃3𝑆2𝐺1𝐺4 − 𝑃4𝑆2𝐺1𝐺4 − 𝑃3𝑆1𝐺2𝐺4 + 𝑃4𝑆1𝐺2𝐺4 𝑒 𝑚1+𝑚2   

               + −𝑚2𝑃4𝑆4𝐺1 − 𝑃3𝑆4𝐺1𝐺2 + 𝑃4𝑆4𝐺1𝐺2 + 𝑚2𝑃4𝑆1𝐺4 + 𝑃3𝑆1𝐺2𝐺4 − 𝑃4𝑆1𝐺2𝐺4 𝑒 𝑚1+𝑚4   
                + 𝑚1𝑃4𝑆4𝐺2 + 𝑃3𝑆4𝐺1𝐺2 − 𝑃4𝑆4𝐺1𝐺2 − 𝑚1𝑃4𝑆2𝐺4 − 𝑃3𝑆2𝐺1𝐺4 + 𝑃4𝑆2𝐺1𝐺4 𝑒 𝑚2+𝑚4   , 

 

𝐷34 𝜉 = 𝛥  −𝑚3𝑃2𝑆1𝐺2 − 𝑚3𝑃1𝐺1𝐺2 + 𝑚2𝑃2𝑆1𝐺3 + 𝑚2𝑃1𝐺1𝐺3 𝑒𝑚1   
             + 𝑚3𝑃2𝑆2𝐺1 + 𝑚3𝑃1𝐺1𝐺2 − 𝑚1𝑃2𝑆2𝐺3 − 𝑚1𝑃1𝐺2𝐺3 𝑒𝑚2  



Thermo-mechanical Analysis Of a Crack In An Infinite Functionally Graded Elastic Layer 

International organization of Scientific Research                                                          41 | Page 

                        + −𝑚2𝑃2𝑆3𝐺1 + 𝑚1𝑃2𝑆3𝐺2 − 𝑚2𝑃1G1G3 + m1P1G2G3 em3h  

                        + −m3P4S2G1 + m3P4S1G2 − P3S2G1G3 + P4S2G1G3 + P3S1G2G3 − P4S1G2G3 e m1+m2 h  

                        + m2P4S3G1 + P3S3G1G2 − P4S3G1G2 − m2P4S1G3 − P3S1G2G3 + P4S1G2G3 e m1+m3 h  
            + −m1P4S3G2 − P3S3G1G2 + P4S3G1G2 + m1P4S2G3 + P3S2G1G3 − P4S2G1G3 e m2+m3 h . 
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