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Abstract 
A duffing system can respond chaotically to harmonic excitation under the effect of drive parameters, according 

to the literature, but there is a paucity of materials on how it responds to periodic excitations under the impact of 

drive parameters. This research is motivated by a desire to learn more about the oscillator's response to periodic 

excitations. Gram-schmidt orthogonalization was used to simulate and estimate average Lyapunov exponents to 

characterize the behavior of a duffing oscillator under periodic excitations when constant time step Runge kutta 

fourth order algorithms were used to solve the periodically excited duffing oscillator using very close initial 

conditions at constant drive parameter values with amplitude ranging from 0.07 to 1.5. 

To validate the PYTHON codes used in this research, the simulated results for the selected periodic excitations 

were used to create characterization graphs showing the behavior of each periodic excitation (Square wave, 

Triangle wave, Sawtooth wave) with reference to the harmonic excitation for the selected drive parameter 

combinations. 

For damping coefficient of 0.0168 and 0.168 the proportion of chaos are (85.7%, 82.5%, 74.4% and 82.4%) and 

(15.5% ,15.6%,13.6%, and 27.4%);(88.4%, 71.5%, 72.5% and 72.8%) and(14.8%, 13.1%, 11.3% and 22.7%); 

(80.9%, 77.1%, 72.2% and 80.1%) and (15.6%, 15.2%, 13.1% and 28.9%)for harmonic, square, triangle and 

sawtooth at equilibrium positions (-1,0), (0,0) and (1,0) respectively. The characterization graph generated can 

be used to predict how a duffing oscillator will behave when subjected to the selected excitations. 

Keywords: Periodically excited oscillator, Characterization, Duffing Oscillator, nonlinear system, Lyapunov 

exponents, Gram Schmidt orthogonalization. 

 

I. Introduction 
It can be difficult to study and understand the behavior of nonlinear dynamical systems, which is why 

the nonlinear duffing oscillator, which is a simplified model of the real nonlinear dynamical system, was created 

[7]. It provides the researcher or engineer who is interested in researching the behavior of nonlinear systems 

with an easy-to-work-on frame work for having a grasp of the numerous inherent mechanisms 

responsibilities[2]. According to published research, when a nonlinear system is activated by an external force 

or is subjected to an extra perturbation, its dynamical behavior can be altered [9]. 

 Many studies have been conducted in previous years on how nonlinear duffing oscillators behave when 

subjected to harmonic (sine wave) excitations only, but what interests the authors of this journal is the study of 

the behavior of the nonlinear system when subjected to periodic excitations, of which three (Square wave, 

Sawtooth, and Triangle wave) are of particular interest [9]. The highly correlated fourier series were used to 

calculate these periodic waveforms [8]. 

 The capacity of a nonlinear duffing oscillator to retain its dynamical properties even when subjected to 

periodic excitations has made it a good fit for secure communication and digital applications [9].Furthermore, 

the Duffing oscillator is considered one of the prototypes for nonlinear dynamics systems [11]. Wawrzynski 

[11] described a duffing oscillator to be a body of mass that is being suspended on a parallel combination of a 

dashpot (cubic stiffness) and a linear springhaving a nonlinear restoring force subjected to harmonic excitations. 

 Lyapunov exponents have long been regarded to be a reliable tool for describing the behavior of 

nonlinear dynamical systems [5].  The Lyapunov exponent, which Wikipedia(2013) defines as a quantity that 

characterizes the rate of separation of infinitesimally close trajectories, is crucial in the characterization of a 
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nonlinear system's behavior because it uses the measurement of the largest Lyapunov exponent in the 

characterization method [5].Souza-Machado [10] conducted a study to demonstrate how lyapunov exponents 

can be used as a characterizing tool in the determination of chaos, and these authors picked up on the idea 

presented in the experiment and conducted their own research on a damped, periodically excited duffing 

oscillator. When the greatest Lyapunov exponent is positive [4,13,14], it is recognized to imply the presence of 

chaos in the system [12].The biggest positive Lyapunov exponent may be derived using several methods, 

however the one used in this work is Gram-Schmidt orthogonalization [13], which is a procedure that aids in the 

derivation of the largest Lyapunov exponent [5]. 

The authors used the positive maximum positive Lyapunov exponents to calculate the number of 

chaotic points [12] for a set of nodal points using drive parameters. 

The behaviour of a duffing oscillator under harmonic excitations has been reported by many 

established literatures over the years but there is a dearth of exploration on the behaviour of a periodically 

excited duffing oscillator and this research paper is written to address that lacuna. 

The following is a breakdown of the four sections of this article paper: 1. A brief overview of the 

study's background. 2. The research methodology used in this study. 3. Discussion and results 4. Conclusions. 

 

II. METHODOLOGY 
Over the years there has been numerous study carried out on harmonically excited duffing oscillator as a model 

for nonlinear system due to the ability of the oscillator to maintain its nonlinear dynamical system’s attributes. 

The governing equation of the duffing oscillator is given by equation (1) below: [6] 

𝑑 + γ𝑑 −
𝑑

2
 (1 d

2
) = Ao sin (ωdt)            (1) 

where Aois the forcing amplitude, ωd is the drive frequency, and γ  represents the damping coefficient. In order 

to simulate the governing equation of the duffing oscillator numerically using the computer ( as it will be 

practically impossible to solve the second order nonlinear ordinary differential equation manually) by 

employing Runge-kutta fourth order scheme requires transformation of the second order nonlinear ODE into a 

pair of two first order Differential equations (2) and (3) [8]. 

d = d1 (displacement)             (2) 

d2 = 𝑑 1 (velocity, first O.D.E)                         (3) 

After splitting into two first order differential equations then the constant time Rungekutta fourth order scheme 

method makes use of the pair of first order to solve for the corresponding displacement and velocity for a 

particular time step and iteration is done for the numerous number of time steps. 

2. Fourth- Order Runge Kutta Scheme 

𝑣𝑖+1 = 𝑣𝑖 +
ℎ

6
 𝑀1 + 2 𝑀2 + 𝑀3 + 𝑀4     (5) 

𝑀1 = 𝑓 𝑑𝑖 , 𝑣𝑖            (6) 

𝑀2 = 𝑓  𝑑𝑖 +
ℎ

2
, 𝑣𝑖 +

ℎ𝑀1

2
 (7) 

𝑀3 = 𝑓  𝑑𝑖 +
ℎ

2
, 𝑣𝑖 +

ℎ𝑀2

2
 (8) 

𝑀4 = 𝑓 𝑑𝑖 + ℎ, 𝑣𝑖 + ℎ𝑀3          (9) 

 

III. STUDY PARAMETERS 
This study made use of the following parameters in the course of this research and they are defined by 

excitation frequency of 1, forcing amplitude ranging from 0.07 to .15, these are investigated for the three 

selected periodic wave function at nodal points (resolutions) ranging from 51 to 5001 along the amplitude axis 

for 10 number of counts. These simulations were carried out for the aforementioned parameters at damping 

coefficients of 0.168 and 0.0168 with fixed simulation time step h= 𝑇𝑝/500for an excitation period of (T=2π). 

Three sets of equilibrium positions (-1,0),(0,0) and (1,0) were investigated and the simulation was executed for 

20 excitation periods including 10-periods of transient and 10-periods of steady solutions. 

The Gram-Schmidt orthogonalization was used to determine the Lyapunov exponents[1] by using the 

Rungekutta fourth order to transform the functions associated with a unit length in orthogonal axes (Xo,Yo) 

taken as (1,0)[1] using  10 simulation time steps and this is done over steady simulation period after which the 

simulation is done continuously while the average of all the Lyapunov exponents across the period of the 

simulation will be calculated and be used to determine the behaviour of the dynamical system under drive 

parameters that are selected for the simulation process. 

A numerical simulation of the forgoing was performed using Rungekutta fourth order algorithms [9] by 

writing PYTHON subroutines for the simulation using a laptop with specifications: processor INTEL (R) Core 

(TM) i5-3340M; CPU @ 2.70GHz; Random Access Memory (4Gb) and 64-bit operating system. 
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Validation cases 

The underlisted parameters were used to test run the PYTHON codes for this study for the harmonic 

excitations and the results was compared with that of established literature written by Dowell [3]. The Poincare 

section and phase plot trajectory obtained for the validations case at (ω=1.0, 𝑃0 = 0.21, ℽ=0.168) corresponds 

visually with figures (1) and (3) respectively. Also, the Poincare map of (ω=1.0, 𝑃0 = 0.19, ℽ=0.0168) and 

corresponds visually with figure (5) 

 

 

 
Figure 1: Poincare map [3].    Figure 2: Poincare map from Python simulation. 

 

 
Figure 3: Phase plot trajectories [3].   Figure 4: Phase plot trajectories. 

 

  

 
Figure 5: Poincare map [3].   Figure 6: Poincare map from Python simulation. 
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IV. RESULTS AND DISCUSSIONS 
Results 

 

 
Figure 7: (𝑑i ,𝑣i) = (-1,0) ℽ= 0.168. 

 

Given above in figure 7 is the graphical representation of  theaverage proportion of chaotic points given 

quantitively to be(15.5% ,15.6%,13.6%, and 27.4%) for harmonics, square , triangle  and sawtooth wave 

respectively for the above drive parameters. 

 

 
Figure 8: (𝑑i ,𝑣i) = (-1,0) ℽ= 0.0168 

 

Given above in figure 8 is the graphical representation of  the average proportion of chaotic points given 

quantitively to be (85.7%, 82.5%, 74.4% and 82.4%) for harmonics, square, triangle and sawtooth wave 

respectively. 
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Figure 9: (𝑑i ,𝑣i) = (0,0) ℽ= 0.168 

 

Given above in figure 9 is the graphical representation of  theaverage proportion of chaotic points given 

quantitively to be(14.8%, 13.1%, 11.3% and 22.7%) for harmonics, square, triangle and sawtooth wave 

respectively. 

 

 
Figure 10: (𝑑i ,𝑣i) = (-1,0) ℽ= 0.0168 

 

Given above in figure 10 is the graphical representation of  theaverage proportion of chaotic points given 

quantitively to be  (88.4%, 71.5%, 72.5% and 72.8%) for harmonics, square, triangle and sawtooth wave 

respectively. 
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Figure 11: (𝑑i ,𝑣i) = (1,0) ℽ= 0.168. 

 

Given above in figure 11 is the graphical representation of the average proportion of chaotic points given 

quantitively to be(15.6%, 15.2%, 13.1% and 28.9%)  for harmonics, square, triangleand sawtooth wave 

respectively. 

 

 
Figure 12: (𝑑i ,𝑣i) = (1,0) ℽ= 0.0168. 

 

Given above in figure 12 is the graphical representation of the average proportion of chaotic points given 

quantitively to be (80.9%, 77.1%, 72.2% and 80.1%) for harmonics, square, triangle and sawtooth wave 

respectively. 

 

V. Discussion: 
From the simulated results generated above it has been observed that there is no qualitative difference 

in the percentage chaotic behaviour of a duffing oscillator under selected excitation regardless of the number of 

nodal points/ resolutions of interest within the amplitude range was observed, likewise no qualitative difference 

in the percentage chaotic points for the selected waveforms regardless of the equilibrium positions too. 



Categorization Of The Behaviour Of A Duffing Oscillator (Subjected To Periodic .. 

International organization of Scientific Research                                                                   7 | Page 

Furthermore, in this research it was observed that the sawtooth wave will behave more chaotically compared to 

other waveforms at a higher damp coefficient. 

Also, at lesser damping coefficient probability of parameter combinations to drive the duffing oscillator 

chaotically is higher but at a higher damping coefficient, the probability is lesser. 

 

VI. Summary and conclusion: 
The authors have been able to develop a python subroutine codes for the algorithms of Gram-schmidt 

orthogonalization in the determination of the average Lyapunov exponents and used the python subroutines to 

characterize the behaviour of the duffing oscillator (in the amplitude plane) under harmonic and selected 

periodic forcing.Thereafter, compared the results of the periodic forcing to the harmonic as a reference standard. 

In this research journal the authors have discussed the behaviour of the duffing oscillator under three 

common periodic excitations (sawtooth, triangle and square wave). It was found in this research that duffing 

oscillator behaves distinctly dynamically when subjected to the various selected periodic excitations in reference 

to the reference system of harmonically excited duffing oscillator. The behaviour of the duffing oscillator when 

driven by the sawtooth wave external excitation is peculiar compared to other selected excitations at damping 

coefficient of 0.0168 as the sawtooth wave causes the duffing oscillator to have a higher percentage of points 

compared to other selected waves with respect to the harmonically excited duffing oscillator for same drive 

parameter value. 

With further increase in the number of resolutions(nodal points of interest) examined along the plane of 

amplitude within the range of 0.07 to 1.5, it is interesting to note that there is no qualitative difference in the 

number of chaotic points regardless of the number of resolutions(nodal points of interest) selected within the 

plane of amplitude within the range of 0.07 to 1.5. 
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