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Abstract

This paper explores the use of the Multivariate State Estimation Technique-2 (MSET2) algorithm
in predicting equipment failures before they occur, utilizing data from Internet-of-Things (IoT)
sensor networks. The application of MSET2 in military contexts is critical for maintaining high

reliability and operational readiness while reducing maintenance costs through dynamic,
condition-based maintenance strategies. By modeling normal operating behavior and detecting
anomalies through real-time sensor data, MSET2 provides early warnings of potential failures

and calculates the Remaining Useful Life (RUL) of critical components.

This prognostic capability allows for the optimal timing of maintenance actions, thus preventing
unnecessary repairs and ensuring equipment readiness in diverse and often harsh operational
environments. Additionally, the MSET2 algorithm enhances human-machine cognition in

complex systems by minimizing cognitive overload for human operators through ultralow false
alarm probabilities, rapid anomaly detection, and clear differentiation between sensor

degradation and actual system degradation. This tandem approach of human-machine interaction
leverages the strengths of advanced machine learning to augment, rather than replace, human
decision-making, thereby improving the efficiency and effectiveness of military maintenance
operations and improving order fulfillment rates. This paper establishes simulation-based

optimization as a superior alternative to traditional methods, offering a more accurate, dynamic,
and financially beneficial solution for supply chain management.



1. Introduction

In today's industrial and military contexts, the maintenance and operational reliability of complex

engineered systems are critical (Jardine, Lin, & Banjevic, 2006). These systems are increasingly

monitored by Internet-of-Things (IoT) sensor networks that provide real-time data about their

operational status (Smith & Clark, 2019). Predictive maintenance, a proactive strategy that uses

advanced algorithms and machine learning techniques to predict equipment failures before they

occur (Chen & Wang, 2020), has become essential for ensuring high reliability and reducing

maintenance costs. This paper presents a novel approach to predictive maintenance using the

Multivariate State Estimation Technique-2 (MSET2) algorithm, specifically designed to address

the challenges faced in maintaining mission-critical military equipment (Oracle Corporation,

2010).

1.1 Overview of Predictive Maintenance

Predictive maintenance relies on analyzing sensor data to anticipate equipment failures, thereby

minimizing downtime and avoiding costly repairs (Vachtsevanos et al., 2006). This approach is

especially crucial in military applications, where equipment must perform reliably under diverse

and often harsh conditions (Prognostics and Health Management Society, 2015). Traditional

maintenance strategies, such as scheduled maintenance, often lead to either unnecessary

maintenance actions or unexpected failures, both of which can compromise mission success. In

contrast, predictive maintenance allows for condition-based maintenance decisions that are more

precise and cost-effective (ISO 13374-1:2003).

1.2 Challenges in Military Equipment Maintenance



Military equipment maintenance presents unique challenges due to its varied and demanding

operational environments (NASA Ames Research Center, 2009). Equipment such as vehicles,

aircraft, and naval ships must be ready to operate at peak efficiency at all times, often under

extreme conditions. This requirement makes it difficult to rely on fixed maintenance schedules or

reactive maintenance approaches. Instead, there is a need for advanced predictive algorithms that

can dynamically adjust maintenance needs based on real-time data, ensuring optimal

performance and readiness (Patton, Frank, & Clark, 2000).

1.3 Introduction to MSET2 Algorithm

The MSET2 algorithm offers a powerful solution for predictive maintenance in complex systems

by utilizing a robust pattern recognition framework (Oracle Corporation, 2010). Developed to

enhance system reliability and prevent failures, MSET2 leverages multivariate state estimation to

model the normal operational behavior of equipment and detect anomalies that could indicate

potential failures (Wald, 1947). Originally applied in sectors like nuclear power and aerospace

(Vachtsevanos et al., 2006), MSET2 is now being adapted for use in military applications to

monitor critical equipment health, predict failures, and calculate the Remaining Useful Life

(RUL) of components based on real-time sensor data (Jardine, Lin, & Banjevic, 2006).

1.4 Human-Machine Cognition and Supervisory Control

In addition to predicting equipment failures, this paper explores a novel approach to

human-machine cognition for human-in-the-loop supervisory control applications (IEEE, 2018).

In such scenarios, the operator's role is to interpret the state of the system from monitored

parameters and take appropriate actions. This task becomes increasingly challenging under the

pressure of emergencies, where multiple faults, numerous alarms, conflicting data, and



incomplete information can lead to cognitive overload (Gabor, 1946). The MSET2 algorithm

assists operators by rapidly processing, interpreting, and displaying diagnostic and prognostic

information in a prioritized format that is easy to perceive and understand, thereby reducing

cognitive load and improving decision-making efficiency (IEEE, 2018).

1.5 Model-Based Reasoning and Expert Systems

Model-based reasoning, a key feature of MSET2, involves using a model that reflects the

empirical structure and function of the system to deduce its behavior (Oppenheim & Schafer,

1999). This approach is complemented by expert systems, which provide high-level expertise to

aid in problem-solving by manipulating knowledge efficiently and effectively within a specific

domain (Vachtsevanos et al., 2006). Two critical capabilities of expert systems relevant to this

work are predictive modeling and "root cause" explanation. The ability to disambiguate between

false alarms (Type-I errors) and genuine anomalies is vital for accurate monitoring and prediction

(Roychoudhury & Das, 2017).

1.6 Addressing Limitations of Conventional Machine Learning Prognostics

Conventional machine learning (ML) methodologies in prognostics often suffer from limitations

such as high false alarm rates or lower sensitivity due to threshold-based activation mechanisms

(Chen & Wang, 2020). These methods either fail to detect anomalies early enough or generate

too many false alarms, leading to unnecessary maintenance actions or overlooked failures

(Prognostics and Health Management Society, 2015). MSET2 addresses these limitations by

using a more sophisticated approach that minimizes false alarms while maintaining high

sensitivity for detecting incipient anomalies in noisy process metrics (Oracle Corporation, 2019).



This capability ensures that human operators receive accurate and timely alerts, enabling them to

make well-informed decisions even under high-stress conditions (IEEE, 2018).

1.7 Goals and Contributions of This Paper

The primary goal of this research is to enhance decision support for operators of complex

engineering systems, transforming environments characterized by high cognitive demands and

data intensity into efficient, information-rich, high-performance human-machine systems (Gabor,

1946; Vachtsevanos et al., 2006). By integrating MSET2 into predictive maintenance

frameworks, we aim to improve equipment reliability, reduce maintenance costs, and enhance

overall operational effectiveness (Oracle Corporation, 2010). This paper demonstrates how

MSET2, combined with human-machine cognition approaches, can effectively support the

operation of mission-critical systems by minimizing cognitive overload and ensuring accurate,

real-time decision-making capabilities (IEEE, 2018).

In summary, the novel AI-based system proposed in this paper leverages the advanced

capabilities of the MSET2 algorithm to predict equipment failures and dynamically calculate the

remaining useful life of critical components. It provides a robust framework for

human-in-the-loop control applications by enhancing the accuracy and efficiency of

decision-making processes, ultimately contributing to improved maintenance strategies and

operational readiness in military applications (NASA Ames Research Center, 2009).



2. Methodology

2.1 MSET2

MSET2 is a comprehensive approach for prognostic health monitoring in business-critical

systems, focusing on the early detection and isolation of failures, recommending condition-based

maintenance (CBM) [6], and estimating the remaining useful life (RUL) [7] of critical

components in real time. Over the past 18 years, Oracle has developed and patented a series of

advanced pattern recognition innovations that utilize MSET2 prognostics for components,

subsystems, and integrated hardware-software systems within enterprise data centers [8-10]. A

fundamental component of MSET2-based Electronic Prognostics is a continuous system

telemetry harness (CSTH), which gathers and preprocesses various types of time series signals

that reflect the health of dynamically operating components and subsystems. These time series

data provide quantitative metrics related to physical variables—such as temperature, voltage,

current, power metrics, fan speeds, and vibrations (with up to one million physical sensors

present in a typical data center)—as well as performance variables, including CPU and memory

loads, throughputs, queue lengths, and process metrics. The CSTH signals are consistently

archived in an offline circular file (the "Black Box Flight Recorder") and processed in real time

using MSET2's advanced pattern recognition techniques to detect anomalies proactively and

estimate RUL, along with associated quantitative confidence levels.

The research initiative discussed in this paper demonstrates how MSET2-based prognostics,

originally developed for enterprise data center applications, are now being adapted for

human-in-the-loop control applications involving dense-sensor IoT setups in industries such as

Oil & Gas, smart manufacturing, utilities, and transportation (including aviation). The



combination of CSTH (real-time) and BBR (offline) telemetry with MSET2 pattern recognition

enhances asset reliability and system availability while reducing costly "no trouble found"

incidents due to false alarms, which can lead to significant downtime for critical customer assets.



MSET2 Application

MSET2 innovations offers several advantages over traditional machine monitoring and machine

learning approaches for real-time surveillance of business-critical assets, including:

● Detecting Subtle Anomalies Proactively: MSET2 can identify very subtle early

disturbances, even when these disturbances represent only a small fraction of the inherent

variance in monitored metrics.

● Ultra-Low False-Alarm and Missed-Alarm Probabilities: The system boasts extremely

low probabilities of both false alarms and missed alarms (FAPs and MAPs).

● Independently Specifiable FAPs and MAPs: Unlike conventional equipment monitoring

methods, which often have a trade-off between false alarms and missed alarms, MSET2

allows for separate specification of FAPs and MAPs.



● Real-Time Signal and Sensor Operability Validation: Most FAPs and MAPs in prognostic

health management of business-critical and safety-critical systems are due to sensor

degradation events. MSET2 provides real-time validation of signal integrity and sensor

operability to mitigate this.

● Low Computational Costs for Large-Scale Monitoring: MSET2 is efficient for large-scale

prognostic monitoring applications that involve numerous sensors or high sampling rates.

In various comparisons between MSET and neural networks, MSET has consistently

shown higher sensitivity to subtle disturbances in noisy process variables with

significantly lower computational costs.

● Accurate Remaining Useful Life (RUL) Estimation: The system provides precise RUL

estimates with quantitative confidence factors, which is crucial for enabling

condition-based maintenance of customer IoT assets.

● Highly Accurate Inferential Variables: MSET2's capability to infer variables accurately

ensures that operations can continue even if a low-cost internal sensor fails. The need for

immediate sensor replacement can be deferred to a scheduled maintenance window.



By extending the prognostic monitoring capabilities to include an IoT customer's production

assets, programmable logic controllers, power supplies, motor-operated valves, and

interconnecting networks, all these benefits contribute to achieving higher availability and lower

operational and maintenance costs for IoT Prognostic Health Management (PHM) applications.

2.2 The Sequential Probability Ratio Test (SPRT)

● Reducing False Alarms

MSET2 is an advanced monitoring tool that is sensitive to not only changes in the mean of a

signal but also to very subtle variations in the statistical moments of the monitored signals and

the correlations between different types of signals. MSET utilizes a statistical pattern recognition

method called the Sequential Probability Ratio Test (SPRT) [11-13]. This method is designed to

detect even the most subtle statistical anomalies in noisy process signals as early as

mathematically possible, providing actionable alert information about the type and precise onset

of a disturbance. Unlike simple threshold limits that generate alerts when a signal surpasses a



specific value, the SPRT technique uses user-defined false alarm probabilities (FAPs) and missed

alarm probabilities (MAPs), allowing users to manage the likelihood of missing a detection or

triggering a false alarm. For sudden, significant failures of sensors or system components, the

SPRT announces the disturbance just as quickly as a conventional threshold limit check.

However, for slow, gradual degradation—such as sensor decalibration, slow voltage drift,

bearing wear, lubrication dry-out, or the gradual emergence of new vibration spectral

components amidst noisy signals—the SPRT provides an early warning well before conventional

threshold-based rules would detect an issue.

Many industrial processes have built-in diagnostic systems and online statistical process control

techniques that analyze process variables in real time. Most of these systems use basic tests (such

as thresholds, mean value plus three sigma, or SPC control-chart thresholds) that are only

sensitive to significant changes in the process mean or to large step changes or spikes that exceed

a set limit, indicating a failure or process deviation. These traditional methods often suffer from

high false alarm rates (if the thresholds are set too low) or high missed alarm rates (if the

thresholds are set too high). In new dense-sensor IoT monitoring applications in industrial

manufacturing facilities, utilities, and transportation assets, false alarms can be very costly in

terms of downtime, while missed alarms can lead to catastrophic failures of expensive assets.

The overall MSET2 framework includes a training phase and a monitoring phase (Fig. 1). The

training phase involves characterizing the monitored equipment using historical, error-free

operational data that covers the full range of possible operating conditions for the system

variables under surveillance. During training, the available data is evaluated, and a subset of data

points is automatically selected using a similarity operator to best represent the normal operation

of the monitored asset. A model of the equipment is created and stored for use in the monitoring



phase to estimate the expected values of the signals under surveillance. In the monitoring phase,

new observations of all asset signals are collected and used alongside the pre-trained MSET2

model to predict expected signal values. MSET2 provides extremely accurate estimates, with

errors typically being only 1 to 2 percent of the input signal's standard deviation. (In fact, the

MSET2 estimate for a signal from any physical transducer is often more accurate than the

transducer itself). The difference between a signal's real-time MSET estimate and its actual

sensed value is called a residual. These residuals serve as indicators of anomalies for sensor and

equipment faults. Rather than relying on simple thresholds to identify faults, SPRT determines if

the residual error is inconsistent with the learned process model and thus indicative of a fault in

the sensor or equipment. The SPRT algorithm represents a significant improvement over

conventional threshold detection methods, providing more precise information about signal

validity with a quantitative confidence factor based on statistical hypothesis testing. This

approach allows users to set FAPs and MAPs, giving them control over the probability of false

alarms or missed detections.



The integration of MSET2 with SPRT within the machine learning surveillance framework offers

several advantages:

● Ultra-Low Missed Alarm Probabilities (MAPs): This enhances the overall availability of

critical production assets by preventing serious outages.

● Ultra-Low False Alarm Probabilities (FAPs): For IoT industries where prognostic alerts

can lead to automatic shutdowns of revenue-generating assets, minimizing false alarms is

crucial.

Moreover, the ability of MSET2 prognostic solutions to allow independent control of FAPs and

MAPs is a significant benefit for IoT applications. Traditional threshold-based prognostics force

a trade-off between minimizing false alarms and missed detections, causing an increase in one

when trying to reduce the other. Oracle's solutions circumvent this "Quality-Control seesaw



effect" by balancing anomaly detection sensitivity with false alarm probabilities, offering a more

reliable and efficient monitoring system.

Actual Parameters (Yellow vs MSET Predicted (Red)

Residual Monitored by SPRT

Degradation detected by SPRT



2.3 Intelligent Data Pre-processing (IDP) Innovations

Oracle’s Intelligent Data Pre-processing (IDP) innovations are designed to serve as front-end

data processing that supports the back-end MSET (Multivariate State Estimation Technique) and

SPRT (Sequential Probability Ratio Test) algorithms. These pre-processing techniques are

essential for maximizing the value of Prognostic Machine Learning (ML) and Data Mining

techniques for customers. Below are some of the key IDP algorithms and their features:

● Analytical Resampling Process (ARP)

Data streams in industrial settings often originate from sources with different sampling rates. The

Analytical Resampling Process (ARP) addresses this by using interpolation-based upsampling

and downsampling methods to create uniform sampling intervals for all telemetry time series. In

addition, various clocks such as internal asset clocks, control network clocks, and environmental

monitoring clocks may not be synchronized, leading to clock mismatches that can cause most

ML prognostic algorithms to fail. Oracle's ARP solves this issue through real-time empirical

phase synchronization, ensuring that all data streams are temporally aligned. For more details,

refer to [14, 15].



Another challenge in using telemetry signatures in ML algorithms is quantization, which

significantly impacts the resolution of telemetry signals and the accuracy of computed results

[16-17]. Quantization often arises from the use of low-bit Analog-to-Digital (A/D) chips in

industrial and high-tech equipment transducers. Oracle's prognostic solution includes a feature

called UnQuantize, which employs real-time techniques to "un-quantize" signals, effectively

generating high-accuracy output signatures from low-resolution input signals. Figure 3

demonstrates a typical use case where the unquantization technique is applied to quantized data.

● Missing Value Imputation (MVI)

Missing values in sensor time-series data represent a significant challenge for dense-sensor IoT

applications. The conventional approach to addressing missing values is interpolation, but this

method has limitations, especially when the end goal is prognostic anomaly detection or

verifying the absence of anomalies. Regardless of how sophisticated the interpolation technique



is, it remains a “blind spot” in terms of detecting potential anomalies during periods when values

are missing in individual sensor measurements.

The Missing Value Imputation (MVI) technique offers a more advanced solution by using

inferential sensing. When individual observations are missing, MVI leverages MSET in

inferential mode, just as it would for sensor failures. It's important to note that any conditions

causing missing observations in the surveillance data may also be present during the training

phase, posing a challenge for all ML prognostics, not just those using MSET.

During the signal preprocessing phase, the training dataset, which may include missing

observations, is split into two parts: A and B. Missing values in part A are initially replaced

using conventional interpolation. Part A is then used to train MSET, which is subsequently

applied to part B to fill in the missing values using the MVI method. This trained MSET is then

used on part A to replace the previously interpolated values with MVI-derived values.

Figures 4 and 5 illustrate this process. Figure 4 shows the original training dataset with

high-accuracy measured values in blue and estimation data with high-accuracy measured values

in red during Phase I of the MVI procedure. The black markers indicate the randomly selected

values removed to create missing data points, which are "held back" as ground truth to assess the

accuracy of the MVI procedure. Figure 5 reverses the datasets, using the MVI-derived values to

replace the interpolated values from Phase I.

Figure 6 compares the original ground truth values (in black), the interpolated values (in red),

and the optimal MVI values derived from the new two-phase MVI data-flow framework (in

green). For this case study, the average uncertainty with the new MVI approach was 0.41,

compared to 0.73 for conventional interpolation, indicating a 44% reduction in uncertainty. This



technique has been tested across various datasets with differing cross-correlation levels and

signal-to-noise ratios, consistently achieving a reduction in uncertainty ranging from 39% to

51%.

The primary advantage of MVI is not just that it produces more accurate imputed values than

traditional interpolation, but also that if any degradation events occur during the narrow time

window of a missing value, the MVI estimate can reflect these conditions, whereas conventional

interpolated values cannot.

2.4 Addressing Limitations of Conventional Machine Learning Prognostics

Conventional machine learning (ML) methodologies used in prognostics and predictive

maintenance are typically grounded in threshold-based activation mechanisms. These methods

often rely on predefined limits or ranges for various process metrics. When a measurement

surpasses these limits, an alert is triggered. However, this simplistic approach has inherent

drawbacks that can undermine the effectiveness of predictive maintenance systems, particularly

in complex, noisy environments often found in industrial settings.

● High False Alarm Rates: Traditional ML prognostic methods are often prone to high

false alarm rates. This occurs because threshold-based systems lack the sophistication to

differentiate between normal fluctuations in process metrics and genuine indications of

potential failures. For instance, a sudden but non-critical spike in sensor data due to

transient noise can erroneously be interpreted as a fault, leading to unnecessary

maintenance actions. High false alarm rates can have several negative consequences:



○ Operational Disruptions: Frequent false alarms can lead to unnecessary

shutdowns or interventions, disrupting normal operations and reducing overall

productivity.

○ Increased Maintenance Costs: Each false alarm can prompt unwarranted

inspections, part replacements, or other maintenance activities, inflating costs

without any real benefit.

○ Desensitization of Operators: When operators are frequently exposed to false

alarms, they may become desensitized, potentially ignoring critical alarms when

they occur. This desensitization can compromise safety and reliability.



● Lower Sensitivity to Incipient Failures: On the other hand, some threshold-based systems

set wide limits to reduce false alarms, which can result in a failure to detect subtle,

early-stage anomalies that indicate potential issues. This lack of sensitivity means that the

system might only identify a fault when it has escalated into a more severe state, thereby

reducing the time available for preventive actions. The consequences of this can be

serious, including:

○ Overlooked Failures: Early signs of degradation or minor faults may go unnoticed

until they develop into major problems, leading to unexpected downtimes or

catastrophic failures.

○ Inadequate Predictive Maintenance: Without the ability to detect early signs of

failure, the utility of predictive maintenance is significantly diminished, as

interventions occur too late to be optimally effective.

● MSET2’s Approach to Overcoming These Limitations: The MSET2 algorithm

addresses these challenges by employing a more advanced statistical modeling technique

that does not rely on simple threshold limits. Instead, MSET2 leverages the Sequential

Probability Ratio Test (SPRT) to assess the probability of an anomaly based on historical

patterns and the current state of the system. This sophisticated method offers several

advantages:

○ Minimization of False Alarms: By using SPRT, MSET2 continuously evaluates

the likelihood of a fault condition based on the ongoing analysis of signal

patterns. This approach significantly reduces the rate of false alarms by

distinguishing between actual anomalies and normal signal noise.



○ High Sensitivity to Incipient Anomalies: MSET2 is highly sensitive to even subtle

deviations from normal operational patterns. It can detect small, gradual changes

that would likely be missed by traditional threshold-based methods. This high

sensitivity allows for the early detection of potential issues, providing ample time

for preemptive maintenance and avoiding the progression to more severe states.

○ Timely and Accurate Alerts: The combination of reduced false alarms and

enhanced sensitivity ensures that operators receive timely and accurate alerts.

These alerts are not only more reliable but also come with a confidence level,

allowing operators to make better-informed decisions. This capability is crucial in

high-stress environments where decision accuracy is paramount to maintaining

system integrity and safety.



By integrating MSET2 into prognostic frameworks, organizations can significantly improve their

maintenance strategies, reduce downtime, and enhance the reliability of their operations. The

algorithm’s ability to provide accurate, early warnings about potential failures ensures that

maintenance activities are both timely and effective, ultimately leading to increased equipment

lifespan and reduced operational costs.

3. Goals and Contributions of This Paper

The primary goal of this research is to advance the decision-support capabilities for operators of

complex engineering systems. In environments where human operators are required to manage

extensive datasets and make critical decisions under pressure, there is a significant need for

systems that can effectively process information, provide timely insights, and reduce cognitive

overload.

3.1 Enhancing Decision Support in Complex Systems: Traditional systems often fall short in

environments characterized by high cognitive demands and data intensity, such as military

operations, industrial manufacturing, and critical infrastructure management. By integrating

MSET2, this research aims to transform these challenging environments into efficient,

information-rich, high-performance human-machine systems. Key contributions include:

● Improved Equipment Reliability: By accurately predicting potential failures and

calculating the remaining useful life (RUL) of critical components, MSET2 helps in

maintaining high levels of equipment reliability. This ensures that mission-critical assets

remain operational for longer periods without unexpected failures.

● Reduced Maintenance Costs: The early and accurate detection of anomalies allows for

more efficient maintenance planning. Instead of adhering to a fixed maintenance



schedule, operators can perform maintenance activities based on actual equipment

condition, optimizing resource allocation and reducing costs associated with unnecessary

maintenance.

● Enhanced Operational Effectiveness:With MSET2’s ability to provide real-time alerts

and prognostic insights, operators can make better-informed decisions, leading to

improved overall operational effectiveness. This capability is especially important in

mission-critical scenarios where even minor delays or errors in decision-making can have

significant consequences.

● Human-Machine Cognition Approaches: This paper also explores how MSET2 can be

combined with human-machine cognition approaches to support the operation of

mission-critical systems. The integration aims to balance the strengths of automated

systems with the nuanced judgment and adaptability of human operators. By reducing

cognitive overload through accurate and timely information, the system allows operators

to focus on strategic decision-making rather than being bogged down by data processing

tasks.

● Novel AI-Based Prognostics System: The innovative AI-based system proposed in this

paper leverages MSET2’s advanced capabilities to create a robust framework for

human-in-the-loop control applications. Key aspects of this novel system include:

○ Dynamic Prediction of Equipment Failures: The system utilizes MSET2 to

dynamically predict equipment failures, allowing operators to proactively manage

assets and avoid unplanned downtimes.

○ Calculation of Remaining Useful Life (RUL): MSET2’s precise anomaly

detection capabilities enable it to calculate the RUL of critical components more



accurately, informing maintenance schedules and minimizing the risk of

catastrophic failures.

○ Enhanced Maintenance Strategies: By providing more accurate and timely data,

the system improves maintenance strategies, ensuring that interventions are both

effective and efficient.

○ Operational Readiness in Military Applications: The system is particularly

beneficial in military applications where maintaining operational readiness is

critical. By enhancing decision-making processes and reducing cognitive

overload, the system contributes to improved operational preparedness and

effectiveness.

In conclusion, the proposed MSET2-based system not only improves the accuracy and efficiency

of prognostic maintenance frameworks but also enhances overall decision-making capabilities.

By minimizing cognitive overload and ensuring accurate, real-time insights, the system supports

human operators in managing complex engineering assets, ultimately leading to safer, more

reliable, and cost-effective operations.

4. Conclusion

The MSET (Multivariate State Estimation Technique) system combines the Sequential

Probability Ratio Test (SPRT) with a data-driven modeling method to create a powerful

surveillance tool. This integrated system offers unique capabilities that surpass conventional

approaches such as neural networks, autoassociative kernel regression, and regularized kernel

regression in several key areas:

● Sensitivity: MSET is more adept at detecting subtle anomalies in process signals.



● Reliability and Robustness: The system remains reliable even when dealing with

unreliable or degrading sensors.

● Ease of Training: MSET simplifies the training process compared to more complex

models like neural networks.

● Adaptability: The system can easily adapt to changes in sensor configurations.

● Computational Efficiency: MSET requires less computational power than other models,

making it more efficient for real-time applications.

Furthermore, Intelligent data preprocessing (IDP) innovations enhance the performance of

machine learning for various applications, including prognostics, streaming analytics, prognostic

cybersecurity, real-time signal validation, and sensor-operability validation. These advancements

are particularly valuable across industries where human operators supervise complex engineering

assets.

The combined use of MSET2, SPRT, and the suite of IDP algorithms significantly mitigates

common sensor and signal anomalies, reducing excessive false-alarm and missed-alarm rates that

are prevalent in conventional machine learning prognostics. As a result, the integrated MSET

system functions as an effective and autonomous decision aid for operators, minimizing

"cognitive overload" events and enhancing overall operational safety and efficiency.
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