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Abstract: Surrogate models are widely used in the community of engineering design and optimization to 

substitute computationally expensive simulations for efficient approximation of system behaviors. However, 

since the actual system behaviors are usually not known a priori, it is very challenging to select the most 

appropriate surrogate model for a specific application.To deal with this issue, an ensemble model that combines 

different surrogate models has been presented, and many efforts are devoted to the weight factor selection for 

the component surrogate models based on global measure and local measure respectively. In this paper, a novel 

ensemble of surrogate models is developed to take advantage of both global and local measures, and a unified 

strategy is conceived over the entire design space with proper tradeoff between these two measures. The 

effectiveness of the new ensemble model is tested on six mathematical benchmark examples with varying 

dimensionality. The results show that the proposed ensemble model has more desirable accuracy and robustness 

for a majority of test problems compared with the individual surrogate models and other ensemble models. 
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I. INTRODUCTION 
High-fidelity computer simulations such as finite element analysis play an important role in the design 

and optimization of complex engineering systems.Despite the rapid development of computing technology, the 

need of getting more accurate and reliable simulation results with ever-increasing complexity of numerical 

models still makes engineering system analysis time-consuming. Hence, surrogate models (also known as 

metamodels) are widely used as the replacement of computationally expensive high-fidelity simulations for 

efficient estimation of system characteristics. Commonly used surrogate models in the engineering design and 

optimization include polynomial response surface (PRS) (Myers and Montgomery 2002), radial basis functions 

(RBF) (Fang and Horstemeyer 2006; Liu et al. 2006), Kriging (KRG) (Martin and Simpson 2005), and support 

vector regression (SVR) (Clarke et al. 2005). However, owing to the different characteristics of practical 

engineering applications, it is very difficult, if not impossible, to know a priori which surrogate model is most 

desirable for an unknown problem. Therefore, an ensemble of surrogate models has been recently developed by 

combing multiple surrogates through a weighted form to take advantage of the prediction ability of each 

individual surrogate. The weight factor of each individual surrogate is determined by the model accuracy. 

According to the measures of evaluating the weight factors, existing ensemble modeling methods can be 

generally classified as global measures and local measures. The weight factors evaluated by global measures 

keep constant over the entire design space. Goel et al. (2007) used a global metric called generalized mean 

square cross-validation error (GMSE) to calculate the weight factors of individual surrogate models in the 

ensemble. Acar and Rais-Rohani (2009) proposed an ensemble of surrogate models in which the optimized 

weight factors were obtained by minimizing GMSE or root mean square error (RMSE). As for local measures, 

weight factors of the individual surrogate are determined at each sampling point respectively. Acar (2010) 

proposed a spatial ensemble of surrogates using pointwise cross validation error with various approaches. Zhang 

et al. (2012a) developed adaptive hybrid functions with weight factors of each contributing surrogate model 

determined locally in a pertinent trust region. Liu et al. (2016) presented an optimal weighted pointwise 

ensemble by combining the RBF models of different basis functions. To make use of advantages of both global 

and local measures, Chen et al. (2018) proposed an ensemble model which hybridized a global measure and a 

local measure. However in this method, the design space has to be pre-divided into outer and inner regions as 

per each sample point, and different strategies for evaluating the weight factors are adopted accordingly. 

Motivated by the above analysis, this paper proposes a unified ensemble of surrogates (UES) based on the 
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integration of global and local measures. No division of the design space is needed, and a unified strategy is 

devised over the entire domain with the trade-off between global and local error metrics.  

 

II. THE PROPOSED ENSEMBLE METHOD 

The traditional technique of surrogate modeling is usually composed of constructing a number of 

different surrogates, selecting one with the best accuracy and discarding the rest candidates. Nevertheless, two 

major shortcomings exist. First, most of the resource spent on the construction of different surrogates is wasted. 

Second, the performances of different surrogates are dependent on the sample points, so there is no guarantee 

that the selected surrogate model will be accurate on a new data set. To overcome these drawbacks, an ensemble 

of surrogates rather than an individual one is proposed.An ensemble is a weighted average of several different 

surrogates. The resulting ensemble model is formulated as 

𝑦 𝑒𝑛𝑠  𝑥 =  𝑤𝑖 𝑥 

𝑁𝑠

𝑖=1

𝑦 𝑖 𝑥  (1) 

where 𝑦 𝑒𝑛𝑠  𝑥  is the prediction value of the ensemble, Ns is the number of surrogates used, and wi is the 

weight factor for ith surrogate model 𝑦 𝑖 𝑥 . The weight factors are calculated with the following requirement 

 𝑤𝑖 𝑥 

𝑁𝑠

𝑖=1

= 1 (2) 

To maximize the prediction accuracy of an ensemble, the weight factors are selected such that the 

component surrogate with higher accuracy will occupy a larger proportion in the ensemble model and vice 

versa. According to the measures of evaluating the weight factors, existing ensemble modeling methods can be 

generally classified as global measures and local measures. 

Goel et al. (2007) proposed an ensemble of surrogates based on global measures in which GMSE was 

used to select the weight factors from a heuristic formulation 

𝑤𝑖 =
𝑤𝑖

∗

 𝑤𝑗
∗𝑁𝑠

𝑗=1

 

(3) 𝑤𝑖
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𝐸 =
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𝑁𝑠

 𝐸𝑖
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where 𝐸𝑖  is the GMSE of the ith surrogate model evaluated from 

𝐸𝑖 =
1

𝑛
  𝑦 𝑥𝑘 − 𝑦 𝑖

 −𝑘  𝑥𝑘  
2

𝑛

𝑘=1

 (4) 

where n is the number of sample points, xk is the kth sampling point, y(xk) is the true response value at 

xk, and 𝑦 𝑖
 −𝑘  𝑥𝑘  is the corresponding prediction value of the ith surrogate model constructed using all except 

the kth sampling point. two parameters  𝛼 = 0.05 and  𝛽 =−1 were recommended by Goel et al. (2007). 

As an alternative to using prediction variance, Acar (2010) proposed a spatial model in which the 

pointwise cross validation error was selected as the localerror measure. 
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𝑤𝑖
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(5) 
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𝐼𝑘 𝑥 =
1

𝑑𝑘
2 𝑥 

 

𝑑𝑘 𝑥 =  𝑥 − 𝑥𝑘  

where 𝑊𝑖𝑘  is the pointwise weight factor of the ith surrogate model at the kth sample point. The 0−1 

weighting strategy is adopted: 𝑊𝑖𝑘   equals one for the surrogate model with the smallest cross validation error, 

and zero for all other individual surrogates. 𝐼𝑘 𝑥 is the spatial location metric, 𝑤𝑖
∗= 𝑊𝑖𝑘   is used when dk(x) = 0.  

An ensemble of surrogates constructed solely with global measures or local measures both have pros 

and cons. Global measures are relatively straightforward, computationally inexpensive, and generally accurate 

from the global perspective of view, but they may not reflectthe diversity of each component surrogate. On the 

other hand, the ensemble model by using local measures are more flexible but less robust, because local error 

fluctuation may heavily deteriorate the model accuracy. In this paper, global measuredeveloped by Goel et 
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al.(2007) and local measureproposed by Acar (2010) are integrated for ensemble modeling with a unified 

formulation over the entire design space. Taking advantage of multiple kinds of error metrics, the accuracy and 

robustness of the proposed unified ensemble of surrogates (UES) are enhanced with modeling efficiency nearly 

the same with other ensemble of surrogates. 

To evaluate the accuracy of an ensemble surrogate, the commonly used error measures are cross-

validation error, prediction variance and mean square error (or root mean square error) (Zhou et al. 2011). As no 

additional test (validation) points are required for error evaluation, the cross-validation error is selected to 

construct the UES model in this article. Cross-validation error, also known as leave-one-out cross-validation 

error, is the prediction error at each sample point while the surrogate model is built with the other (n−1) sample 

points. For ensemble modeling, the cross-validation error of the ith surrogate at the kth sample point is 

formulated as 

𝑒𝑖𝑘 =  𝑦 𝑥𝑘 − 𝑦 𝑖
 −𝑘  𝑥𝑘  (6) 

To have a fair comparison and to reduce the computational cost as well, the same error matrix is 

adopted to construct all ensemble surrogates. And the weight factors can be obtained as follows 

 
ℒ𝐺 𝑒𝐶𝑉 ⇒ 𝑤𝐺

ℒ𝐿 𝑒𝐶𝑉 ⇒ 𝑤𝐿
  (7) 

where e
CV

 denotes the error matrix computed from cross-validation error, ℒ𝐺 .   and ℒ𝐿 .   represent the 

strategies of calculating the weight factor by using global measure (w
G
, named global weight factor) and the 

weight factor by using local measure (w
L
, named local weight factor) respectively. 

Global measures evaluate the weight factors of individual surrogates with an overall model accuracy 

from the entire error matrix. Local measures regard weight factors as the diversity indicator of component 

surrogates at different locations in the design space, so the weight factors at a prediction point are severely 

affected by the adjacent sample points. Therefore, local measures dominate in the evaluation of weight factors 

when the prediction point is near to the sample points, while global measures are more suitable for prediction 

points far from the sample points. To this end, a unifiedensemble of surrogates (UES) with global measure and 

local measure is proposed to define the weight factors for the entire design space as: 

𝑤𝑖 =
𝑤𝑖

∗

 𝑤𝑗
∗𝑁𝑠

𝑗=1

 
(8) 

𝑤𝑖
∗ = 𝑤𝑖

𝐺𝜆 𝑥 + 𝑤𝑖
𝐿 1 − 𝜆 𝑥   

where 𝑤𝑖
𝐺  and 𝑤𝑖

𝐿are respectively global weight factor and local weight factor for the ith surrogate 

model. 𝜆 𝑥  is the coefficient of measure impact to control the influence regions of global and local measures 

on calculating the weight factors at the prediction point x.the coefficient 𝜆 𝑥 must satisfy the following 

conditions:` 

lim
𝑑1 𝑥 →0

𝜆 𝑥 = 0 
(9) 

lim
𝑑1 𝑥 →𝑑2 𝑥 

𝜆 𝑥 = 1 

 

  

(a) (b) 

Figure 1:(a)A 2D illustration of sample and prediction points for deriving the coefficient of measure impact; 

(b)Coefficient function λ(x); 
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where, as shown in Figure.1(a), d1(x) is the distance between the prediction point x and its nearest 

sample point, d2(x) is the distance between x and its second-nearest sample point. In this study, the Sine 

function, as shown in Figure.1(b), were selected as candidate coefficient functions.  

𝜆 𝑥 =  sin  
𝜋

2
 
𝑑1 𝑥 

𝑑2 𝑥 
   (10) 

  

III. EXAMPLE PROBLEMS 
Six well-known mathematical benchmark problems varying from 2-D to 12-D are chosen to test the 

characteristics of the UES models: (1) Branin-Hoo function (2-D); (2) and (3) are Hartman functions (3-D and 

6-D, denoted as Hartman-3 and Hartman-6 respectively); (4) Dette and Pepelyshev function (8-D); (5) Griewank 

function (8-D) and (6) Dixon-Price function (12-D). Detailed information on these functions can be found in 

Table1. 

Table 1:Summary of benchmark problems 

Function Dimension Formulation 
Definition 

domain 

(1) 2 𝑓 𝑥 =  𝑥2 −
5.1𝑥1

2

4𝜋2
+

5𝑥1

𝜋
− 6 

2

+ 10  1 −
1

8𝜋
 cos 𝑥1 + 10 

[-5,10; 

0,15]
D
 

(2) 3 𝑓 𝑥 = − 𝑐𝑖𝑒𝑥𝑝  − 𝑎𝑖𝑗  𝑥𝑗 − 𝑝𝑖𝑗  
2

3

𝑖=1

 

4

𝑖=1

 [0,1]
D
 

(3) 6 𝑓 𝑥 = − 𝑐𝑖𝑒𝑥𝑝  − 𝑎𝑖𝑗  𝑥𝑗 − 𝑝𝑖𝑗  
2

6

𝑖=1

 

4

𝑖=1

 [0,1]
D
 

(4) 8 

𝑓 𝑥 = 4 𝑥1 − 2 + 8𝑥2 − 8𝑥2
2 +  3 − 4𝑥2

2 2 

+16  𝑥3 + 1  2𝑥3 − 1 2 +  𝑖𝑙𝑛 1 + 𝑥𝑖 

8

𝑖=4

 
[0,1]

D
 

(5) 8 𝑓 𝑥 =
1

4000
 𝑥𝑖

2

8

𝑖=1

− cos  
𝑥𝑖

 𝑖
 

8

𝑖=1

+ 1 [0,1]
D
 

(6) 12 𝑓 𝑥 =  𝑥1 − 1 2 +  𝑖 2𝑥𝑖
2 − 𝑥𝑖−1 

2

12

𝑖=2

 [0,10]
D
 

For the design of experiments (DOE) of all benchmark problems, Latin hypercube sampling (LHS) 

technique is employed to select the locations of the training and test points. Table 2 presents the summary of 

training sets, sample points and test points for all benchmark problems. 

 

Table 2:Summary of the training and test point sets used in the benchmark problems 

Function Dimension Training sets Sample points Test points 

(1) 2 1000 12 1000 

(2) 3 500 20 1000 

(3) 6 100 56 1000 

(4) 8 30 90 1000 

(5) 8 30 90 1000 

(6) 12 15 182 1000 

To have an exhaustive study on the proposed UES models, and also to make a comprehensive 

comparison with the existing ensemble models, two kinds of error metrics are selected: Coefficient of 

determination 𝑅2, Normalised Maximum Absolute Error (NMAE). 
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𝑅2 = 1 −
  𝑦𝑖 − 𝑦 𝑖 

2𝑁𝑡𝑒𝑠𝑡
𝑖=1

  𝑦𝑖 − 𝑦  2𝑁𝑡𝑒𝑠𝑡
𝑖=1

 

(11) 

𝑁𝑀𝐴𝐸 = 𝑚𝑎𝑥 𝑦𝑖 − 𝑦 𝑖  
1

𝑁𝑡𝑒𝑠𝑡

  𝑦𝑖 − 𝑦 𝑖 
2

𝑁𝑡𝑒𝑠𝑡

𝑖=1

  

Where 𝑁𝑡𝑒𝑠𝑡  is the number of test points, std denotes the standard deviation of samples and mean is the 

mean value, 𝑦𝑖 is the true value calculated by the benchmark functions, 𝑦 𝑖 is the corresponding prediction value 

of the surrogate model and 𝑦 is the meanvalue of 𝑦𝑖 .The value of 𝑅2  iscloser to 1 and the value of 𝑁𝑀𝐴𝐸 

iscloser to 0, the closer the predictionsurrogate model is to the real benchmark function. 

The accuracy and robustness of the UES models are compared with two existing ensemble models, 

namely: (i) the heuristic algorithm developed by Goel et al. (2007) (labeled by EG), (ii) the spatial model 

proposed by Acar (2010) (labeled by SP). Three representative surrogate models, polynomial response surface 

(PRS), radial basis functions (RBF), Kriging (KRG), are used as the component surrogates for all ensemble 

models and are also compared with the ensemble models. The results are shown in the following figure. 

 
Figure 2:𝑅2of ensemble and individual surrogate models 

 
Figure 3:NMAE of ensemble and individual surrogate models 

 

IV. CONCLUSION 
It can be found fromfigure 2-3 that no individual surrogate model has always the best accuracy for all 

the benchmark functions. According to the test results, PRS is relatively better for high-dimensional (8-Dand 

12-D) problems while KRG and RBF are more accurate for low-dimensional (2-D, 3-D and 6-D) examples. 

However in most scenarios, most of the ensemble methods perform better than the individual surrogatemodels. 

The proposed UES models surpass almost all of the individual surrogate models and other ensemble models in 

the vast majority of error metrics for all benchmark examples. In the future, we will focus on investigating more 
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individual surrogate models and selecting the appropriate baseline models to be included for the UES ensemble 

model. 
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