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Abstract: The detection of gas emission levels is a crucial problem for ecology and human health. 

Hyperspectral image analysis offers many advantages over traditional gas detection systems with its detection 

capability from safe distances. Observing that the existing hyperspectral gas detection methods in the thermal 

range neglect the fact that the captured radiance in the longwave infrared (LWIR) spectrum is better modeled as 

a mixture of the radiance of background and target gases, we propose a deep learningbased hyperspectral gas 

detection method in this article, which combines unmixing and classification. The proposed method first 

converts the radiance data to luminance-temperature data. Then, a 3-D convolutional neural network (CNN) 

and autoencoder-based network, which is specially designed for unmixing, is applied to the resulting data to 

acquire abundances and endmembers for each pixel. Finally, the detection is achieved by a three-layer fully 

connected network to detect the target gases at each pixel based on the extracted endmember spectra and 

abundance values. The superior performance of the proposed method with respect to the conventional 

hyperspectral gas detection methods using spectral angle mapper and adaptive cosine estimator is verified with 

LWIR hyperspectral images including methane and sulfur dioxide gases. In addition, the ablation study with 

respect to different combinations of the proposed structure including direct classification and unmixing methods 

has revealed the contribution of the proposed system And also it include an ensemble  model named 

CNN+BiGRU which got 100% accuracy  for enhanced Autoencoder-Based Gas Detection in Hyperspectral 

Images. A user-friendly Flask framework with SQLite integration facilitates signup and signin for user testing, 

ensuring practical usability in deep learning  applications. 

Index terms - Autoencoders, convolutional neural networks (CNNs), gas detection, hyperspectral unmixing. 

 

I. INTRODUCTION 
Imaging spectroscopy has been used by physicists and chemists for more than three decades to identify 

materials and their compositions. The concept of hyperspectral remote sensing started in the mid-80s and has 

been widely used by geologists for mapping minerals to this day [1]. The detectability of the material is 

determined depending on the spectral range of the spectrometer, its spectral resolution, the abundance of the 

material, and the strength of the absorption properties in the measured wavelength region [2]. The gas leaks in 

particular in developed countries in the last decade were one of the crucial environmental problems. Some gases 

are harmful to the environment and contribute to global warming. They present both short-term risks such as 

explosions and long-term risks such as cancer to workers or people living close to the leaking facility. To 

minimize these effects, environmental authorities need to monitor chemical and industrial plants to control gas 

emission levels. Infrared remote sensing technology, which offers many advantages over traditional gas 

detection systems, is one of the proposed solutions for this aim as such solutions allow monitoring the scene 

from a safe distance [3].  

To this end, forward-looking infrared hyperspectral cameras are placed in potentially dangerous areas 

for gas detection from safe distances. These cameras, which are designed to capture images at different 

wavelengths, can operate in two different regions, which involve medium-wave infrared (3–5 µm) and long-

wave infrared (7–14 µm) bands. Until now, these cameras have been utilized for the detection of different gases 

such as carbon dioxide, propane, methane, sulfur, butane, freon, ammonia, difluoroethane, diethyl ether, sulfur 

hexafluoride, and phosgene [4], [5], [6], [7]. The detection of gases in such studies is mainly achieved by 
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utilizing conventional statistical detection methods along with the basic signal processing operations such as 

data transformation, background suppression, dimension reduction, linear regression, and matched filtering [4], 

[6], [7], [8], [9].  

As one of the pioneer studies for gas detection, Pogorzala [10] proposed a pixel-based method using 

linear regression in synthetic images for the detection of ammonia (NH3) and Freon114. Later, Vallières et al. 

[4] presented a method that first converts the hyperspectral radiance data to luminance temperature data. After 

performing background removal on the temperature data, the resulting cube undergoes spectral matched filtering 

[11] to distinguish gas-containing pixels. Finally, the detection is carried out by applying thresholding to the 

resulting scores after matched filtering.  

In another study, Spisz et al. [12] first applied principal component analysis for background removal, 

and then utilized matched filter and spectral angle mapper to detect various chemical compounds. A different 

study using hyperspectral imaging [13] focused on the automatic detection of waste gases. The proposed method 

first filters the possible areas in the scene by means of detecting critical wavelengths and using the correlation 

coefficient metrics to select pixels with high concentration. The target gases are then detected using a spectral 

matched filter algorithm on the selected pixels. 

 

II. LITERATURE SURVEY 
Imaging spectroscopy is becoming more and more popular as a novel method of Earth remote sensing, 

according to the paper [1] "Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS)". Measurement of the solar reflected spectrum at 10-nm intervals from 400 to 2500 nm was first 

accomplished by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS continues to be 

unique in terms of its signal-to-noise ratio and calibration accuracy. Recent years have seen a significant 

evolution of the AVIRIS system as well as advances in science research and applications. In terms of the sensor, 

calibration, data system, and flight operation, the original design and improved features of the AVIRIS system 

are described. This AVIRIS feature update sets the scene for scientific studies and applications that make use of 

AVIRIS data collected over the last few years [13,14]. A review of recent scientific research and applications is 

conducted, covering topics such as atmospheric correction, ecosystem and vegetation, geology and soils, inland 

and coastal waters, the atmosphere, snow and ice hydrology, burning of biomass, environmental hazards, 

commercial applications, spectral algorithms, human infrastructure, and spectral modeling. 

Multispectral imagery has been used as the data source for water and land observational remote sensing 

from aircraft and satellite systems since the early 1960s, according to the paper "A review of hyperspectral 

remote sensing and its application in vegetation and water resource studies [2]". Several hundred spectral bands 

have been collected thanks to developments in sensor technology over the last 20 years. This kind of imagery is 

often called hyperspectral imagery. The use of hyperspectral imagery in water resource studies, specifically the 

categorization and mapping of land uses and vegetation, is the main topic of this review, which also discusses 

the distinctions between multispectral and hyperspectral data as well as spatial and spectral resolutions. 

Standoff detection is covered in the paper [4] "Algorithms for Chemical detection, identification and 

quantification for thermal hyperspectral imagers." Identification and quantification of chemicals in the gaseous 

state are essential requirements in a number of application domains. These applications' demands on the sensors 

include high sensitivity, minimal false alarms, and real-time operation—all in a small, sturdy package that can 

be used in the field. Such chemical sensors have been implemented using the thermal infrared portion of the 

electromagnetic spectrum, either with spectrometers (which have no or moderate imaging capability) or with 

imagers (which have moderate spectral capability). Chemical sensors with unmatched performance in the 

spectral, spatial, and temporal domains have only recently been possible to design thanks to the development of 

large format, high-speed infrared imaging arrays. Analytical studies demonstrate that the combination of spatial 

and spectral information holds great potential for enhancing the effectiveness of chemical agent identification, 

quantification, and passive detection as it stands today. The detection, identification, and quantification 

algorithms created for hyperspectral imagers working in the thermal infrared are presented in this paper. The 

efficacy of these algorithms is demonstrated through the use of gaseous releases datacubes obtained in the field 

with the Telops FIRST imaging spectrometer. 

Fourier-transform infrared (FTIR) spectroscopy is a potent technique for the passive remote detection 

and identification of vapor emanations and surface contaminations. Recent results using MoDDIFS are 

discussed in the paper [5] "Hyperspectral gas and polarization sensing in the LWIR: Recent results with 

MoDDIFS." Imaging FTIR can be used remotely to monitor areas suspected of being used to fabricate illegal 

products in the context of defense and security. To meet this remote sensing need, DRDC Valcartier recently 

started working on the development and field testing of the innovative imaging Fourier transform infrared 

sensor, called MoDDIFS (Multi-option Differential Detection and Imaging Fourier Spectrometer). This paper 

proposes a system that combines the high spatial resolution offered by the hyperspectral imaging approach with 

the efficient clutter suppression of the differential detection approach. Two configuration options are available 
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for the MoDDIFS sensor: one for polarization sensing of surface contamination and the other for remote gas 

detection. The results of using MoDDIFS for the passive standoff detection of gases and liquid contaminants are 

reviewed in this paper. Difluoroethane, diethyl ether (gases), and SF96 (liquid) are used in hyperspectral 

measurements to develop, test, and validate algorithms for GLRT-type detection. The GLRT detection attributes 

are used to present and discuss the detection results. 

Interest in the detection, identification, and quantification of gaseous effluents has increased for both 

government and commercial applications, according to the paper [6] "Gaseous plume detection in hyper spectral 

images: A comparison of methods". But the issues related to hard-target detection in the reflective spectral 

regime are very dissimilar from the problem of gas detection. Specifically, upon viewing the mixed background 

pixel signature from the ground, one can observe gas signatures in either emission or absorption, which are 

dependent on both temperature and concentration. Thermal hyperspectral synthetic imagery is used in this work 

to apply conventional hard-target detection schemes. Principal Components Analysis, Projection Pursuit, and a 

Spectral Matched Filter are the techniques that are examined here. The applicability of these methods to the 

problem of gas detection will be compared in a quantitative and qualitative manner. A precise quantitative 

evaluation of the algorithmic performance can be obtained by comparing the synthetic data outputs with truth 

outputs. It is demonstrated that Principle Components and Projection Pursuit perform comparably and 

outperform the Spectral Matched Filter. Furthermore, it can be seen that Principal Components and Projection 

Pursuit can distinguish between areas of the plume that absorb light and those that emit it. 

 

III. METHODOLOGY 
i) Proposed Work: 

The proposed system for gas detection in hyperspectral images combines 3D convolution and 

autoencoder-based unmixing with classification, demonstrating improved performance compared to 

conventional methods, and it can be adapted for various gases using consistent system parameters. And this 

project include an ensemble  model named CNN+BiGRU which got 100% accuracy  for enhanced Autoencoder-

Based Gas Detection in Hyperspectral Images [4]. A user-friendly Flask framework with SQLite integration 

facilitates signup and signin for user testing, ensuring practical usability in deep learning  applications. 

 

ii) System Architecture: 

A 3D-CNN is a type of neural network architecture designed to work with three-dimensional data, such 

as volumetric data or in this case, hyperspectral images. It is well-suited for tasks involving spatial and spectral 

information, making it applicable for the analysis of hyperspectral data. An autoencoder is a type of neural 

network architecture used for dimensionality reduction and feature extraction. It consists of an encoder that 

compresses the input data into a lower-dimensional representation (latent space) and a decoder that reconstructs 

the original input from this representation. [20,21,22] The 3D-CNN is deployed in conjunction with an 

autoencoder to analyze hyperspectral data. The autoencoder helps in reducing the dimensionality of the 

hyperspectral data, capturing essential features while discarding redundant information. This is crucial for 

efficient processing of the complex hyperspectral images. 

The project significantly enhances its capabilities through the incorporation of an ensemble model, 

CNN+BiGRU, which combines Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit 

(BiGRU) architectures [20]. Impressively, this ensemble model achieves a perfect 100% accuracy, underscoring 

its effectiveness in ensuring reliable and precise gas detection in hyperspectral images. To enhance user 

interaction and practical usability, the project integrates a user-friendly Flask framework, a lightweight web 

framework for Python. This framework streamlines user processes, including signup and signin, while the 

integration of SQLite, a relational database management system, efficiently manages user data. The user-

friendly interface, coupled with SQLite integration, not only facilitates user testing but also ensures practical 

usability across a spectrum of deep learning applications, making the system versatile and accessible for diverse 

purposes. 
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Fig 1 Proposed Architecture 

 

1. Hyperspectral Data: The input data for this project consists of hyperspectral images, where each pixel 

in the image has a spectral signature, typically represented as a vector of values at various wavelengths.  

2. Luminance Temperature Conversion: Before processing, the hyperspectral data may undergo 

preprocessing, such as luminance temperature conversion, to enhance specific spectral features or to make the 

data more suitable for gas detection.  

3. 3D Convolutional Neural Network (3D-CNN):  

• 33P-3321 (3D Convolution, ReLU): The hyperspectral data is processed by a 3D-CNN. The initial 

layers likely include 3D convolutions with a kernel size of 3x3xP, where P is the number of spectral bands. This 

operation is followed by a Rectified Linear Unit (ReLU) activation function.  

• 2211 (3D Convolution, ReLU): Subsequent layers involve another 3D convolution operation with a 

2x2x11 kernel size and ReLU activation.  

• 117 (2D Convolution, ReLU): The final 3D convolution operation uses a 1x1x7 kernel size, which 

might essentially reduce the spectral dimension. ReLU activation is applied here as well.  

4. Flatten Layer: After the 3D-CNN layers, the data is flattened to convert it into a vector. This step is 

necessary before feeding it into the autoencoder.  

5. Autoencoder (Encoder-Decoder): • Encoder: The flattened data is processed through an autoencoder. 

The encoder part reduces the dimensionality of the data and extracts relevant features. In this gas detection 

context, the encoder output is the abundance values, which represent the presence and concentration of gases.  

• Normalization Layer Weights as Endmembers: The weights of the normalization layer in the 

autoencoder likely correspond to the endmembers, which are the pure spectral signatures of gases. These 

endmembers are important for identifying and quantifying the gases in the hyperspectral data. 

 • Decoder: The decoder part of the autoencoder attempts to reconstruct the original hyperspectral data 

from the encoder's output. This part may not be needed for gas detection but can be used for denoising or for 

other purposes. The entire system combines a 3D-CNN [4] for initial feature extraction and a subsequent 

autoencoder to estimate the abundance values of gases. The normalization layer's weights serve as the 

endmembers, allowing the system to identify and analyze gases within hyperspectral images. 

 

iii) Dataset collection: 

In this phase, the project examines and familiarizes itself with the hyperspectral spectrum images 

dataset. This includes understanding the structure of the data, the format of the hyperspectral images, and the 

available labels or gas emission information. Exploratory data analysis (EDA) may also be conducted to gain 

insights into the dataset. Hyperspectral images are obtained by imaging of airborne or satellite sensors on a 

target area, which contains information of objects in tens to hundreds of consecutive and segmented bands from 

visible light to the infrared spectral region. 

 

 
Fig 2 Dataset 
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iv) Data Processing: 

Data Preprocessing -Data preprocessing is a crucial step where the raw data is cleaned, transformed, and made 

ready for model training. This may involve tasks like handling missing values, normalizing data, and ensuring 

data quality. For hyperspectral data, preprocessing might include noise reduction and spectral signature 

extraction.  

Splitting Dataset into Train and Test - To evaluate the model's performance, the dataset is typically divided into 

two parts: a training set and a testing set. The training set is used to train the machine learning or deep learning 

models, while the testing set is used to assess their accuracy and generalization to new, unseen data.  

 

v) Model Building: 

Building the Model -This module focuses on the construction of the gas detection model. In this project, the 

model is based on a 3D Convolutional Neural Network (3D-CNN) with an autoencoder architecture. The 

model's architecture is designed and defined, specifying the layers, activation functions, and other parameters 

  

Training the Model - With the model architecture in place, the project proceeds to train the model using the 

training dataset. During training, the model learns to recognize patterns and spectral signatures associated with 

different gas emissions. Training involves multiple iterations (epochs) where the model's parameters are 

adjusted to minimize prediction errors. 

 

vi) Algorithms: 

CNN (Convolutional Neural Network)- Convolutional Neural Networks (CNNs) are a class of deep neural 

networks specifically designed for processing structured grid data, such as images. In the context of this project, 

CNNs play a pivotal role in hyperspectral image analysis. They consist of layers that learn hierarchical 

representations through convolutional filters, capturing spatial patterns in the input data. The filters enable 

feature extraction, allowing the model to identify complex patterns and relationships within hyperspectral 

images. CNNs are adept at recognizing spatial structures, making them well-suited for detecting intricate 

patterns associated with industrial gas emissions in hyperspectral data.  

A 3D-CNN is a variant of convolutional neural network that operates in three dimensions, typically used for 

processing 3D data or volumetric data such as video sequences, medical scans, and hyperspectral images. In this 

project, a 3D-CNN is likely used to process the hyperspectral data, taking into account the spectral dimension 

(wavelength bands), as well as the spatial dimensions (width and height) of the image. This allows the model to 

capture both spectral and spatial features, which is crucial for hyperspectral image analysis. 

 

 
Fig 3 CNN 

 

CNN + BiGRU (Ensemble Model)- The project involves the integration of an ensemble model, CNN+BiGRU, 

combining Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (BiGRU). This 

ensemble approach aims to leverage the strengths of both architectures. While CNNs excel in capturing spatial 

features, BiGRUs are proficient in handling temporal dependencies. Bidirectional GRUs process data in both 

forward and backward directions, enhancing the model's ability to understand temporal sequences. By 

combining the spatial understanding of CNNs with the temporal context captured by BiGRUs, the ensemble 

model achieves superior performance, resulting in 100% accuracy. This comprehensive approach ensures robust 

gas detection in hyperspectral images by considering both spatial and temporal aspects of the data. 
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The CNN + BiGRU combination integrates CNN for spatial features and BiGRU for temporal and spectral 

dependencies, leveraging both architectures to effectively process hyperspectral data, enhancing gas detection, 

and addressing the spatial and spectral information requirements of the task. 

 

 
Fig 4 CNN + BiGRU 

 

IV. EXPERIMENTAL RESULTS 

Precision: Precision evaluates the fraction of correctly classified instances or samples among the ones classified 

as positives. Thus, the formula to calculate the precision is given by: 

Precision = True positives/ (True positives + False positives) = TP/(TP + FP) 

 

 
Fig 5 Precision comparison graph 

 

Recall: Recall is a metric in machine learning that measures the ability of a model to identify all relevant 

instances of a particular class. It is the ratio of correctly predicted positive observations to the total actual 

positives, providing insights into a model's completeness in capturing instances of a given class. 

 

 
Fig 6  Recall comparison graph 
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Accuracy: Accuracy is the proportion of correct predictions in a classification task, measuring the overall 

correctness of a model's predictions. 

 

 

 
Fig 7 Accuracy graph 

 

F1 Score: The F1 Score is the harmonic mean of precision and recall, offering a balanced measure that 

considers both false positives and false negatives, making it suitable for imbalanced datasets. 

 

 

 
Fig 8 F1Score 

 

 
Fig 9 Performance Evaluation table 
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Fig 10 Home page 

 

 
Fig 11 Registration page 

 

 
Fig 12 Login page 
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Fig 13 Input sheet 

 
Fig 14 User input 

 
Fig 15 Predict result for given input 
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V. CONCLUSION 

The project is dedicated to addressing environmental pollution by identifying gas emissions from 

industrial sectors. This is crucial for environmental protection, as industrial emissions contribute significantly to 

air pollution and global warming. Hyperspectral images captured from industrial gas leakages serve as the 

primary data source. The Spectral Angle Mapper (SAM) distance formula is employed for gas detection. SAM 

measures the spectral similarity between the captured hyperspectral images and known gas signatures, enabling 

accurate identification of gas emissions. The project creates its gas label dataset, demonstrating a proactive 

approach to data collection [13]. Additionally, external datasets containing methane and sulfur leak information 

are utilized for training purposes. This combination ensures a comprehensive and diverse dataset for effective 

model training. The project showcases the efficacy of deep learning techniques in gas detection and 

environmental protection. Deep learning enables the model to automatically learn intricate patterns and features 

from hyperspectral data, contributing to improved accuracy in identifying harmful gas emissions. This project 

introduces a hybrid model, CNN+BiGRU [25,26,27], which achieves a remarkable 100% accuracy. This hybrid 

approach combines Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (BiGRU), 

showcasing superior performance and robustness. This makes it a highly effective solution for various e-

commerce data analysis tasks, illustrating the versatility of the model beyond its primary environmental 

application. The integration of a user-friendly Flask interface, coupled with secure authentication, enhances the 

overall user experience during system testing. This interface simplifies data input for evaluating system 

performance. The emphasis on user-friendliness and security underscores the project's commitment to practical 

usability and data protection. 

 

FUTURE SCOPE 

The model's adjustability to varying gases by modifying parameters ensures its versatility for diverse 

gas detection tasks. By exploring diverse distance metrics and optimization methods, the algorithm aims to 

improve both accuracy and efficiency in gas detection. Adapting the model for industrial, environmental, and 

security contexts ensures practical, real-world utility. [3,10] Extending the model to identify multiple gases at 

once enhances its ability to monitor complex gas mixtures in the environment. Incorporating the model into 

aerial vehicles enables efficient remote sensing, extending its use to diverse applications requiring gas detection 

from the air. 
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