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Abstract: Quadrupole arrangements in Gadolinium Molybdate Gd2 (MoO4)3 crystal are carried out by using group 

theoretical method of Opechowski and Guccione for the classification of magnetic spin arrangements in the various 

phase transitions. It turns out that the quadrupole arrangement of Gadolinium Molybdate in the tetragonal phase is 

𝐷2𝑑
3  

with non-axial symmetric quadrupoles. In orthorhombic phase there are two possible quadrupole arrangements 

with low energy in which one is C
8

2v and the other is D
1
2 both are axially symmetric quadrupoles. 
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Introduction: 
Gd2(MoO4)3 had been prepared first B.Y. Borchardt (3) and this material was found to be ferroelectric by Borchanrdt  

and Bierstedt (4,5) these authors (4) also gave preliminary result of a space-group determination carried out by 

Prewitt  who found orthorhombic symmetry, space group 𝐶2𝑣
8 , for the ferroelectric room-temperature modification of 

Gd2(Mo04)3 the structure of the tetragonal subcell was solved by Abrahams and Bernstein (1). The present 

communication reports the full structure of the ferroelectric room-temperature modification of Gd2 (Mo04)3 as 

determined from three-dimensional single crystal x-ray counter data. There are four formula units in the 

orthorhombic unit cell of dimensions: a=10.388, b=10.419,c=10.701Å.  

The atomic co-ordinations are as follows ( all atoms in position 4c of Pba2): 

The Gd atoms have seven nearest oxygen neighbors at tetrahedral oxygen neighbors at distances ranging from 2.27 

to 2.44Å. All Mo atoms have a tetrahedral oxygen environment with distances varying between 1.73 and 1.80Å. 

These nearest neighbor environment differences between the two ferroelectric orientations result through 

movements of several oxygen atoms by as much as 0.7Å mainly in the plane normal to the z-axis (the direction of 

spontaneous polarization). The changes in interatomic distance of nearest neighbors however, are all under 0.05 Å. 

The structure of the tetragonal subcell as found by Abrahams and Bernstein (1), corresponding to the average 

structure of the two ferroelectric orientations, comes very close to the high-temperature (above 160
0 

C) structure 

(space group 𝐷2𝑑
3 ) 

The phase transitions of solid Gadolinium Molybdate are studied during past few years. They are mainly due to 

quadrupole – quadrupole interaction between the molecules. A group analysis is made of external lattice vibrations 

in Gd2(MoO4)3 for k = (1, 1, 0) in the high-symmetry D phase and for the point in the low-symmetry C  phase. It is 

shown that the phase transition is induced by instability of one double degenerate T1-phonon at the M-point of the 

Brillouin zone which changes into two A1-phonons, infrared and Raman active below the phase transition. The far-

infrared reflectivity and transmission measurements show that these critical modes are extremely weak and lie at 

45cm and 56 cm at 150 °C. When rising the temperature they become indistinct and probably disappear above the 

phase transition. This behaviour together with known dielectric and Raman scattering is discussed in terms of the 

recent theory of the soft-mode behaviour in improper ferroelectrics. The solid Gadolinium molybdate is known to 

have a high pressure β – phase. In this paper symmetry considerations are used to show that it is possible for solid 

Gadolinium molybdate to have structure similar to the tetragonal 𝐷4ℎ
14

 arrangement in solid N2 if indeed quadrupole 

interactions dominate the intermolecular potential. 

Classification of Quadrupole Arrangements: 

The classification of all possible quadrupole arrangements is analogous with the problem of classification of possible 

arrangements in a crystal. The classifications of all possible atom arrangements in a crystal are provided by the 

theory of space groups. All possible quadrupole arrangements are also similar to the classification of all spin 
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arrangements in a magnetic crystal, a problem which has been solved by Opechowski and Guccione using theory of 

magnetic groups. Here we derive a method of classification of all possible quadrupole arrangements based on theory 

of space groups. 

The method of classifying all possible quadrupole arrangements in a crystal by using the theory of space groups was 

described in detail(7). This was done by following the method of Opechowski and Guccione (10) for the 

classification of spin arrangements in magnetic crystal. Let F be the space group of the molecular position in the 

ordered state. All invariant quadrupole arrangements which can possibly be exist in a molecular crystal by showing 

how to construct for given crystal all quadrupole arrangements invariant under an arbitrary subgroup L of F. Each 

arrangement invariant under L can be characterized by specifying the location and value of these quadrupole 

moment tensors will depend on F, L and 𝑟    

Let L be the subgroup of F under which the quadrupole arrangement is invariant. It is assumed that in an ordered 

molecular crystal of space group symmetry F there are only two cases to be considered (a) L is identical with F (b) L 

is a space group belonging to the same crystal systems as F. It is assumed that the symmetry group L is one of the 

possible space group, for it is physically improbable that the atoms of a crystal belong to a Bravais lattice system of 

higher symmetry than it is required by the crystal point-group symmetry. For example, consider a crystal of 

molecules composed of two atoms with the molecular positions forming a simple cubic molecular lattice generated 

by F= Oh from  𝑟   = (0, 0, 0). We consider the arrangement with all molecular axes along the z- axis. Such an 

arrangement has its symmetry group L the semi direct product of the point group D4h and the translations of a 

simple cubic lattice, this group is a subgroup of  𝑂ℎ
1   but it is a space group. This arrangement is physically 

improbable and one expects that any weak external disturbance, such as heating would shorten or lengthen the z 

edge of the cubic cell, consequently changing the molecular lattice from cubic to tetragonal. One can classify the 

above arrangement as belonging to a crystal system lower than cubic. This is space group 𝐷4ℎ
1  of the tetragonal 

systems, where the unit cell has been doubled in the z –direction. We would then have an invariant quadrupole 

arrangement of symmetry L =𝐷4ℎ
1  of the tetragonal system on a molecular lattice generated by F = 𝑂ℎ

1
  of the 

cubic system. Such an arrangement, for the reasons stated above, is physically improbable. Within the framework of 

our model a similar argument rules out the possibility of the orthorhombic C
8
2v, arrangement considered recently in 

the literature (6-8) for hexagonal solid orthohydrogen. In fact, there has been no experimental evidence to supporting 

the C
8
2v structure in solid hydrogen 

Let us now consider the two cases in detail:  

(a) If 𝑟   is a general position vector we assign at 𝑟    an arbitrary quadrupole moment tensor 𝑄    (𝑟  ).   

To the remaining positions we assign  

𝑄    (𝑓𝑟  ) = M (f) 𝑄    (𝑟  )M-1
(f), 

There by defining a quadrapole arrangement invariant under the space group F. This method of constructing a 

quadrupole arrangement is called the standard prescription (10). If 𝑟   is a special position vector, then the above 

standard prescription may lead to contradictions. Let R(𝑟  ) be the site point group of 𝑟  . Then the necessary and 

sufficient condition for the existing of a quadrupole arrangement invariant under the space group F in a simple 

crystal generated by F from 𝑟   is the existence of a quadrupole moment tensor invariant under R(𝑟  ). For each such 

quadrupole tensor, the standard prescription defines unambiguously a quadrupole arrangement invariant under F. 

b) Let L be a three dimensional space group and a subgroup of F. From (10) we decompose F into right cosets 

relative to L:  

F = L + Lf2 + ….+ Lfn , 

Where n is the index of the subgroup L of F. As we decompose the position vector of the simple crystal generated by 

F from 𝑟   into sets of position vectors relative to L: 

F𝑟   = L𝑟   + Lf2𝑟   + ….. + Lfn 𝑟   . 
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Sets of position vectors generated by two different right cosets from position vector 𝑟   are either identical or have no 

position vectors in common. 

We may write this decomposition as  

F𝑟   = L𝑟    + Lf2𝑟   +  …. + Lfn’𝑟      

Where n’≤ n and no two sets of position vectors have position vectors in common. 

Now assign quadrupole moment tensors to each of the n’ simple crystal independently, using for each the method 

described in case (a). Each quadrupole arrangement invariant under L in a crystal generated by F from 𝑟   is uniquely 

characterized by giving n’ quadrupole moment tensors 𝑄     (𝑟  ), 𝑄    (f2𝑟  ),…. 𝑄    (fn’𝑟  ). We derived all in variant 

quadrupole arrangements by choosing these n’ quadrupole moment tensors in all possible ways. 

Now let us consider the Gadolinium Molybdate crystal where all molecules will have the quadrupole moments. It 

will have the orthorhombic symmetry C2v at room temperature and will the tetragonal symmetry D2d above 160
o
 c. In 

this space group D2d of the tetragonal system the unit cell has double in the z- direction. We would have an invariant 

quadrupole arrangement on a molecular lattice generated by F= 𝑂ℎ
1 of the cubic systems. But such an arrangement is 

physically improbable. In table1 we have given the matrix form and number of independent components of 

quadrupole moment tensors invariant under each of the point group in Gadolinium Molybdate crystal (8,9). If the 

site group R(𝑟  ) is not one of the point groups T, Th, T4, O,  and Oh there exists no quadrupole moment tensors invariant 

under R(𝑟  ) with which we can construct invariant quadrupole arrangements using standard prescription(10). While H2 

or N2 molecule is invariant under inversion and under reflection and two fold rotations perpendicular to the 

molecular axis, so as in Gadolinium Molybdate molecule. So as a consequence, a site point group that permits a 

quadrupole arrangement in H2 will permit such an arrangement in Gadolinium Molybdate, for the site point group C2v 

the molecular axis of H2 or N2 can be along the rotation axis or perpendicular to either of the two reflection planes, 

while the molecular axis of Gadolinium Molybdate can be only along rotation axis. 

Table 1:  The number of independent components and matrix form of the quadrupole moment tensors invariant 

under each of the point groups. In case of one independent component corresponds to an axially symmetric 

quadrupole with its symmetry axis lying along the z- axis.  

Point Group No. of Components Quadrupole Moment Tensors 
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In tetragonal lattice the molecular moments from a simple crystal generated by 𝐷2𝑑
3  form the position vector 

𝑟  =(0,0,0). The possible quadrupole arrangements for this solid Gadolinium Molybdate are invariant under these 

subgroups given in table 2. 
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Table2: List of the quadrupole arrangements of Gadolinium Molybdate invariant under subgroups L of F. The site point 

groups R(𝑟  ) and symmetry elements are given in the table. The site point groups R(𝑟  ) and the symmetry elements are 

included. The orientation of rotation axis in R and the two fold axes of C2v are given by superscripts. 

F L R(𝑟  ) Symmetry Elements 
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Conclusion:  

In this paper we have found all possible quadrupole arrangements in a crystal 

Gadolinium Molybdate using the theory of space groups. This has been done by the 

method of Opechowski and Guccione (10) which uses the theory of magnetic groups for 

the classification of spin arrangements in magnetic crystals. The quadrupole arrangement 

of lowest energy in the β-phase of solid Gadolinium Molybdate is found.  Table2 shows 

that in tetragonal lattice there are no possible quadrupole arrangements in which 

molecular axes can lie on the xy-plane as in the 𝐷4ℎ
14 arrangement in solid nitrogen. In 

orthorhombic phase they will have two qudrupole arrangements in xy- plane. 
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