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ABSTRACT 
The world market for CO2/CH4 separation using membrane technology is getting bigger and polysulfone (PSf) is one 

of the most widely investigated polymer membrane materials. However, the existing PSf membranes performances 

are insufficient to fully exploit these opportunities. Therefore, modification that would produce membrane that fit the 

needs of target separation performances is a main issue. Firstly, various manufacturing processes to achieve best 

CO2/CH4 separation performance are discussed, including important post-treatments. The formulation of polymer 

solution and effects of manufacturing parameters on the resulting membranes are presented. Other modifications, 

which involved PSf structure modification, PSf-based copolymer, mixed matrix membrane and facilitated transport 

membrane, are also discussed. Performances of those modified membranes are compared with the Robeson’s upper 

bound and some modifications give satisfying results. Finally, commercial application of PSf membranes for 

CO2/CH4 separation is discussed. 
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1. Introduction 
One of the most widely investigated glassy polymer 

membrane materials for CO2/CH4 separation is PSf. 

Polysulfone pure- and mixed-gas permeation properties 

have been extensively explored for gas separation due to its 

low price, chemical stability, and mechanical strength [1]. 

Compared to CA, PSf has lower CO2 permeability and 

CO2/CH4 selectivity [2] but higher plasticization pressure 

[3]. Plasticization pressure becomes important in practice 

due to its effect on membrane selectivity. Membrane with 

higher plasticization pressure can maintain its selectivity 

better than membrane with lower plasticization pressure on 

high CO2 feed concentration or on high operation pressure. 

Various types of PSf-based membrane for CO2/CH4 

separation have been developed but there are two limitations 

faced by the available membrane. Acquiring higher 

selectivity with at least similar productivity is the first 

challenge and the second challenge is maintaining 

membrane performance in the presence of complex and 

aggressive feed [4]. Many researches have been done to 

overcome those challenges by changing the membrane 

manufacturing process, formulation, and conduct material 

modification. In this work the variability of PSf-based 

membrane for CO2/CH4 separation will be explored. The 

most important objective is to provide comprehensive 

information about PSf-based membrane for CO2/CH4 

separation. 

2. Manufacturing processes 
In general, there are three types of PSf membrane that can 

be used for CO2/CH4 separation, dense, asymmetric, and 

composite. Dense and asymmetric membrane consists of 

PSf only while composite membrane consists of PSf and 

other polymer in different layer. Manufacturing processes of 

these types of membranes are different and versatile. For 

dense and asymmetric membrane there are three major 

process; dry, wet, and dry/wet.  

Dry process is so named because the membranes are formed 

without immersion in precipitation bath. In this method, the 

polymer solution consists of binary mixture between a 

polymer and a solvent or a mixture of polymers, solvents 

and nonsolvents. The polymer solution is then cast on a 

suitable support and the solvent is allowed to evaporate [2]. 

The PSf membrane obtained by dry process is a dense 

membrane. The gas permeation rate of this membrane is 

usually low due to the thickness of the selective layer [5].   

In wet process, the polymer solution composition is the 

same with dry process. Prior to coagulation in a 

precipitation bath, a brief optional evaporation is often used 

to concentrate the outermost region of the membrane. The 

evaporation step does not induce the phase separation of the 

membrane. The phase separation phenomena occur in the 

coagulation bath due to the diffusional exchange of solvent 

and nonsolvent. The diffusional exchange causes the 

solution to be unstable thermodynamically and demixing 

occurs. In some cases, demixing occurs instantaneously and 

a porous membrane is obtained but in other cases, demixing 

occurs only after a certain period of time and produce 

membrane with asymmetric structure. Delay demixing can 

occur when nonsolvent with low mutual affinity is used. 

Even thought this process can produce PSf asymmetric 

membrane, generally the PSf membrane has too many 

defects to be used in gas separation without further 

treatment [5]. The most popular treatment is coating layer 

application. The coating material must have high flux so it 

will not give an additional resistance to gas transport, such 

as silicone rubber, the most popular coating material.  

To produce PSf membrane with ultra thin defect free 

toplayer and negligible sublayer resistance, Pinnau and 

Koros proposed a new technique, dry/wet process. In this 

process, there are two solvents are used, a more volatile 

solvent and a less volatile solvent, which have different 

affinity to the nonsolvent. The cast film is then subjected to 

convective evaporation and free standing evaporation prior
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to immersion in the precipitation bath. Convective evaporation step is believed to be the important step to produce defect 

free membrane. The schematic diagram of  
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Figure 1 Schematic diagram of dry, wet, and dry/wet process 

 

dry, wet, and dry/wet process is given in Fig.1. For 

processes that included immersion, selection of nonsolvent 

is important. Water is frequently used but when water is 

used, solvent exchange step is necessary. Solvent exchange 

is conducted to reduce the surface tension of water in 

membrane pores. High surface tension can cause pores wall 

collapse when water is removed and create a thick non-

selective layer. Flat sheet composite membranes usually 

simply made by coating the second polymer onto the surface 

of the substrate polymer [6, 7, 8] and deposited the polymer 

for certain time while HF composite membranes made by 

dip-coating the substrate polymer [9, 10, 11] or co extrude 

spinning  process [12, 13].  

The asymmetric membrane manufacturing processes that 

have been discussed above are categorized as the standard 

procedures. To obtain defect free PSf membrane, it can also 

be made from dense PSf membranes by supercritical CO2 

process [14]. This process involves chloroform as a solvent. 

Chloroform was added to one side of the dense film then the 

film was immediately transferred into a high-pressure vessel 

and supercritical CO2 was introduced and expanded. This 

process allows a very-controlled thickness of both the 

porous and dense layer. Factors affected those thickness are 

chloroform/Psf mass ratio, SCCO2 density, and 

depressurization rate of SCCO2. Due to difficulties to make 

defect free and food performance membrane, many studies 

about additional treatments in manufacturing processes have 

been conducted.  Those treatments can be divided into two 

groups; first group is treatment during the manufacturing 

process of the membrane and the second group is treatments 

after the membrane is formed (post-treatments). To avoid 

defects formation during the manufacturing process of 

membranes, Shojaie et al. [15] proposed the usage of 

electric field. During the membrane manufacture, an 

optimum electric field, 2.2 kV/cm a.c., was maintained 

constant. The treated membranes show the average number 

density of defect decrease. In contrast, the total defect area 

is increase.  

Gas separation membrane can be given several post-

treatments to be modified physically or chemically and 

improve their separation characteristic [16]. Ilconich et al. 

[17] have studied the effect of ion beam irradiation on the 

structure and properties of asymmetric PSf membrane. The 

treated membranes possessed lower permeance and 

selectivity than those made conventionally. The energy used 

in this study was too high so it penetrates to the sublayer 

structure of the membrane so it caused a collapse of the 

porous sublayer structure and forms a thick non-selective 

resistance layer. Another study involve molecular bromine 

to form charge-transfer complex with unpair electrons along 

the PSf backbone. The molecular bromines in the treated 

membranes alter the free volume in such way so they 

achieve 100% selectivity increase with only 36% reduction 

in CO2 permeability. The stability of those membranes was 

inconsistent so this treatment has not proved to be able to 

produce industrial membranes yet. Choi et al. [18] used 

ozone to oxidize and change the chemical structure of PSf 

membranes. The membranes were exposed to ozone 

containing oxygen for a certain time and those treated 

membranes show a significant increase of CO2/CH4 

selectivity with CO2 permeability decrease. Another study 

conducts surface fluorination of PSf asymmetric 

membranes. Those membranes only need to be exposed to 

the trace concentration of fluorine gas for several minutes to 

increase the CO2/CH4 selectivity and decrease the CO2 

permeability [19, 20].  
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Table 1 Performance of PSf membranes made based on Pinnau and Koros formulation 
a
 Forced convective residence time THF as a volatile 

Membrane 

type 

P/l CO2 

(GPU) 

P/l CH4 

(GPU) 
Selectivity 

Shear rate 

(/s) 
FCRTa (s) Coating Reference 

Flat sheet 11.41 0.36 32.63 367 20 v 21 

Flat sheet 13.91 0.42 33 
   

22 

Hollow Fiber 89 2.27 39.5 9710 0.71 
 

23 

Hollow Fiber 32.4 0.5 65.5 9710 0.71 v 24 

Hollow Fiber 54 1.39 39.1 8838 0.475 
 

25 

 

Table 2 Intrinsic permeation properties of dense PSf [22] 

 

Permeability coefficient x 1010 

[cm3(STP)cm/s cm cmHg] Intrinsic 

selectivity 
CO2 CH4 

4.5 0.16 28.1 

 

3. Membrane formulations and manufacturing 

parameters 
Membrane formulation is a very crucial step to make a 

defect free and low resistance membrane for CO2/CH4 

separation. There are many aspects involve in the membrane 

formulation such as polymer concentration, influence of 

solvent ratio, effect of shear rate, influence of gelation media 

and conditions, effect of solvent evaporation condition, and 

additives. Many researches were done to find the optimum 

PSf membrane formulation. A formulation that has been 

used widely to make ultra thin defect free PSf membranes 

[21, 22, 23, 24, 25, 26] was given by Pesek and Koros [27]. 

Performances of those membranes are given in Table 1. The 

optimized polymer solution in dry/wet process consists of 

22% PSf, 31.8% solvent, 31,8% DMAc as a less volatile 

solvent, and 14,4% ethanol as a nonsolvent.  

The selectivity and permeability of the membranes in Table 

1 are higher than the intrinsic selectivity of PSf as given in 

Table 2, so the defect free PSf membranes can be obtained 

by dry/wet process and Pinnau and Koros formulation. 

Beside defect free, this process and formulation, when 

combined with proper manufacturing parameters produce 

membrane which performance exceeded Robeson’s upper 

bound as shown in Fig.2. To get a comprehensive 

understanding about how those parameters can affect the 

membrane performance, explanations are given below.  

3.1 Polymer concentration  

Optimum polymer concentration of polymer solution has to 

be determined in order to achieve defect free and thin 

selective layer for CO2/CH4 separation process. Membrane 

casted from a dilute polymer solution produces a thin and 

porous selective layer that promotes high value of permeance 

but low selectivity. In contrast, higher polymer concentration 

in polymer solution leads to a denser and thicker selective 

layer that promotes higher selectivity but lower permeance 

[28, 29]. 

 

 
 

Figure 2 Performance of dry/wet process membrane 

Table 3 Water miscible solvent for hydrophobic asymmetric 

membrane [27] 

 
Solvents Boiling point (oC) 

Acetone 56.5 

Tetrahydrofuran 65.4 

Acetonitrile 81.6 

1,4-Dioxane 101.3 

Dimethylformamide 153 

Dimethylacetamide 165.2 

Dimethylsulfoxide 189 

N-Methylpyrrolidinone 202 

γ-Butyrolactone 204.5 

2-Pyrrolidinone 245 

Interaction of solvent-polymer and nonsolvent-polymer can 

increase with increasing polymer concentration. Increase in 

solvent-polymer interaction reduces the coagulation value 

and increase in nonsolvent-polymer interaction reduces the 

dissolving power of the solvent. Those effects will promote 

delay demixing. In addition to those effects, increasing 

polymer concentration also increase the interaction of 

solvent and nonsolvent that retard diffusional exchange 

between solvent and nonsolvent, thus promote delay 

demixing too.  

3.2 Influence of solvent ratio 

In dry/wet membrane preparation process, a more volatile 

solvent introduced to the polymer solution to adjust the 

solvent evaporation and polymer coagulation well. Most 

common water miscible solvents used in hydrophobic 

asymmetric membrane are shown ini Table 3. Selection of a 

more volatile solvent is difficult due to some limitations. 
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More volatile solvent must have a good miscibility with 

water.  

Whereas good water miscible solvent usually have a high 

degree of polarity and hydrogen bonding that suppress the 

solvent volatility. More volatile solvent is then removed 

during the evaporation process and in the outermost surface 

of the membrane generates a high polymer concentration. 

The more co-solvent evaporated, the thicker the concentrated 

polymer region that lead to the thicker selective layer of the 

membrane [28] and leads to a reduction in gas permeation 

rate. Furthermore, solvent ratio (ratio of more volatile 

solvent to less volatile solvent) can alter kinetics of phase 

inversion process depend on the degree of interaction 

between polymer and the solvents. 

3.3 Effect of shear rate 

Shear rate is defined as the ratio of velocity of the casting 

knife (or dope extrusion rate in the case of HF membrane) to 

membrane thickness.  Increasing shear rate enhances 

molecular orientation in selective layer and offers a chance 

to increasing membrane selectivity [21, 24]. According to 

research by Sharpe et al. there is an optimum shear rate to 

produce defect free ultra thin PSf membrane. When the 

applied shear rate is too low, the membrane will have a thick 

selective layer while too high shear rate will produce thin 

and defective selective layer [23]. Literatures review on the 

effect of shear rate on membranes performance is shown in 

Table 4. 

 

 

Table 4 Effect of shear rate on membranes performance 

 
Membrane 

type 

Shear rate 

(/s) 

DER 

(cm3/min) 

CO2 pressure normalized flux 

(cm3(STP)/s cm2 cmHg) 

CO2/CH4 

selectivity 
Reference 

PSF FS 

220 

  

8.91 15.98 

21 275 11.7 24.99 

367 6 31.9 

PSf HF 
  

1 17.6 39.1 
24 

2.5 32.4 65.6 

PSF HF 

  

0.8333 16 23.4 

23 
1.5 19.3 25.5 

2.5 89 39.5 

3.33 61.9 12 

PSF FS 
254 

  

15.68 64.04 
37 

381 18.02 64.2 

 

3.4 Influence of gelation medium and conditions 

Gelation medium and conditions has a big influence on 

membrane structure and its gas transport properties. It is 

known that choice of gelation medium and condition can 

affect the speed of coagulation process. Mulder et al. were 

made PSf membrane by wet process and the results show 

that fast coagulation resulted in asymmetric membrane with 

thin porous selective layer while slow coagulation produced 

asymmetric membrane with dense and thick selective layer 

[30,31].  

In order to produce an ultrathin defect free asymmetric FS 

membrane, Pinnau and Koros [32] studied the effect of 

different organic gelation media in dry/wet process. 

Methanol, ethanol, and 2-propanol were used as the gelation 

media. The study showed that methanol and ethanol 

quenched membrane had higher selectivity and flux than 2-

propanol quenched membrane. The results indicate that the 

phase separation and vitrification processes occurring during 

the wet process should be as rapid as possible. Another 

study was held by Yamasaki et al [29] using dual bath 

method. The first gelation media is 2-propanol and the 

second gelation media is water. The selective layer thickness 

determined by SEM is increase with the immersion time 

increase in the first bath thus changing the immersion time 

in the first bath can control the growth of the selective layer. 

Kim et al. [33] also studied the effect of dual bath gelation 

media on the morphology of the membrane. The first bath is 

polyethylene glycol (PEG) and the second bath is water. The 

results show that there is an optimum immersion time in 

PEG which lead to the formation of defect free selective 

layer. Radovanovic et al. [34] added solvent to the gelation  

 

bath. As a result, the flux of nonsolvent across the phase 

interface is decreases with an increase of solvent 

concentration in the gelation bath because of the higher 

mass transfer resistance. 

In the making of HF membrane, the influence of gelation 

media is more complicated than in the FS membrane 

because there are two different gelation media that can be 

used; the external and internal coagulant. Wang et al. [35] 

used water as the external coagulant. The internal coagulant 

used include water, ethanol, 2-propanol, the mixture of 

water/ethanol and water/2-propanol. The results show that 

membrane made with ethanol or 2-propanol as the internal 

coagulant show low permeability and selectivity. Ethanol 

and 2-propanol is known as weak nonsolvent for PSf so the 

internal coagulation rate and coagulant diffusion are very 

slow. This tends to increase the substructure resistance and 

thus reduce the permeability and selectivity.   

3.5 Effect of solvent evaporation condition 

In dry/wet process, convective evaporation is a crucial step 

to obtain ultrathin defect free asymmetric membrane. Some 

parameters in convective evaporation step, such as duration 

and temperature can influence the gas transport properties of 

a membrane. Typically, with the increase of convective 

evaporation duration or temperature, membrane skin 

thickness is also increase [36] and it leads to a lower CO2 

permeance [25, 37]. According to Pesek and Koros [38], 10 

to 15 s evaporation time are typically allowed to form 

ultrathin defect free membrane while only 0.5 to 1 s is 

needed for HF. In the making of hollow fiber membrane, the 
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duration of solvent evaporation can also be expressed as air-

gap length. The effect of evaporation duration in HF 

membrane is more complicated than FS (flat sheet) 

membrane. Nonsolvent from the lumen side penetrated 

deeper into the fiber and as the evaporation time increase, 

the nonsolvent can erode the skin layer of the membrane, 

causing thinner skin layer and a slight decrease in 

selectivity. Literatures review on the effect of solvent 

evaporation duration on membranes performance is shown 

in Table 5. Another research by Tsai et al. [39] shows that 

the air gap length and ambient humidity have dramatic 

effect on the membrane morphology. Macrovoids in the 

membrane can disappear, reappear and redisapper with 

increasing air-gap length. 

3.6 Additives 

The addition of additive into the polymer solution is known 

to changing solvent capacity [40, 41], phase inversion 

kinetics and thermodynamic properties [42]. The most 

widely used additive is polymers such as PEG and polyvinyl 

pyrolidone (PVP). Another additive can be nonsolvent, 

inorganic salts, mineral filler, etc.  Zheng et al. studied 

effects of PEG introduction on kinetics of membrane 

formation [41]. From the experiment, it was found that PEG 

addition could enhance solution demixing 

thermodynamically and hindrance solution demixing 

rheologically. Another study gave characterization of PSf 

membrane with PEG as additive. It was seen that when 

molecular weight of PEG increases from 400 to 20000 Da, 

the mean pore size of the prepared membrane decreases, 

while the porosity and pore density increase [43].  

 

 

Table 5  Effect of solvent evaporation duration on membranes performance 

 

Membrane 
type 

FCRT (s) 
Air gap length 

(cm) 
CO2 pressure normalized flux 

(cm3(STP)/s cm2 cmHg) 
CO2/CH4 
selectivity 

selective layer 
thickness (A) 

Reference 

PSf HF 

0.214 9 19.3     

25 0.357 15 12.6 30.6 726 

0.475 20 11.9 30.9 845 

PSF FS 

5 

  

87.2 22.31 138 

21 

10 55.53 25.28 639 

15 6 31.9 929 

20 11.41 32.63 800 

30 4.44 33.2 1724 

40 10.76 33.69 2286 

50 6.71 34.54 2723 

60 6.6 32.87 3595 

PSf HF 

0.237 5 82.2 36.8 848 

23 
0.426 9 58.2 40.1 1070 

0.71 15 89 39.5 794 

0.947 20 84.4 26.3 590 

PSF FS 
15 

  
15.68 64.04 

  
37 

18 12.17 67.33 

Kang et al. studied the effect of nonsolvent addition on 

membrane morphology [44]. The nonsolvent additive was 

formic acid, water, or ethanol. The addition of nonsolvent to 

the polymer solution can bring the initial composition of the 

polymer solution nearer to the precipitation point. When a 

nonsolvent additive is added to polymer solution, it can 

decrease the dissolving power of the solvent and thus 

increase polymer-polymer interaction. By additive addition, 

the solvent concentration in polymer solution is decrease 

and the polymer chains have a smaller included volume 

because of a more tightly coiled conformation. Nonsolvent 

additive also influences the diffusion coefficient, which is a 

crucial parameter in controlling membrane morphology. 

When the diffusion coefficient of the nonsolvent is high for 

a given gelation media, the membrane consists of a smooth, 

defect free surface and macrovoid-free cross section 

regardless of the kind of the nonsolvent additive employed. 

The diffusion coefficient increases with an increase in 

nonsolvent additive concentration. 

Comparison of the effect of PEG 400, PVP, ethanol, and 

glycerol was studied by Aroon et al. [45]. Additions of  

 

additives bring the cloud point curves colder to the polymer-

(solvent-additive) axis in the following order: 

PEG<ethanol<PVP<glycerol. The CO2/CH4 separation 

factor improves in the same order of the position of the 

cloud point.  

4 Structure related transport properties  
The structure of PSf is affected the transport properties oh 

the membrane. The objective of researches effort on 

structure/property of PSf membranes is to create membranes 

with higher selectivity and permeability. Some researches 

try to fulfill this objective by change the structure of the 

commercial bisphenol A polysulfone and made polysulfone  

 

 
Figure 3 Primary chemical structure of bisphenol A PSf 

copolymer meanwhile other researches blend the bisphenol 

A PSf and inorganic material to create mixed matrix 

material [4].  
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4.1 Polysulfone structure modifications 

The primary chemical structure of bisphenol A PSf is 

presented in Fig.3. Basically, all PSf modifications intend to 

change the free volume of the PSf chain and improve the gas 

transport properties. It was found thatthe CO2 solubility 

coefficient and permeability increased with the increase in 

free volume [46]. Table 6 summarizes the results of those 

experiments. Effect of isopropylidene unit in bisphenol A 

PSf replacement was studied [48]. Aitken et al. [50] studied 

the effect of symmetry of phenylene linkages. In this study, 

the bisphenol A PSf was compared with the meta and para 

isomers of PSF, the meta and para isomers of TMPSF, and 

3,4-PSf. The gas permeability coefficient trends for CO2 are 

in a good agreement with the FFV and shows that the meta 

isomers are the less permeable but more selective materials 

due to their unsymmetrical structure. Aitken et al. [51] also 

studied the comparison of PSf, TMPSF, 4,4’-bisphenol 

(BIPSF), and corresponding polysulfones with methyl ring 

substitutions, tetramethylbiphenol polysulfone (TMBIPSF), 

and hexamethylbiphenol polysulfone (HMBIPSF). The 

results show that BIPSF and PSF have very similar transport 

characteristics due to their similar packing behavior. 

Tetramethyl substitution increases permeability while 

hexamethyl substitution does not. Pixton and Paul [52] have 

been measured CO2 and CH4 transport properties in 

adamantane containing PSf. In all cases, the gas 

permeabilities and selectivity is higher in the adamantane 

containing PSf. Effects of basic substituents on gas transport 

properties of PSf have been studied [53] and the result 

shows that gas permeability in the aryl-substituted PSf were 

lower than the unmodified PSf.  Ghosal et al. [54] studied 

the effect of aryl nitration on gas transport properties of 

PSf.The gas permeability on aryl nitration PSf is decreased 

but the selectivity shows a significant improvement. Zuniga 

et al. [55] created new PSf copolymers from bis(4-

fluorophenyl)sulfone and found that  the newly-created 

 

 

Table 6. Summary of permeability, selectivity, density, and FFV of the polymer modified membranes Permeability and 

selectivity measurement was done at 10 atm except for 
a 4 atm

 

Polymer P CO2 (Barrer) CO2/CH4 selectivity Density FFV Reference 

PSF  5.6
 

22
 

1.24 0.156 47 
  
  
  

TMPSF  21
 

 22 1.51 0.171 

DMPSF  2.1
 

 30
 

1.213 0.149 

DMPSF-Z  1.4
 

 34
 

1.227 0.136 

HFPSF  12
 

22
 

1.427 0.168 48 
  
  

PSF-F  4.5
 

24
 

1.282 0.151 

PSF-O  4.3
 

24
 

1.33 0.15 

TMPSF-F  15
 

26  1.184 0.163 49 
  TMHFPSF  72

 
24

 
1.286 0.196 

3,4-PSF  1.5
 

29  1.25 0.149 50 
  
  
  
  

PSF-P  6.8
 

20
 

1.191 0.156 

PSF-M  2.8
 

25
 

1.201 0.151 

TMPSF-P  13.2
 

22
 

1.127 0.168 

TMPSF-M  7
 

25
 

1.141 0.158 

BIPSF  5.6
 

22  1.291 0.154 51 
  
  

TMBIPSF  31.8
 

25
 

1.195 0.164 

HMBISPSF  25.5
 

27
 

1.144 0.178 

1,3-ADM PSF  7.2
 

22  1.238 0.153 52 
 2,2-ADM PSF  9.5

 
24  1.231 0.158 

PSF-NH2 (16%)  2.7 24  1.253 0.134 53 
  
  
  

PSF-NH2 (38%)  3.2 25 1.273 0.118 

PSF-CH2-NH2 (51%)  1.95 18 1.253 0.125 

PSF-CH2-imide (51%)  2.12 26 1.279 0.122 

PSF-NO2(50%)  3.4 24  1.272 0.135 54 
  
  

PSF-NO2 (98%)  2.3 29 1.306 0.121 

PSF-NO2 (192%)  1.5 30 1.353 0.113 

TM-NPSF  4.85
a 

36.7
a 

1.231   55 

HF-NPSF  4.89
a 

33.5
a 

1.364   

TMHF-NPSF  6.6
a 

30.4
a 

    

1,5-NPSF  1.6 44 1.328   56 
  
  

2,6-NPSF  1.5 41  1.328   

2,7-NPSF  1.8 36  1.339   

BPSF  3.2 27  1.514 0.156 57 
  
  

MPSF  2.2 29 1.213 0.151 

TMSPSF  15.1 16 1.126 0.167 
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polymers have superior gas transport properties compared to 

unmodified PSf.  

Aitkin and Paul [56] studied the effect of naphthalene unit 

and its isomers on gas tansport properties of PSf.  It is 

shown that the naphthalene unit increases the selectivity at 

the expense of permeability. The naphthalene unit position 

does not affect the gas transport properties significantly. The 

gas transport properties of brominated PSf membrane 

(BPSf) was examined and compared with trimethylsilylated 

bisphenol A PSf (TMSPSf), MPSf, and PSf [57]. The strong 

polarity of bromine reduces the chain packing-inhibiting 

ability. The permeability rank correlates well with FFV and 

the selectivity increases in the order: 

TMSPS<PSf<BPSf<MPSf.  Unfortunately, PSf 

modifications do not give satisfying results. The 

permeability-selectivity combination values are still far 

under the Robeson’s upper bound as shown in Fig.4. 

4.2 Copolymer membranes 

Another research to change the structure of PSf is creating 

PSf-based copolymer. The copolymer material may provide 

excellent properties of each polymer in one membrane. Poly 

(ethylene oxide) is known as a polymer that has good 

affinity with CO2 molecules [58], thereby resulting in high 

solubility-selectivity. However, pure PEO tends to create 

crystalline region which is less permeable region for CO2. 

PSf-PEO random copolymer was proposed to overcome this 

problem and produce membrane with high CO2 permeability 

as well as CO2/CH4 selectivity. In fact, the permeability of 

CO2 in PSf-PEO membrane was reduced and the selectivity 

were not high due to the bad-phase structure separation of 

the copolymer. 

 

4.3 Mixed matrix membranes 

The mixed matrix is capable to combine the processability 

of polymers with the superior gas separation properties of 

rigid inorganic materials [59]. Polymer acts as the 

continuous phase or matrix and the inorganic material acts 

as the discrete phase. Schematic of a mixed matrix 

membrane is shown in Fig.5. 

There are two kinds of inorganic material, porous and non-

porous. Porous material inorganic enhance the gas 

separation properties by molecular sieving while non-porous 

inorganic material do that by conditioned the free volume of 

 

 

 
 

Figure 4 Performance of polysulfone-modified membranes 
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the matrix. The common inorganic materials used to 

produce MMM are zeolites [60, 61, 62, 63, 64], ordered 

mesoporous silica [65, 66], nonporous silica, carbon 

molecular sieves, and carbon nanotubes [67].  

There are two major problems in the making of PSf MMM; 

the first one is inorganic material agglomeration and the 

second one is compatibility of the PSf and material 

inorganic. Both of those problems can reduce the selectivity 

of PSf MMM. To overcome the first problem, the 

composition of the inorganic material in PSf matrix should 

not be too much. Some action, such as inorganic molecular 

sizing [68], zeolite surface modification with silane [69], 

and particle functionalization [66, 70] can overcome the 

second problem.  

Table 7 resumes the gas transport properties of MMM based 

on the type of inorganic material in the literature. The 

position of PSf-inorganic material permeability-selectivity 

combination values is presented in Fig.6 and only carbon 

black and silica-based inorganic material show interesting 

properties in terms of CO2 selectivity and/or permeability. 

In Wahab et al. experiment [72], the membrane structure 

made is asymmetric membrane; different with most of 

MMM experiment that made dense membrane structure as 

the continuous phase. Mass transfer resistance in 

asymmetric membranes is smaller than dense membrane so 

the CO2 permeability can be higher. The optimum silica 

loading in this experiment is very low, 0.1%.wt. Particle 

agglomeration is unavoidable at higher silica loading and 

reduce the CO2/CH4 selectivity. 

4.4 Facilitated transport membranes 

Facilitated transport membranes comprise a carrier with a 

special affinity toward a CO2 gas molecule and this 

interaction controls the rate of transport. Wang et al. 

reported an excellent CO2/CH4 selectivity through poly(N-

vinyl-γ-sodium aminobutyrate-co-sodium-acrylate) (VSA-

SA)/PSf composite membrane [75]. VSA-SA has a 

secondary amine and a carboxylate ion, which can 

reversibly react with CO2 and thus can be expected to act as 

carriers for CO2. In experiments with a mixed gas of 50 vol 

% CO2 and 50 vol % CH4, the selectivity was 46.8 and the 

CO2 permeation rate was 9.2 x 10
-6

 cm
3
 (STP)/cm

2
s cmHg. 

Another research was held using Polyvinilamine (PVAm) as 

the selective layer [9]. The PVAm/PSf membrane was 

crosslinked by glutaraldehyde and sulfuric acid. As the 

result, the membrane posses higher CO2/CH4 selectivity and 

lower CO2 permeability. This membrane has an ideal 

 

 
 

Figure 5 Schematic of a mixed matrix membrane 

 

Table 7 MMM gas transport properties based on inorganic material type 

 

Inorganic material wt-% 
Permeability (barrer) CO2/CH4 

selectivity 
Reference  

CO2 CH4 

 Zeolite ZSM-5 

0 1.3624 0.2833 4.809 

60 10 1.513 0.3419 4.4253 

20 1.5977 0.5505 2.9023 

Zeolite 13X 

0 6.5 1.5 4.3 

62 10 6.1 0.26 23.5 

20 6.1 0.32 19 

carbon nanotube 

0 3.9 0.17 23.55 

67 
5 5.12 0.27 18.82 

10 5.19 0.28 18.41 

15 4.52 0.28 16.09 

 Silica MCM-41 

0 4.5 0.17 23 

70 
10 6.6 0.29 23 

20 7.8 0.34 23 

40 14.8 1 15 

carbon black
a 

0 86.12
 

2.1 40.98 

71 
2 76.25 2.16 35.4 

5 68.72 4.77 16.37 

10 75.12 2.44 33.73 

fumed silica 

0 78.11 2.52 31.05 

72 
0.1 90.04 2.75 32.74 

3 88.06 3.57 24.64 

10 87.69 11.8 7.43 

Silica MCM-48 

0 4.46 0.17 25.88 

73 10 8.45 0.33 25.47 

20 18.21 0.77 23.58 
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fumed silica
b
 

0 6.3 0.22 29 

74 

5 7.7 0.29 27 

10 9.3 0.38 25 

15 12.9 0.62 21 

20 19.7 1.1 18 

   
a
 Pressure normalized flux   

b
 inorganic material in volume-% 

 

separation factor of 206 and CO2 permeation rate of 3.99 x 

10
6
 cm

3
/cm

2
s cmHg. Wang et al. [76] studied gas transport 

property of polyallylamine (PAAm)-poly(vinyl alcohol) 

(PVA)/PSf composite membrane. PAAm contains amino 

group as the fixed carrier and this membrane shows 

performance that can exceed the Robeson’s upper bound 

(Fig.6). For CO2/CH4 separation, the selectivity reach 58 at 

0.1 MPa feed gas pressure with 1.95 x 10
-5

 cm
3
(STP)/cm

2
s 

KPa permeance. 

5 Commercial application 
The world market for natural gas is estimated at 

approximately US$ 22 billion annually [4] and the market 

for membrane technology is getting bigger. Membrane 

technology can minimize the size of an amine system. 

Polysulfone membrane has been used commercially in 

CO2/CH4 separation applications, in example Air Products 

PRISM membranes. Hollow fiber PRISM membranes are 

capable of withstanding differential pressure up to 1000 psi. 

Highest CO2 concentration in permeate, which is 95%, can 

be achieved from a feed containing 70% CO2. The CO2 

purity in permeate flow is decrease as the decrease of CO2 in 

the feed stream [77]. In July 2004, PRISM membrane 

technology was used in a CO2 removal system engineered 

and built by Petraco. Capacity of the plant is 8 MMSCFD 

and designed to reduce CO2 composition from 4.5% to less 

than 2%. 

 

6. Conclusions  
Abundant opportunities do indeed exist for PSf membrane 

for industrial CO2/CH4 separation; however, performance 

improvement is still needed for the existing PSf membrane. 

Membrane formulation and manufacturing parameters have 

significant impact on membrane performance. Suitable 

formulation and manufacturing parameters even can 

produce membrane with performances that exceed 

Robeson’s upper bound.  

 

PSf modification also plays important role in order to 

achieve better membrane performance. Mixed matrix and 

facilitated transport membrane show a promising future in 

CO2/CH4 separation despite of some technical barriers for 

industrial implementation. Overcome these barriers is a 

major goal to increase PSf membrane utilization in the field 

of CO2/CH4 separation.   

 

 
 

Figure 6 Performance of mixed matrix and facilitated transport membranes 
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