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Abstract: The RADAR uses multiple technique to achieve more precision and more best processing. The first 

technic use on RADAR is Multiple Input Multiple Output (MIMO) RADAR for switching fast direction of 

arrival of target’s searching. New technic appears to having more flexibility of signal sent to the target using the 

Compressive Sensing (CS). The signal to transmitted will be acquired and compress simultaneously using 

sparse signal multiply by matrix sensing and signal should respect the Restricted Isometry Property (RIP). At 

the receiver, algorithm of reconstruction of signal compressed should be done. This article shows how to 

process MIMO radar with Compressing Sensing and how to reconstruct them. For thus, three algorithms are 

used: Compressive Sampling Matching Pursuit (CoSAMP), Look Ahead Orthogonal Matching Pursuit 
(LAOMP) and Orthogonal Matching Pursuit (OMP) on monostatic and bistatic RADAR. For having good 

performance, the number of antennas should be more than 16x16. The algorithm of CoSAMP is not usable for 

bistastic RADAR because it offers correlation between signal sent and signal recovered less than 50% but it’s 

not a complex implementation indeed on monostatic RADAR. The two variants LAOMP and OMP offers 

correlation more than 80% until 99% on bistatic and monostatic RADAR but have more complex 

implementation. 
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II. INTRODUCTION 
RADAR MIMO is made up of several transmitting antennas each emitting a distinct waveform (beam) 

and numerous receiving antennas. The beams emitted by the transmitting systems are noisy by various 

attenuations, fading and interference. The CS technique is used to reconstruct the information in this antenna 

system. The signal must first be acquired or measured using electronic equipment and devices. Generally 

speaking, compressive sensing never predicts that reconstruction from widely sampled non-adaptive 

measurements is possible, even using recovery and compression algorithms. This article evaluates the possibility 

of obtaining a compressed version of the signal more directly and of evaluating the performance of the 

reconstruction algorithms.  

 

III. TYPES DE RADAR  
MIMO radars could be divided into two types [1]: 

 Monostatic MIMO radars (collocated MIMO radars): the target is point like in a conventional primary 

radar;  

 Bistatic MIMO radars (MIMO radars with widely spaced antennas): the target is located, illuminated 

and monitored by different transmitters and receivers.         

      In these two types of MIMO radar, we can find the following systems: 

 Primary radars: emit microwave signals which are reflected by targets. So, this radar receives the 

reflected part of its own signal. 
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 Secondary radars: are placed on board an aircraft, the purpose of which is to respond to radar 

interrogations by generating a coded signal. This response may contain a lot of information such as altitudes, 

identification code, radio communication failure.  

 Imaging or non-imaging radars: Imaging radars are used to present an image of the area or of an object 

in a space. They are used to map the Earth, other planets, and other celestial objects. Non-imaging radars are 
used to measure the properties of reflections from the region or object being observed.  

 Pulse radars, continuous wave radars.  

 Continuous modulated wave radars: the transmitted signal is constant in amplitude but modulated in 

frequency. 

 Unmodulated continuous wave radars: the transmitted signal is constant in amplitude and frequency. 

 

IIII. COMPRESSIVE SENSING 
3.1 Acquisition process  

Take m linear measurements of a signal      , then, multiply this signal to a matrix       ; this matrix is 
called the measurement matrix or sensing matrix [2] [3] [4]. 

                                       y = Ax.                                                                             (1) 

The vector       is called the measure vector. The main interest is in the largely under-sampled case    . 

Without no more information, it’s very difficult to recover x by y car because linear equation (1) is highly 

indeterminate and has infinity of solution. So, the following hypothesis must be verified:  

 The signal has a sparse representation in frequency domain or base named       . 
 The sparse signal x is directly captured with compressed format and less than Nyquist criteria, during 

phase named phase of measurement or phase of acquisition. The signal is multiplied by sensing matrix     
     
The equation (1) becomes: 

                                   y = Cz                                                                                  (2) 

With, C =           
z       is the transformation of x in the domain  , with        et k  N. 
By considering the additive noise during the phase of acquisition, equation (2) becomes: 

                                                  y =  x + b                                                                        (3) 

Where      is a vector representing additive noise. 

3.2 Sparse 
A signal is sparse when it contents only some significant elements not nulls. In the case of signal represented by 

vector with finite dimension and discrete value     , sparse is norm l0 equal to k. k,        et k  N. 

[3][5][6] 
A signal x has sparse representation with domain        if the transformation z= Bx is sparse. So,       
  and k  N. The degree of sparse r of signal x is defined by: 

                                                          
 

 
                                                                            (4)                                                  

Where k and N represent respectively the number of non nulls elements and the dimensions of x for measuring 

the compressibility degree: Less value of r, gives high value of compressibility. Depending of signal’s nature; 

many domains transformation could be used like Discrete Fourier Transform (DFT), Discrete Cosine Transform 

(DCT), Discrete Wavelet Transform (DWT). 

The sparse is not only a process exploited by compressed acquisition but also on many compression algorithms. 

3.3 Compressibility 

All notations used are: [ N] set formed by {1, 2…., N} and card(S) for the cardinality of set S. And, we will note 

S the complement [ N] \ S of set S in [ N]. [2] [7] [8] 

Definition 1:  support 

The vector support r      is the set of index with his input not null. So,   

supp(x): =               

The vector          s-sparse if the input s is most not null anywhere; So, 
                      

The equation could be expressed also by: 

    
 
      

  

   
                     .                               (5) 

 Definition 2  

For   > 0; the    – error of s-term of approximation with a vector      is defined by: 

                     
  .                                                 (6) 

Proposition 2   
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For all       and for all     , 

       
 

 
 

 
 
 

 

     

So,         
 
 becomes: 

         
 

   
 

 
    

  

   

     
 
 

 

 

 
 
  
    

 
                                                (7) 

       
    

 
 

 
 
 

 

     

With, 

       
 

 
 

 

 
   

 

 
 
  

 

 
 

 

 

                                                  (8) 

Definition 3  

For     ; the equation (9) is expressed by:  

                                        
  

  
               .            (9) 

For all       and for all     , 

       
    

 
 

 
 
 

 

       

With, 

      
 

   
 

 

 
                                                              (10) 

 

3.4 Measurement’s minimal number  

In this section, the goal is to find the measurement’s minimal number for being reconstructed to s-
sparse vector.  The solution could have 2 significations, in one case if the arrangement of measure considers all 

reconstruction of s-sparse vector of      simultaneously or in other case, if s-sparse vector of      of the 
measurement’s arrangement consider specific vector. In the first impression, the second scenario seems artificial 

but it’s needed to guarantee the reconstructing phase when the matrix A is chosen randomly and the vector 

sparse of   is fixed [2] [3] [9] 

The minimal number m of measurement depends of considered arrangement which is equal to 2s in the first case 

and s+1 in the second case. But, the arrangement of reconstruction must be also stable. Then, the number of 

minimal required measurement implies the factor of ln (
 

 
) and the arrangement is never stable with only 2s 

measurement.   

Before separating the two discussed arrangement, the equivalence of the following two properties should be 

noticed for the s sparse and matrix sensing        and s-sparse of      gave. 

(a) The vector   is the unique solution s-sparse of equation  z = y with y =  x i.e.,   

{      :  z =  x,        } = {x}                                             (11) 

(b) The vector x could be reconstructed with solution unique by:  

                                                 
    

            with  z = y.                                          (12) 

In fact, if s-sparse of      is the unique s-sparse solution of the equation  z = y with y =  x, so, solution  

  of the equation (12) is s-sparse and satisfy the equation       verifying      . This shows that (a) 

implies (b), so (b) to (a) is evident. 

3.5 Coherence 

Definition 4   

Let        matrix with columns    , . . .,   , are              ,i.e.,        for i       The 

coherence        of matrix   is defined by [2] [3] [10]:  

  
   

                                                                     (13)  

 

 

Definition 5  

Let         their columns    , . . .,   ,are              ,i.e.,        for i       The function said  

                of matrix   is defined by: 

For all s   [N −1], 

         
   
                                                                    (14) 
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Theorem 1 

Let         their columns are               and let s   [N]. For all vector s-sparse     , 

              
       

                 
                                    (15) 

Proposition 3: Let the matrix        and their columns are               and one integer s   exists, if 
we admit this equation:   

                

Then, for sub-set       with            , the matrix   
    is inversible, and the matrix A is injective. We 

could conclude so:  

   
 

    
 

3.6 Restricted Isometry Property 

Definition 6  

The s-th constant of restricted isometry          of the matrix        is the smallest element     
verify: [2] [3] [11] 

         
       

           
  

For all vector s-sparse     , We have: 

   
   

               
   

                                                 (16) 

Definition 7  

The constant of restricted orthogonality              of the matrix        is the smallest     verifying: 

                    
For the disjoint element supporting s-sparse and t-sparse of vector       , we could have: 

            
                                                                (17) 

Proposition 4  

The constant of restricted isometry and constant of restricted orthogonality have a relation expressed by: 

          
 

   
                   

Proposition 5 

Let the integers         with    , So:  

      
 

 
     ; and    

   

 
    

 

 
     avec             

 

IV. TRANSFORMATIONS 
4.1 Cosine transform 

The Discrete Cosine transform is very used on images compression and even on videos compression. 
We could find some versions of DCT, like example, DCTv1, DCTv2, DCTv3ou DCTv4. The version 2 and 4 

are the most used on data compression. The DCT could also expressed in many dimensions: one dimensions 

(1D), two dimensions (2D) and three dimensions (3D). The matrix DCTv2(1D) is constructed [5] like this: 

                          
 

  
                                          (18) 

Where i and j represents respectively the numbers of line and columns of matrix. It varies between 0 and N-1. h 

is a constant defined by: 

  

 
 

  
 

 
        

 
 

 
        

                                                              (19) 

Knowing the matrix DCTv2 is orthogonal, the Inverse Discrete Matrox is obtained by the transpose only of the 

matrix DCTv2. The DCT transform the signal to be sparse by grouping the information of low frequency. The 

high frequency component has a low value and becomes less important. It could so suppress the visual loose. 
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Figure 01: Discrete cosine transform of signal 

 

4.2 Wavelet transforms 

The wavelet transform uses high level of multiple transformations. Like on figure 02, the coefficient is 

generated with hierarchy using multiple low pass filter h and high pass filter g followed by sampling methods. 

The resultant coefficient is respectively called approximations and details. The impulse response of filter change 

following the function of wavelet type like Haar Wavelet Transform (HWT) or Daubechies Wavelet Transform 

(DWT) [5]. 

 
Figure 02: Wavelet Transform 

 

4.3 Fourier Transform 

The Fourier Transform (FT) of signal x(t) is defined by [5]: 

                         
 

  
                                                 (20) 

                           
 

  
                                                 (21) 

And the inverse of Fourier transform is defined by:  

               
 

  
           
 

  
                                    (22) 

                            
 

  
                                           (23) 

 

4.4 Z transform 

The transform Z is an adaptation of Laplace transform for the study of transient response concerning numeric 

signal. The Z transform could be compared like numeric series. It permits the signal processing and system 

sampling, similar with Laplace transform for the analogue signal. In practice, the table of Z transform is used for 

calculating all Z transform of signal. [3] [11].  

Let F*(p) the Laplace transform of sampling signal ᵹ*(t) represented by:  

                                                                          (24) 

The Laplace transform is expressed by: 

          
       

                                                             (25) 
To express the Z transform, a simple change of variable is done:   

z = epTe , where p is the variable of Laplace, this variable is general and a complex variable (i.e. could be wrote 

by p = a + jb). 

The Z transform is consequently defined by: 
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                                                      (26) 

 

V. TECHNIQUE CS 
On Acquisition system, all sampling is acquired firstly. The number of samples acquired can vary from 

a few thousand to millions of samples. Then, this process is followed by the compression which takes advantage 

of the redundancy present in the signal to represent it in a domain where the majority of its coefficients can be 

eliminated, with negligible or no loss in quality. Finally, a massive amount of information should be collected, 

while only a small fraction of this collected information will actually be used to represent the signal.. [8] [9] [10] 

 

 
Figure 03: Simplified diagram of a compression technique process 

 

Based on the equations (1), (2), (16) et (17), the process of CS technique can be summarized as follows: 
 Convert the signals to be sparse using transforms such as DCT, DFT, or DWT. 

 Choose the compression ratio or Compressive Ratio (CR) for the M × N size image to compress, we 

note: 

       (27) 

 Generate the measurement matrix Φ and A of dimension m × N, this matrix will be used as a sensing 

matrix. 

 Perform the compressive sensing of the signals by realizing the product of the coefficients of the 

signals by that of the sensing matrix: 

                                                                (28) 

 This results in a compressed and encoded signal is then stored or shared over a network. 

 

VI. RECONSTRUCTION ALGORITHM 
6.1 Orthogonal Matching Pursuit OMP 

This algorithm begins with an initial index    and with [4] [9] [10]: 

                             ,                                       (29) 

And iteratively we could have: 

            
                                                               (30) 

                             
                                           (31) 

Where   is the maximum length of the vector. The algorithm of reconstruction OMP is represented like this:  
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6.2 Compressive Sampling Matching Pursuit (CoSaMP) 

The algorithm CoSaMP starts on an initial s-sparse vector         typically      and produces sequence 

     defined respectively by [4] [9] [10]  : 

                       
        )                                          (32) 

                             
                                           (33) 

         
                                                                         (34) 

Where,   is the maximum length of the vector. 

Result of the algorithms: The RIP condition            of the matrix        satisfied:  

    

        

 
        

Then, for     ,      and       with          , the sequence      defined by (32), (33) and (34) 

with       , satisfied: 

          
                     ,                                         (35) 

With       and     

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: 

Transformation matrix Ψ, measurement matrix Φ 

CS matrix A: A = ΦΨ 

Measurement vector y 

Output: 

Estimated signal    ← x  

Measurement approximation of y by a  

Residual r  = y − a . 

Pose Ω  I the position of non-null elements   . 

(1) r0 ← y, Ω0 ←⌀, Θ0 ← [] 

(2) For   = 1, . . .,   

(3)    ← arg max =1...,  |⟨r −1,   ⟩|                                 (Column’s maximal correlation) 

(4) Ω  ←Ω −1                                                                       (indices’ update) 

(5) Θ  ← [Θ −1    ]  

(6) x  = arg minx             
  

 (7) a  ← Θ x                                                                             (new approximation) 

(8) r  ← y − a                                                                          (residue’s update) 

(9) End For 

(10) return x , a , r , Ω  
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The algorithm CoSaMP is summarized by for steps: 

 
Identification: It finds the largest components 2s of sparse signal.  

Support’s fusion: It merges support (form) of original signal with support of the solution of the previous 

iteration. 

Estimation: It estimates a solution using the least squares method where the solution lies below a support T. [4] 

[9] [10]  

Size (sizing): It takes the solution estimate and compresses it to a required medium. 

 

6.3 Look Ahead Orthogonal Matching Pursuit (LAOMP) 

To apply reconstruction LAOMP algorithm, the sensing matrix must respect RIP property. 

 Let M diagonal matrix and A sensing matrix, verifying [4] [9] [10]: 

   
 

     
                                                              (36) 

Then, some transformation expressed by: 

     ;     

       
And,  

 
       

         
  

So, the equation (37) is verified as: 

                                                                 (37) 

It’s difficult to find exact solution of this equation. That’s why, LAOMP use greedy algorithm for having 

approximative solution of this equation. Firstly, the residual vector is defined by: 

                                                                         (38) 

With:    is the data support which contains the selected columns of index. The residual vector and the support 

are initialized as: 

 
    
    

  

Input 

Transformation matrix Ψ, measurement matrix Φ 

CS matrix A: A = ΦΨ 

Measurement vector y 

K sparse signal level  

Number of wanted iteration 

Imposed criteria 

Output 

K-signal of estimated sparse  x du signal original 

(1) x0 ← 0, r ← y,   ← 0 

(2) While imposed criteria 

(3)   ←   + 1 

(4) z ← A r                                                           (signal indexer) 

(5)Ω←supp(z2 )                        (Choose support with the best 2K-sparse approximation) 

(6)  ← Ω   supp(x −1)   (support’s fusion) 

( ) x = arg mi  x  :supp(  ) =            
                 (least squares resolution) 

(8) x  ←                                                                (Size :  -sparse approximation) 

(9) r ← y − Ax                                                       (Update of known sampling) 

(10) End While 

(  )  x ← x  

(12) return  x 
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At each iteration, the LAOMP algorithm finds the column of N which is maximum correlated in the regularized 

residual vector, formulated by: 

 
                               

          
                                              (39) 

Where, U represents the indexes for all columns, g (a, b) represents the internal product of a and b. The iteration 

stops when the number of the column in the holder has ended at a sparse level. The LAOMP algorithm is similar 

to OMP.  

In any iteration, the amplitude components L of the internal product of N with the residual vector r are put in 
time, hence: 

                                                                              (40) 

Where,    being the time at k-th iteration and   is the maximum length of the vector N. 

 

Algorithm of LAOMP reconstruction: 

 
 

VII. MIMO RADAR WITH COMPRESSIVE SENSING 
Consider a MIMO radar system consisting of    antennas of RX and      antennas of TX. In the far domain, the 

antennas must be estimated K targets. For simplicity's sake, we'll assume that the targets are not moving, so the 

only parameters that need to be estimated are the target azimuth angles.    , k = 1 ..., K. 

 

7.1 CS applied in a collocated MIMO radar system 

Suppose the antennas of TX and RX are closely spaced and randomly distributed over a small area, with the 

antenna of the     TX/RX placed upright    
    

      
    

    (in a polar coordinate system). M denotes the 

number of spaced samples of the transmitted waves with a period   . In     receiver, the received signal is 

linearly compressed by the measurement matrix  . Where    has dimension L x M. [12] 

The waveform (far field and narrowband) is assumed that all targets are located in the same cell of same 

frequency. The baseband signal received at the     antennas could be expressed by: 

       
    

 
  
      

                                                     (41) 

Where         is a matrix whose columns contain the transmitted waves;    is the reflection coefficient of 

    target ;          
 
   

 
  
          

   

 
   
      

 

is a vector associated by the angle    ;   
        

  
   
          

   
  ; and    is the interference in the     receiver (interference and thermal noise). 

By stacking the data received from each antenna into a long vector, we form y, for which it stands: 

     
        

  
 
                                                               (42) 

With            
  is a sparse vector. 

Input: 

The sparse signal b and CS matrix: A 

(Normalized the CS matrix with B matrix) 

Output: 

Estimated signal    

(1) Ny ← b, 

(2)  N ← AB, y ← B-1x 

(3) y0 ← 0, r0 ← b, I0 ←⌀, U← distance ( ,col(N)), k← 0  

(4) Repeat k=k+1   

(5)  Tk=arg max ((       , rk-1),L) 

(6)     =                                   

(7)                    

(8) until k   

(9)      
          

   

(10) return    
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If the number of targets is small compared to N, then s is a sparse vector, with the locations of its non zero 

elements providing information on target angles. A variety of CS methods can be applied to recovery from s. By 

the CS, formulation   (a matrix) is the sensor and    is a matrix base of     antennas. 

 

7.2 CS applied in a largely separate MIMO radar system 

We consider an antenna configuration with the multiple antennas of TX and RX which are arbitrary located in a 

large area. We assume that there are K targets in the search space, each one consists of Q independent and 

isotropic diffusers. Let           et           the coordinate of     antennas TX and of     antennas RX, 

respectively, and           denotes the location of     diffusor of     target at the initial period T of the 

drawdown. All places in this section are given in Cartesian coordinates. [13] [14] [15] The distance between the 

antenna of     TX/RX and the    diffusor of      target at instant t equals: 

    
 
              

 
   
 

        
 
   
 

                                          (43) 

In particular, for a stationary target the parameters to be estimated are             avec              

     . 

The baseband signal arrived at the     antenna receiver emitted by     antenna issuer is expressed by:  

            
  
     

    
         

    

 
   

   
 
                                          (44) 

Where the    
  

is the attenuation coeffiecient linked to     diffusor of     target and the pair of antennas TX/RX, 

and        denotes interference and noise. It is assumed that the antennas transmit on different channels, at 

different times, and each antenna set TX/RX widely separated receives signals from targets. 

We must then discretize the target space in points of N grid, i.e.., [       ] with n =  ,…,N. Let   
  

 the 

associate coefficient at n-th grid point for an antenna pair of TX/RX. The equation (44) could be rewrite as 

combination of reflected signal target on all point of grid i.e. :  

           
  
                    

 
                                               (45) 

    
                            

With    
                                    

 
 and        

  
     

   
 
. 

If the target is located at the coordinate        , the coefficient   
  

 is equal to the channel gain associated with 

the corresponding target and with the antenna peers (i,j) ; somewhere else ,   
  

  worth zero. 

Let     the compressible measurement vector received from     antenna receiver and it could be expressed by : 

                               
 
                                             (46) 

Let pose                             
 
                              

 
and   the measurement 

matrix which is used to compress the received data. 

Samples from all receiving antennas are merged to obtain a vector y of length            , i.e., 

      
        

      
         

  
 
 

                                                                                (47) 

Knowing that :          
        

With          ,      
                  and          

        
            

 
 
 

 

 

7.3 use of the Gaussian random matrix 

Let       signal emitted by the TX (rang i) and the radar MIMO system,       could be expressed by : 

                                
 
                                              (48) 

This expression could be expressed by: 

                    
   is a carrier signal    (pulsation   ), with his width   and his period T. A(t) represents the amplitude 

modulation. [15] 

 

VIII. RESULT FOR THE COMPARISON OF RECONSTRUCTION ALGORITHMS 

8.1 MIMO RADAR reconstruction 

The block diagram of the reconstruction of an analog signal in the general case is shown in Figure 04 shows the 

result. 
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Figure 04 : Compression and reconstruction of signal 

 

X(t) : original signal Y : noisy signal 

S : sparse signal x_cap : reconstructed signal (use of the CoSaMP method) 

A : sensing matrix x_omp : reconstructed signal (use of the OMP method) 

AS : compressed matrix  

(product of the sensing matrix with the sparse signal) 

x_laomp : reconstructed signal (use of the LAOMP method) 

 

This diagram shows the reconstruction of signal at the input, using the three reconstruction algorithms, we 

obtain the three signals x_cosamp, x_omp et x_laomp at the output. 

 

 
Figure 05 : Reconstruction of signals in a MIMO radar system 4X4 

 

 
Figure 06 : Reconstruction of signals in a MIMO radar system 8X8 
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Figure 07: Reconstruction of signals in a MIMO radar system 16X16 

 
Interpretation: 

In 4X4 MIMO radar (figure 05) the original signal is reconstructed in the receiver with correlation rates of 

51.34% if we use the CoSaMP reconstruction algorithm, of 85.71% that of the OMP and of 90, 76% that of 

LAOMP. The signal compression rate is 75%. 

The correlation rates between the transmitted signal and that received by 8X8 MIMO radar can be evaluated as 

follows: 70% to 80% for CoSaMP, 87% to 95% for OMP, 88% to 98% for LAOMP. The compression ratio is 

75% (figure 06). 

In 16X16 MIMO radar (figure 07), the correlation between the transmitted signal and the reconstructed one 

received is 98% to 99%, with a compression ratio of 75%. 

 Note that the quality of the reconstructed signal is good in 16X16 MIMO radar. 

 

8.2 Monostatic RADAR reconstruction 

  
Figure 08 : CS applied in monostatic MIMO radar 
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Let H be the transfer matrix of this system whose elements are generated randomly of the compression matrix, 

Ne being the number of antenna TX et Nr being the number of antenna RX. The signal will be generated and 

trasnlated to frequency domain and multiply by compression matrix for have signal compressed and acquired. 

The signal will be shifted on the phase and added for beaming on specific angular using ULA technique. On The 

receiver, all process will be reversed.  
Figure 08 shows the application of two techniques: beamforming technique and compressive sensing technique 

in a monostatic MIMO radar system. 

 

 
Figure 09 : Signal reconstruction in monostatic MIMO radar 

 

From Figure 09, signal reconstruction with CoSaMP is quite good compared to other methodologies. 

The monostatic MIMO radar system having the OMP and LAOMP reconstruction algorithm is very stable 

depending on the uniformity of the signal reconstruction. In our simulation, the signal compression rate ranges 

from 55% up to 90%. 

 

8.3 Bistatic RADAR Reconstruction 
Let B be the transfer matrix of this MIMO radar system whose elements are generated randomly and A the 

compression matrix, Ne being the number of antenna TX and Nr being the number of antenna RX. 

The distance between TX and RX is equal to 300km, and it is assumed that the target to be detected is stationary 

and supports a secondary radar on board. Waves travel at the speed of light. 

 

  
Figure 10 : Block diagram of the bistatic MIMO radar emission 

 

The signal emitted by the TXs (earth stations) depends on the parameters fi (frequency of i-th TX), distance dqr 

(distance between q target and r receiving antenna) and dqt (distance between q target and r transmitting 

antenna). 
The modulated signal at the output of the modulator (BPSK) being transformed into Z then phase shifted by the 

phase shifter. The antenna array configuration is uniform linear. 

Figure 12 shows a reconstruction of the signals in bistatic multicarrier 8X8 MIMO radar using OMP as the 

reconstruction algorithm; 
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Figure 11 : Simplified diagram in bistatic MIMO radar receivers 

 

 
Figure 12 : Signal reconstruction in bistatic 8X8 MIMO radar 

 
The signal generated by the signal generator is transformed so that it has become parsimonious, then 

this signal is compressed and changed into a digital signal, then, the signal thus obtained must pass the various 

blocks before being transmitted in the channel of propagation. The compression ratio is in the range of 55% to 

80%. 
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From Figure 12, the reconstructed received signal at the receiver is similar to the original transmitted signal. In 

this figure the reconstruction algorithm is the OMP seen from its stability and the quality of the reconstructed 

signal when used in various simulations made. The correlation between the original signal and that 

reconstructed on reception is 96% to 99%. 

 

8.4 Comparative result between monostatic and bistatic RADAR 

Table 01 : Comparaison between monostatic and bistatic RADAR with CS 

 Reconstruction 

Algorithm 

Compression rate Correlation between sent 

and reconstructed signal 

Monostatic CoSAMP 55-80% 60% - 80% 

LAOMP 55-80% 88% - 98% 

OMP 55-80% 87% - 95% 

Bistatic CoSAMP 80% <50% 

LAOMP 80% 88-98% 

OMP 80% 96-98% 

 

The table shows the comparative result between the reconstruction methodologies using the 

compression sensing algorithm in MIMO Radar. Using a 16x16 antenna, the CoSAMP methodology can be 

used for monostatic RADAR but not usable for bistastic RADAR. The algorithm offers a less complex 

reconstruction compared to the OMP variants but offers a poor quality of less than 50% for the case of bistatic 

RADAR. The reconstruction rate of the two OMP variants is therefore suitable for reconstruction in bistastic 

and mononstatic RADA with a correlation of greater than 88%. However, the realization of the two OMP 

variants are much more complex than the CoSAMP algorithm. 

 

IX. CONCLUSION 
Therefore, To have a good reconstruction quality, the antenna used in Compressing Sensing MIMO 

Radar must be greater than 16x16. The CoSAMP algorithm is easier to design but is not applicable in bistatic 

MIMO RADAR because the algorithm may have a correlation rate of less than 50% between sent signal and 

reconstructed signal. The OMP and LAOMP algorithm is more difficult to design but applicable in bistatic and 

mono-Static MIMO RADAR with a correlation greater than 80%. Our study focuses mainly on the comparison 

of existing algorithms on the reconstruction of compressing sensing signals without having tested the different 

compressing sensing methodologies such as using the DFR method (Fourrier and Random Diagonalization).  
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