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Abstract
Cotton is a vital cash crop globally, and its productivity is significantly impacted by various leaf diseases. Timely and accurate detection of these diseases is critical to ensuring sustainable crop yields and minimizing economic losses. This review explores advancements in cotton leaf disease detection techniques, focusing on traditional methods, machine learning (ML), and deep learning (DL) approaches. Traditional techniques rely on visual inspections and biochemical analyses, which are often labor-intensive and less efficient. Recent developments in ML and DL have enabled automated disease detection with higher accuracy, leveraging image processing, spectral analysis, and data fusion techniques. This paper synthesizes key research contributions, compares detection methodologies, and highlights datasets and tools used in the field. Challenges such as dataset limitations, real-time applicability, and model generalization are also discussed. Finally, we identify future research directions to enhance the precision, scalability, and accessibility of cotton leaf disease detection systems, aiming to support smart agriculture and sustainable farming practices.

Introduction
Cotton is one of the most important cash crops, globally significant in agriculture, textiles, and economics. However, its productivity is often hindered by various diseases caused by fungi, bacteria, and viruses. Early detection and accurate classification of these diseases are essential for mitigating yield losses and ensuring sustainable farming practices. Advances in computational and machine learning techniques have provided promising solutions for this challenge. This review explores the key methodologies, evaluation metrics, and outcomes in the literature on cotton leaf disease detection.
1. Traditional Image Processing Approaches
Traditional methods primarily use image processing techniques to identify disease patterns and classify affected leaves.
· Revathi and Hemalatha (2012) utilized image edge detection and RGB segmentation techniques to isolate disease spots from captured images. Neural networks were employed for classification, focusing on features like color, boundary, shape, and texture. This approach was effective in early detection and pest control recommendations but depended significantly on image quality and lacked adaptability to varying environmental conditions[1].
· Bodhe et al. (2018): This study proposed a mobile application that uses template matching to identify disease patterns in early stages. Farmers could use smartphones to detect diseases remotely. While innovative, the rule-based system struggled with new or untrained disease patterns[2].
2. Deep Learning Models
Deep learning approaches, particularly Convolutional Neural Networks (CNNs), have revolutionized the field with superior classification performance and scalability.
· Walia et al. (2024): This study introduced an optimized VGG16 model for classifying four major cotton leaf diseases: leaf curl, bacterial blight, leaf spot, and wilt. The model used transfer learning techniques and achieved high accuracy, precision, recall, and F1-score. This scalable solution proved effective for precision agriculture, though its high computational requirements may limit its accessibility for smaller farms[3].
· Sivakumar et al. (2021): The authors compared various CNN architectures, including ResNet50, VGG19, InceptionV3, and ResNet152V2. Among these, ResNet152V2 achieved the best accuracy (98.36%) due to its deep architecture and parameter optimization[4].
· Kaur et al. (2024): The study fine-tuned VGG16 to classify diseases such as bacterial blight and Fusarium wilt with an accuracy of 93.8%. Pre-training and augmentation enhanced the model's generalizability[5].
3. Machine Learning Techniques
Machine learning approaches offer cost-effective and interpretable models but often fall short in handling large-scale and complex datasets.
· Sarangdhar and Pawar (2017): This study used Support Vector Machine (SVM) regression integrated with IoT for disease detection and soil monitoring. The system classified five diseases and monitored soil parameters like moisture and temperature. The solution achieved 83.26% accuracy and was cost-effective but struggled with noisy field data[6].
· Dubey et al. (2018): The authors employed roughness measures with SVM to classify diseases such as Alternaria and bacterial infections. Using superpixel-based segmentation, the model achieved a commendable 94% accuracy[14].

4. Hybrid and Advanced Models
Hybrid approaches combine traditional image processing with advanced machine or deep learning algorithms, enhancing performance through feature extraction and model optimization.
· Rothe and Kshirsagar (2015): Adaptive neuro-fuzzy inference systems were used with Hu’s moments for feature extraction, achieving an 85% accuracy in classifying bacterial blight, Myrothecium, and Alternaria[8].
· Tahir et al. (2022): The study compared Xception, InceptionV3, and InceptionResNetV2 models for cotton leaf disease detection. Xception performed the best, with an average accuracy of 90.34%, highlighting its suitability for complex disease datasets[13].

5. Emerging Innovations
Emerging technologies, such as explainable AI, super-resolution networks, and drone-based surveillance, are pushing the boundaries of cotton leaf disease detection.
· Yeswanth et al. (2023): The Courier Super Resolution Network (CSRN) improved classification accuracy by generating high-resolution images from low-resolution inputs. This method emphasized the importance of image quality for disease detection[7].
· Sarkar et al. (2024): Grad-CAM explainable AI models were integrated with ResNet architectures to enhance transparency in decision-making. ResNet101V2 achieved 96.9% accuracy, demonstrating the potential of combining accuracy with interpretability[16].
· Chavan and Shirdhonkar (2024): Transfer learning models were employed in a mobile application for real-time disease detection. MobileNetV2 achieved 98% training accuracy, showcasing its efficiency for deployment in resource-constrained environments[26].
	Methodology
	Key Results
	Limitations
	References

	Image Edge Detection and RGB Segmentation
	Early detection and pest control recommendations achieved; classification based on color, texture, and shape.
	Dependent on image quality; limited adaptability to varying conditions.
	Revathi and Hemalatha (2012) [1]

	Template Matching
	Mobile app enabled farmers to detect diseases remotely in early stages.
	Struggled with new or untrained disease patterns.
	Bodhe et al. (2018) [2]

	Optimized VGG16 (Deep Learning)
	High accuracy, precision, recall, and F1-score in detecting four major cotton diseases.
	High computational requirements limit accessibility for smaller farms.
	Walia et al. (2024) [3]

	ResNet152V2 (Deep Learning)
	Achieved 98.36% accuracy by leveraging deep architecture and optimized parameters.
	Requires substantial computational resources.
	Sivakumar et al. (2021) [4]

	Fine-tuned VGG16
	Detected diseases like bacterial blight and Fusarium wilt with 93.8% accuracy.
	Generalizability and dataset dependence remain challenges.
	Kaur et al. (2024) [5]

	SVM Regression with IoT
	Classified five diseases with 83.26% accuracy; integrated soil monitoring.
	Struggled with noisy field data.
	Sarangdhar and Pawar (2017) [6]

	Courier Super Resolution Network (CSRN)
	Enhanced classification accuracy by generating high-resolution images from low-res inputs.
	High computational complexity may limit field deployment.
	Yeswanth et al. (2023) [7]

	Adaptive Neuro-Fuzzy Inference System
	Achieved 85% accuracy in classifying bacterial blight, Myrothecium, and Alternaria.
	Limited by dataset size and complexity of training.
	Rothe and Kshirsagar (2015) [8]

	Graph Cut for Feature Extraction
	Utilized graph cut for segmentation and adaptive fuzzy inference for classification; achieved 85% accuracy.
	Limited by dataset diversity and environmental adaptability.
	Rothe and Kshirsagar (2014) [9]

	Image Segmentation Using Graph Cut
	Segmentation of cotton leaf images achieved using graph cuts with color layout descriptors.
	Dependent on segmentation algorithm efficiency and dataset quality.
	Rothe and Kshirsagar (2014) [10]

	Principal Component Analysis (PCA) with KNN
	Classification accuracy of 95%; effective for analyzing statistical data on leaf diseases.
	Limited to a small number of diseases; dependent on dataset quality.
	Gulhane and Kolekar (2014) [11]

	Faster R-CNN Model (Deep Learning)
	Achieved high classification accuracy for detecting multiple diseases in real-time.
	High computational resource requirements; challenging for field application.
	Negi and Negi (2022) [12]

	Xception, InceptionV3, InceptionResNetV2
	Xception model performed best with 90.34% accuracy.
	Performance varies across models; requires advanced hardware.
	Tahir et al. (2022) [13]

	Superpixel-based Roughness Measure
	Achieved 94% accuracy in classifying diseases using SVM and superpixel segmentation.
	Limited by the complexity of feature extraction and segmentation.
	Dubey et al. (2018) [14]

	Multi-Step Image Processing
	Used color, texture, and shape for disease detection; effective in limited controlled environments.
	Dependent on input image quality and segmentation techniques.
	Bhimte and Thool (2018) [15]

	Grad-CAM with ResNet101V2
	Achieved 96.9% accuracy; enhanced interpretability using explainable AI techniques.
	Interpretability may come at the expense of computational efficiency.
	Sarkar et al. (2024) [16]

	Explainable AI with CNNs
	Combined Grad-CAM with CNNs for detailed explainability in disease detection.
	High computational demands for real-time field applications.
	Sarkar et al. (2024) [17]

	Lightweight CNN and MobileNet
	MobileNet achieved 96.97% accuracy; demonstrated efficiency in resource-constrained environments.
	Limited scalability for large datasets or diverse disease conditions.
	Babu and Nalini (2022) [18]

	Deep Learning for Disease Classification
	Compared CNN, InceptionV3, and ResNet152V2 for classification; achieved up to 99% accuracy.
	Computationally expensive; challenging for real-time deployment.
	Kinger et al. (2022) [19]

	InceptionV4 for Disease Classification
	Achieved 98.26% accuracy for bacterial blight and leaf curl virus detection in cotton.
	Dataset-dependence and preprocessing requirements remain challenges.
	Anwar et al. (2022) [20]

	K-means Clustering for Disease Detection
	Identified leaf spot diseases with accuracies of 90% (bacterial) and 80% (target spot).
	Limited generalizability to other crops and disease types.
	Kumari et al. (2019) [21]

	RGB Feature Ranging Techniques
	Achieved selective fungicide application through targeted disease spot identification.
	Dependent on preprocessing and segmentation techniques for accuracy.
	Revathi and Hemalatha (2012) [22]

	Hybrid K-means and Feature Extraction
	Segmentation using K-means and hybrid feature extraction yielded high classification accuracy.
	High preprocessing and computational demands for accurate detection.
	Shakeel et al. (2020) [23]

	Automated Cotton Disease Detection
	Early detection of leaf diseases using K-means and ANN achieved 96% accuracy.
	Dependent on image quality and preprocessing for accurate results.
	Kumari et al. (2019) [24]

	CNN for Fungal Disease Classification
	Achieved 96% accuracy for fungal disease classification; utilized CNN-based models.
	Requires extensive computational resources and robust datasets.
	Jenifa et al. (2019) [25]

	MobileNetV2 (Mobile App Deployment)
	Achieved 98% training accuracy; efficient for real-time mobile application deployment.
	Limited generalizability across different datasets and environments.
	Chavan and Shirdhonkar (2024) [26]

	Graph-Based MLP Model
	Achieved dynamic feature transformation with 96% accuracy using multi-layer perceptrons.
	Requires extensive computational resources and optimization.
	Karthik and Naveen (2023) [27]

	Hybrid Morphological-SVM
	Achieved over 96% accuracy using overlapping pooling and SVM-KNN layers.
	Complex implementation with multiple segmentation and classification steps.
	Prashar et al. (2019) [28]

	Graph-Based MLP Model
	Achieved dynamic feature transformation with 96% accuracy using multi-layer perceptrons.
	Requires extensive computational resources and optimization.
	Karthik and Naveen (2023) [29]

	Otsu Thresholding with Feature Extraction
	Effective for cotton leaf disease detection using texture, color, and shape features.
	Accuracy depends on the feature extraction quality and segmentation.
	Prajapati et al. (2016) [30]

	CNN for Fungal Disease Detection
	Achieved high accuracy in fungal disease detection; utilized deep learning advancements.
	Dependence on robust datasets; high computational resource requirements.
	Dhage and Garg (2023) [31]



Limitations
While these advancements demonstrate significant potential, they also reveal common challenges and limitations:
1. Dataset Dependency: Many models rely heavily on large, annotated datasets that may not represent real-world variations.
2. Generalizability: Models often perform well on specific datasets but fail to generalize to new crops, environmental conditions, or unseen diseases.
3. Computational Complexity: Deep learning models like VGG16 and ResNet require substantial computational resources, limiting their accessibility for small-scale farmers.
4. Explainability: Despite high accuracy, many advanced models lack interpretability, making them less trustworthy for end-users like farmers.

Future Directions
Future research should address these limitations by:
1. Expanding datasets to include diverse environmental and disease conditions.
2. Developing lightweight models that balance accuracy with computational efficiency.
3. Integrating explainable AI to improve user trust and adoption.
4. Exploring real-time and drone-based solutions for large-scale deployment.
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