
IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 854-857

ISSN: 2250-3021 www.iosrjen.org 854 | P a g e

Detecting and Prevention Cross –Site Scripting Techniques

Tejinder Singh
Research Scholar (JJTU), Lecturer BFGI, Deon, Bathinda,

Abstract
Cross-Site Scripting is one of the main problems of any Web-based service. Since Web browsers support the execution of

commands embedded in Web pages to enable dynamic Web pages attackers can make use of this feature to enforce the execution
of malicious code in a user’s Web browser. To augment the users’ experience many web applications are using client side

scripting languages such as JavaScript but this growing of JavaScript is increasing serious security vulnerabilities in web

application too, such as cross-site scripting (XSS). In this paper, I survey all the techniques those have been used to detect XSS

and arrange a number of analyses to evaluate performances of those methodologies.

Keywords: cross-site scripting, injection attack, JavaScript, scripting languages security, survey, web application security.

1. Introduction

Cross-site scripting (XSS) is a type of computer security

vulnerability typically found in web applications that

enables malicious attackers to inject client-side script into

web pages viewed by other users see fig1. An exploited

cross-site scripting vulnerability can be used by attackers to

bypass access controls such as the same origin policy.

Cross-site scripting carried out on websites were roughly

80% of all security vulnerabilities documented by

Symantec as of 2007. the malicious script is granted full

access to all resources (e.g., authentication tokens and
cookies) that belong to the trusted site. Such attacks are

called cross-site scripting (XSS) attacks. Notably Facebook,

LiveJournal, MySpace and Orkut have all been hit by these

attacks. XSS attacks can be self propagating.

1.1 Cross-Site Scripting Attacks
Cross-Site Scripting attacks (XSS attacks for short) are

those attacks against web applications in which an attacker

gets control of the user‟s browser in order to execute a

malicious script (usually an HTML/JavaScript4 code)

within the context of trust of the web application‟s site. As

a result, and if the embedded code is successfully executed,
the attacker might then be able to access, passively or

actively, to any sensitive browser resource associated to the

web application (e.g., cookies, session IDs, etc.). Two main

types of XSS attacks: persistent and no persistent XSS

attacks (also referred in the literature as stored and reflected

XSS attacks).

2. Cross-site scripting attack mechanism
Users interact with a dynamic web site by clicking on links
or filling in and submitting forms, which results in a list of

name/value pairs being sent to the server in the form of an

http request. The request can contain other information such

as a list of cookies, the referrer URL, etc. In general, any

data in the request should be considered as untrusted. What

most web pages interact with, however, is the list of

name/value pairs. Within a J2EE envelopment

environment, a dynamic web page receives the input values
as Java strings by calling standard methods provided by the

Servlet or JSP container. The Java strings can be stored

and/or used to form an HTML page as the response to the

request. Problem arises when the input string values contain

characters that are considered special (markup character)

under the HTML specification. For example, suppose a

Hello Servlet takes a username input and produces an

HTML page that prints the string “Hello” followed by the

username: String username =

request.getParameter(“username”);

response.getWriter().println(“<html> Hello

”+username+“</html>”);
If the username is “foo”, the following HTML is sent to the

browser: <html> Hello foo </html> However, if username

is “foo”, the following is sent: <html> Hello foo

</html> The sub string “” as part of the username will

not be displayed as it is treated as an HTML tag. With this

observation, a malicious user can produce an input such as

“foo <script> ... </script>”, the resulting HTML would be:

<html> Hello foo <script> ... </script> </html> When a

browser receives the HTML, the browser will try to execute

the scripts between the script tags. JavaScript programs are

treated as entrusted software components that have only
access to a limited number of resources

within the browser. Also, JavaScript programs downloaded

from different sites are protected from each other using a

compartmentalizing mechanism, called the same-origin

policy. This limits a program to only access resources

associated with its origin site. Even though JavaScript

interpreters had a number of flaws in the past, nowadays

most web sites take advantage of JavaScript functionality.

The problem with the current JavaScript security

mechanisms is that scripts may be confined by the

sandboxing mechanisms and conform to the same-origin

policy, but still violate the security of a system. This can be
achieved when a user is lured into downloading malicious

JavaScript code (previously created by an attacker) from a

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 854-857

ISSN: 2250-3021 www.iosrjen.org 855 | P a g e

trusted web site. Such an exploitation technique is called a
cross-site scripting (XSS) attack.

Fig. 1- A typical cross-site scripting

2.1 Types of XSS attacks

Three distinct classes of XSS attacks exist:

DOM-based attacks, stored attacks, and reflected attacks .

In a stored XSS attack, the malicious JavaScript code is

permanently stored on the target server (e.g., in a database,

in a message forum, or in a guestbook). In a DOM-based

attack, the vulnerability is based on the Document Object

Model (DOM) of the page. Such an attack can happen if the

JavaScript in the page accesses a URL parameter and uses

this information to write HTML to the page. In a reflected
XSS attack, on the other hand, the injected code is

„„reflected‟‟ off the web server, such as in an error message

or a search result that may include some or all of the input

sent to the server as part of the request. Reflected XSS

attacks are delivered to the victims via e-mail messages or

links embedded on other web pages. When a user clicks on

a malicious link or submits a specially crafted form, the

injected code travels to the vulnerable web application and

is reflected back to the victim‟s browser. The reader is

referred to for information on the wide range of possible

XSS attacks and the damages the attacker may cause. There
are a number of input validation and filtering techniques

that web developers can use in order to prevent XSS

vulnerabilities However, these are server-side solutions

over which the end-user has no control.

3. Defense approaches
To disallow script execution in untrusted web content, a

web application might possibly take one of the following

approaches.

Content Filtering. The application may attempt to detect

and remove all scripts from untrusted HTML before

sending it to the browser.

Browser Collaboration. The application may collaborate
with the browser by indicating which scripts in the web

page are authorized, leaving the browser to ensure the

authorization policy is upheld.

Content filtering. Content filtering is otherwise known as

sanitization. This defense technique uses filter functions to

remove potentially malicious data or instructions from user

input. Filter functions are applied after user input is read by

a web application, but before the input is employed in a

sensitive operation or output to the web browser.

3.1 Cookies and cross-site scripting
A cookie, also known as a web cookie, browser cookie,

and HTTP cookie, is a text string stored by a user's web

browser. A cookie consists of one or more name value pairs

containing bits of information, which may be encrypted for

information privacy and data security purposes. The cookie

is sent as an HTTP header by a web server to a web

browser and then sent back unchanged by the browser each

time it accesses that server. A cookie can be used for

authentication, session tracking (state maintenance), storing

site preferences, shopping cart contents, the identifier for a

server-based session, or anything else that can be
accomplished through storing textual data. As text, cookies

are not executable. Because they are not executed, they

cannot replicate themselves and are not viruses. However,

due to the browser mechanism to set and read cookies, they

can be used as Spyware. Anti-spyware products may warn

users about some cookies because cookies can be used to

track people. Many web applications rely on session

cookies for authentication between individual HTTP

requests, and because client-side scripts generally have

access to these cookies, simple XSS exploits can steal these

cookies.

3.2 Cryptography

Until modern times cryptography referred almost

exclusively to encryption, which is the process of

converting ordinary information (plaintext) into

unintelligible gibberish (i.e., ciphertext)[16]. Decryption is

the reverse, in other words, moving from the unintelligible

ciphertext back to plaintext. A cipher (or cypher) is a pair

of algorithms that create the encryption and the reversing

decryption. The detailed operation of a cipher is controlled

both by the algorithm and in each instance by a key. This is

a secret parameter (ideally known only to the

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 854-857

ISSN: 2250-3021 www.iosrjen.org 856 | P a g e

communicants) for a specific message exchange context.
Keys are important, as ciphers without variable keys can be

trivially broken with only the knowledge of the cipher used

and are therefore useless (or even counterproductive) for

most purposes. Historically, ciphers were often used

directly for encryption or decryption without additional

procedures such as authentication or integrity checks.

4. Proposed method
As we stated a cookie can be stolen and the privacy of its
user can be violated. There is some solution to prevent

attackers to steal cookies by XSS attacks as mentioned

above. Although this methods maybe robust and effective

but they cannot prevent the stealing of the cookie in some

circumstances. Consider another situation in which the user

can get his (her) cookie and change some data stored in it.

For Example following Proposed Method steps are:

Fig. 2- Our proposed method

4.1 Prevention method I

The simplest (and perhaps most performance) form of

prevention for this type of attack is to restrict the valid input
to be free of characters that have special meanings under

the HTML pecification. For example, if the value of a user
input should be a number, and is validated by the web

application as such, we are sure that it cannot be used to

launch a cross-site scripting attack. A common problem in

software development is that developers tend to give too

much freedom in terms of what values an input can take.

Does an input value have to allow for characters such as <

and double/single quotes? Many developers ignore such

issues at design time or choose for unnecessary flexibility.

A reasonably restrictive input set can often greatly simplify

a program.

Prevention method II
If it is infeasible to restrict the content of the input, another

effective method is to encode/escape the user input on

output. The first point is performance. The encoding

method requires transferring a string into another where all

occurrences of HTML special characters in the original

string be replaced with their entity representation (e.g.

replace < with <). If a lot of the encoding is needed in

each generated HTML page, care should be taken to make

sure that the encoding method is performance (Java string

manipulations can be slow if not coded properly). The

second point is regarding charset. it is important to have the
correct charset set in the HTTP response header. In servlet

or JSP development, you can do the following respectively

to set the charset:

response.setContentType("text/html; charset=..."); <%@

page contentType="text/raw;charset=..." %>

Conclusion
Cross-site scripting attack is a valid security threat to

dynamic web sites. It is regarded as one of the top security
flaws existing in today‟s dynamic sites. With the attack

method becoming more mature and automated, and the fact

that more dynamic web sites are being set up, we can

expect the problem to become worse. While a number of

articles have given examples of the attack, as well as

testing, prevention, mitigation methods, this paper

attempted to focus on the prevention methods, giving more

details especially in J2EE development environments. We

hope that the technical details provided will help developers

understand and protect their applications against this attack.

One of the most prolific problems plaguing the security

sector today is Cross Site Scripting (XSS). Yet it is rarely
taken seriously. XSS exploits web application

vulnerabilities which impact on the end user, so few

application developers or their organizations pay much

attention to XSS. To develop secure web applications, you

have to avoid these three pitfalls, insufficient handling of

malicious inputs, deficiencies of native execution models,

and not enough support for enforcing same origin policies.

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 854-857

ISSN: 2250-3021 www.iosrjen.org 857 | P a g e

References
[1] Alcorna, W. Cross-site scripting viruses and worms –

a new attack vector. Journal of Network Security,

2006(7):7–8, Elsevier, July 2006.

[2] Anderson, A. and Lockhart, H. SAML 2.0 profile of

XACML v2.0. Standard, OASIS. February2005.

[3] Amit, Y. XSS vulnerabilities in Google.com.

November 2005.

http://www.watchfire.com/securityzone/advisories/12-

21-05.aspx
[4] Anupam, V. and Mayer, A. Secure Web scripting.

IEEE Journal of Internet Computing,2(6):46–55,

IEEE, 1998.

[5] Google. Docs & Spreadsheets. http://docs.

google.com/

[6] Google. Orkut: Internet social network service.

http://www.orkut.com/

[7] Grossman, J., Hansen, R., Petkov, P., Rager, A., and

Fogie, S. Cross site scripting attacks:XSS Exploits

and defense.. Syngress, Elsevier, 2007.

[8] Hallaraker, O. and Vigna, G. DetectingMalicious

JavaScript Code inMozilla. 10th IEEE International
Conference on Engineering of Complex Computer

Systems (ICECCS’05), pp.85– 94, 2005.

[9] Cook, Steven. “A Web Developer‟s Guide to Cross-

Site Scripting.” 11 Jan 2003. URL:

http://www.sans.org/rr/ papers/46/988.pdf (4 May

2004)

[10] Sun Microsystems. “Java Servlet Technology” URL:

http://java.sun.com/products/servlet/ (4 May 2004)

[11] ModSecurity: Features: PDF Universal XSS

Protection". Breach Security. Retrieved June 6, 2008.

[12] Whitfield Diffie and Martin Hellman, "New

Directions in Cryptography", IEEE Transactions on

Information Theory, vol. IT-22, Nov. 1976

http://docs/
http://www.sans.org/rr/
http://java.sun.com/products

