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Abstract: Artillery shells equipped with proximity fuzes neutralize targets using fragments generated upon detonation. The survivability of a target significantly depends on the distance between it and the explosion center. The closer the target is to the explosion center, the higher the probability of destruction, as it is located in a high-fragment-density zone and subjected to intense shock waves. Conversely, the farther the target is from the explosion center, the lower the fragment density and the weaker the shock wave intensity, reducing the likelihood of target destruction. Thus, the distance between the explosion center and the target is a crucial parameter in the design and manufacturing of artillery shells, directly affecting their lethality. Moreover, calculating this parameter serves as an essential foundation for determining other technical specifications within proximity fuzes. This paper presents the theoretical basis for developing a mathematical model that determines the miss distance of artillery shells using proximity fuzes without knowledge of the target's angular position, employing an analytical approach. The study's results indicate that the miss distance depends on the artillery shell's detonation angle, phase, and the distance between the antenna location and the detonation point.
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1. Problem statement
Many studies have been conducted on the optimal coordination between the fragmentation flow and the antenna wavefront of proximity fuzes [1-7]. The simulation study of fuzes for low-altitude surface-to-air missiles [2] discusses the anti-jamming capability and guidance of the proximity radar system. The Doppler effect has been utilized in proximity fuzes by S. Veksin [3]. In Vietnam, the concept of target miss distance has been briefly mentioned but lacks specific evaluations [8].
Fragmentation-based munitions neutralize or damage targets through the dispersion of high-velocity fragments at a certain distance. This distance is referred to as the target miss distance of the ammunition. When this value ranges from a few meters to several tens of meters, an external observation post that determines the positions of both the ammunition and the target assumes that these two positions coincide. This assumption presents challenges in accurately determining the ammunition's target miss distance. Analytical methods and Matlab software are employed to establish relationships between the target miss distance, detonation angle, phase of deviation, and the spatial separation between the antenna position and the detonation point. These calculations provide munition fuze designers with objective and relatively clear assessments when selecting structural parameters.
I. Problems Statement

Numerous researches have been conducted on the optimal coordination between fragment dispersion and the antenna wavefront of proximity fuzes [1-7]. The research on the simulation of proximity fuzes for short-range air defense missiles [2] discusses the system’s jamming resistance and the guidance capabilities of proximity radar. The Doppler effect has been utilized by S. Veksin in terminal proximity fuzes [3]. In Vietnam, the concept of target miss distance has been briefly mentioned but has not been thoroughly evaluated [8].
Lethal fragmentation munitions neutralize or damage targets using ammunition fragments at a certain distance. This distance is referred to as the target miss distance of the ammunition. When this value ranges from a few meters to several dozen meters, external observation systems that determine the positions of the ammunition and target often assume that these two positions coincide. This assumption poses challenges in accurately determining the ammunition’s target miss distance. Analytical methods and Matlab software are employed to establish relationships between the target miss distance, detonation angle, phase shift, and the distance between the antenna and warhead detonation point. These calculations provide designers with an objective and relatively clear basis for selecting structural parameters when designing fuzes.
II. Methods

1. Coordinate system

To determine the Doppler frequency, a conical coordinate system is used in conjunction with a linear velocity coordinate system
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, with its origin located at the transmitting antenna of the radar system (Figure 1). Axis
[image: image2.wmf]v

Ox
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coincides with the velocity triangle plane, which is formed by the velocity vectors 
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 correspond to the ammunition velocity and target velocity, respectively. The target’s position at point
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, characterizing guidance accuracy and referred to as the miss distance, 
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Figure 1: Relative position of the ammunition and target in space

In Figure 1, the relative position of the ammunition and the target in space is illustrated, with the ammunition located at O and the target positioned at T.
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Figure 2: The relationship between relative velocity
 and the phase value of the miss distance

From the coordinate system used to determine the detonation region (Figures 1 and 2), two observations can be made:

- If the miss distance 
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(Figure 1), the coordinate surface takes the form of a cylindrical shape symmetric around the 
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- The 
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 semi-axis and the velocity triangle (Figure 2), corresponds to a miss distance phase value of 
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 half-plane, which contains the negative Oy semi-axis (Figure 2), corresponds to a miss distance phase value of 
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2. Determination of the Target Miss Distance of the Ammunition
To describe the operation of the warhead, a coordinate system
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is typically employed, with its origin positioned at the detonation point of the warhead. The axis 
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aligns with the longitudinal axis of the ammunition, oriented from the center of mass toward the ammunition's nose.

When coordinating the operation of the antenna and the fragment stream, the phase of the miss distance assumes a value of 
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. In practice, for a warhead that is symmetric along the ammunition’s longitudinal axis and employs a Doppler fuse, it is possible to constrain the phase value of the miss distance
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. These two cases are illustrated in Figures 3 and 4.
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Figure 3: Relative motion of the ammunition and target 
when the phase of the miss distance is
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In figure 3,
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is the directional angle formed by the ammunition velocity vector and the relative velocity vector between the ammunition and the target; Point B represents the detonation location of the warhead and is positioned from the antenna at a distance 
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represents the average dispersion angle of the static fragments;
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 is the average dispersion angle of the dynamic fragments; 
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denotes the velocity vector of the static fragments; 
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denotes the velocity vector of the dynamic fragments; 
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is the intersection between the trajectory of the static fragment and a straight line containing the target, which is parallel to the Ox axis;
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 is the intersection between the straight line containing the target (parallel to the Ox axis) and the direction of motion of the dynamic fragment; 
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  is the angle formed by the Ox axis and the line 
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. This is the angle at which the proximity radar system decides to detonate the ammunition, commonly referred to as the detonation angle.

For each miss distance 
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(Figure 3), there corresponds a range of detonation angles in the velocity coordinate system, with the coordinate origin at O and the detonation command is executed when the fragment and the target meet at point
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Formula for Calculating the Velocity of Dynamic Fragments:
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Considering vector 
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, the time required for the static fragment to travel the distance
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Meanwhile: 
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. The target will be damaged if the dynamic fragment and the target meet at position
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Meanwhile: 
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. Thus, the velocity vector of the dynamic fragment (
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Meanwhile: 
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- Considering case 
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In the right triangle 
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In the right triangle
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, where D is the right angle, we have:
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Substituting equation  (6) into equation  (5), we obtain:
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- Considering case
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 (Figure 4)
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Figure 3: Relative motion of the ammunition and target 

when the phase of the miss distance is 
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In the right triangle 
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In the right triangle
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, where D is the right angle, we have: 
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Substituting equation  (9) into equation  (8), we obtain:
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According to Figures 3 and 4, the target miss distance is determined by the following formula:
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Substituting equation  (7) into equation  (12), we obtain:
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Substituting equation  (13) into equation  (11), we obtain:
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Thus,
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Substituting equation  (10) into equation  (12), we obtain:
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Substituting equation  (15) into equation  (11), we obtain:
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Thus, formulas (14) and (16) determine
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III. Results and Discussion

The assessment of the target miss distance of the ammunition depends on several parameters, such as the detonation angle and the phase of the miss distance. This can be analyzed through the following examples:

Example 1: 
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. Applying formulas (14) and (16) to determine the target miss distance of the ammunition. The values are calculated using Matlab software (Figure 5).
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Figure 5: The target miss distance of the ammunition depending on the detonation angle for the phase of the miss distance 
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From Figures 3, 4, and 5, as well as formulas (14) and (16), it can be observed that at position B (Figures 3 and 4), the detonation angle 
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gradually decreases and fluctuates slightly around the asymptotic value corresponding to the miss distance, ranging from 5m to 20m. According to the computational analysis shown in Figure 5, when using the PhiPAS5-20 approximation method, the system determines that the warhead detonation angle remains constant at 
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, when the miss distance is less than 5m.

Example 2: 
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 using formulas (14) and (16) in Matlab is illustrated in Figure 6. Unlike in Example 1, here 
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Figure 6: The target miss distance of the ammunition 
when the detonation angle is at its minimum value

According to the results obtained in Figure 6, when
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is very unlikely to occur. This is because both the antenna and the signal processing system are complex structures with significant dimensions. Therefore, the
[image: image136.wmf]r

D
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Example 3: 
[image: image137.wmf]0000

30 ;15 ;0,70

r

qej

éù

===

ëû

; 
[image: image138.wmf][

]

0, 1 

rm

D=

; 
[image: image139.wmf]xp

=

. Calculation of 
[image: image140.wmf]h

using Formulas (14) and (16) in Matlab (Figure 7). Here, the relationship between the miss distance and the detonation angle is evaluated by varying
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. This aims to determine the corresponding miss distance for each detonation angle value and the relative distance between the antenna position and the detonation point.
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Figure 7: The dependence of the miss distance h on
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According to the results shown in Figure 7, the value of
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Example 4: 
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Figure 8: The miss distance of the ammunition as a function of 
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The results indicate that the miss distance
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reaches its maximum value when 
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 decreases. When the angle formed by the ammunition velocity vector and the relaive velocity of the ammunition-target system (
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Example 5: 
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 is computed using equations (14) and (16) in Matlab (Figure 9). This example investigates the variation in the miss distance for two cases of dynamic fragment dispersion angles, 
[image: image188.wmf]0

10 

q

=

and 
[image: image189.wmf]0

20 

q

=

aiming to determine how 
[image: image190.wmf]q

 influences the miss distance
[image: image191.wmf]h

 .
	[image: image192.png]Z T T T T
4 5 3 7 8 9 0 1 12

J U T "0 DeltaR(m)

PhiPi(Degrees)






[image: image193.wmf]0

10 

q

=

; 
[image: image194.wmf]00

5, 1 1.5584

j

éù

Î

ëû


	[image: image195.png]hirm)

DeltaR(m)

10

15

= 5

PhiPi(Degrees)






[image: image196.wmf]0

20 

q

=

; 
[image: image197.wmf]00

10,  31.7654

j

éù

Î

ëû




Figure 9: The miss distance of the ammunition as a function of 
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When the dispersion angle of dynamic fragments (
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 ) increases, the detonation angle (
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) also increases. This means that the ammunition detonation angle depends on its velocity. However, the impact of 
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IV. Conclusion

Solving equations (14) and (16) enables the determination of the ammunition's miss distance for specific structural parameters. The interpretations and analyses above provide a foundation for identifying additional parameters of the proximity fuze, such as ammunition-target contact angle 
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, miss phase 
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, distance between the antenna and detonation point
[image: image207.wmf]r

D

, average fragment dispersion angle
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, this is crucial for proximity fuze design. The development of parameters and solution methods will be presented by the author on another occasion. The obtained results open up several potential directions, such as multi-point detonation, compact antenna design to ensure compatibility with various ammunition types, assessing target survivability after fragmentation impact, etc.
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