
IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 544-554

ISSN: 2250-3021 www.iosrjen.org 609 | P a g e

Minimization of Time & Cost Factors with Optimized Program-States

Using Exception-Handling Constructs in Java

(During Analysis and Testing of Programs)

Pawan Nagar Nitasha Soni

Department of Computer Science Department of Computer Science

 Lingaya’s University Lingaya’s University,

Faridabad, India Faridabad, India

Abstract: It has been observed that 80% of development time and a lots of memory space is spend over handling the

abnormal conditions and exceptions in any programming Environment. It also affects the cost factor of program development

also. The support for precise exceptions in optimizing Java program states, combined with frequent checks for runtime

exceptions, leads to severe limitations on the compiler’s ability to perform program optimizations that involve reordering of
instructions. This paper presents a basic framework that allows the application programmers to recognise the constraints of

application programs in instruction scheduling. We first present a formulated way for analysing the problem caused in coded

program and its related Exception-handling constructs, and a methodology, to identify the subset of program state that needs

to be preserved if an exception is thrown. This allows many spurious dependence constraints between potentially excepting

instructions (PEIs) and writes into variables to be eliminated. Our planned methodology is particularly suitable for

dynamically dispatched methods in object-oriented languages, where static analysis may be quite conservative. We then

present the first software-only solution that allows dependence constraints among PEIs to be completely ignored while

applying program optimizations, with no need to execute any additional instructions if an exception is not thrown. With a

preliminary implementation, by this we observe that for many benchmark programs, a large percentage of methods can be

optimized (while honouring the precise exception requirement) without any constraints imposed by frequent runtime

exceptions. Finally, we show that relaxing these reordering constraints can lead to substantial improvements (up to a factor of
7 out of 10 for small codes) in the performance of programs

Keywords: Optimization, Compiler-ability, instruction –scheduling, Exception-handling constructs, potentially excepting

instructions (PEIs), spurious dependence, dispatched methods, dependence constraints, abnormal situations ,protected code,

Handler-association, instruction-boosting ,potentially implicit exceptions.

I. INTRODUCTION
Java already has been embraced as a Web programming
language and is beginning to gain acceptance as a language

for general applications. In response to the acceptance and

use of this and other OO languages, compile-time analysis

and code transformations that produce optimized code for

features found in such languages (e.g., polymorphism,

exceptions, etc.) are being studied. This paper summarizes

how exceptions are used in current Java codes. The

information gathered shows that exceptions are ubiquitous

and that their use often falls into specific patterns. Among

different program statements, more of software-engineering

tasks, such as test-coverage analysis, test-case generation,

impact analysis, regression testing, static and dynamic
slicing and dynamic execution profiling (e.g., [1]) require

information about the control flow, data dependence, and

the control dependence also. Previous researches have

addressed the problems of computing such analysis

information at intra procedural level (for individual

procedures) and at inter procedural level (for interacting

procedures). Some of this research has addressed the

problems of performing analyses for programs with

transfers of control, such as continue and goto statements,

that can affect the analyses at the intra procedural level[2].

Some other research has addressed the problems of

performing analyses for programs with transfers of control,
such as exit () statements, that can affect the analyses at the

inter procedural level [3]. To be applicable to programs

written in programming languages, such as Java and C++,

however, these analysis techniques should, to the extent

possible, account for the effects of exception-handling

constructs.

A mechanism for raising exceptions and a facility for

designating protected code is provided by Exception-

handling constructs by attaching exception handlers to

blocks of code. Any type of failure to account for the

effects of exception-handling constructs in performing

analyses can result in incorrect analysis information, which
in turn can result in unreliable or inefficient software tools.

For example, a branch-coverage testing tool for C++ that

fails to recognize the flow of control (for data or execution)

among exception-handling constructs cannot adequately

measure the branch coverage of a test suite [1]. As a further

example, a slicing tool for Java that fails to recognize the

flow of control among exception-handling constructs cannot

accurately compute control and data dependence, which

may result in incorrect slices. The additional expense that is

required to perform analyses that account for the effects of

exception-handling constructs may not be justified unless
these constructs occur frequently in practice [1].

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 544-554

ISSN: 2250-3021 www.iosrjen.org 610 | P a g e

In a number of conducted studies [4] in previous research

the occurring result shows that the method or classes used in

any programming language uses some form of Exceptional-

Handling Constructs most of the times. These results

provide support for our belief that, in practice, the use of

exception-handling constructs (mostly in Java programs) is

significant enough that it should be considered during

various analyses. Recently, several researchers have

considered and observed the effects of exception-handling

constructs on various types of analyses. One approach

constructs control-flow representation for exception-
handling constructs, and uses the representation to perform

data-flow analysis [5]. Another approach considers the

control flow caused by exceptions while performing points-

to and data-flow analysis [6]. Some other research has

analyzed the flow of exceptions, and built tools to facilitate

understanding of the exceptional behaviour of programs [7].

Due to this reason the Exception-Handling mechanism has

become a necessary way for handling abnormal situations in

software development, especially since the Java language

came in the existence, where exceptions are part of the

language, libraries and frameworks. In the Java exception-
handling paradigm, an exception can be raised explicitly

through a throw statement, or implicitly, through a call to a

library routine or by the runtime environment. The main

concern behind the popularity of this mechanism the

developers need not to be aware of exceptional situations

throughout the entire development process (starting from

modelling end of development of a software project to till

the implementation end).

An Overview of effect of Exception-Handling Constructs

on various analysis and testing techniques

This section posse an overview of exception-handling

constructs in Java. For this the language model; details of

the Java language can be found in Reference [8].

In Java, an exception is an object: each exception is an

instance of a class that is derived from the class

java.lang.Throwable. In a program an exception can be

raised at any point through a throw statement. The

expression associated with the throw statement denotes the
exception object. A throw statement can appear anywhere in

the program—it may or may not be enclosed in a try

statement and the expression can be a variable (e.g., throw

e), a method call (e.g., throw m()), or a new instance

expression (e.g., throw new E()).

A try block contains statements whose execution is

monitored for exception occurrences. A catch block, which

may be associated with each try block, is a sequence of

catch clauses that specify exception handlers. Each catch

clause specifies the type of exception it handles, and

contains a block of code that is executed when an exception
of that type is raised in the associated try block. A catch

clause also specifies a variable that is initialized with the

handled exception, and whose scope is limited to the block

of code for that catch clause. A try statement can have a

finally block. The code in a finally block is always executed,

regardless of how control transfers out of the try block.

Control may exit a try block by reaching the last statement

in the try block, through an exception that may or may not

be handled in the associated catch block, or because of

break, continue, or return statements.

Java follows the non-resemble model of exception handling:

after an exception is handled, control does not return to the

point at which the exception was raised, but continues at the

first statement following the try statement where the

exception was handled. A Java exception can be propagated

up on the call stack: if a method raises but does not handle

an exception, the exception is re-raised in the context of the

caller of that method [1] [2].

Due to an efficient and reliable Exception-Handling

mechanism Java continues to gain importance as a popular

object-oriented programming language for general-purpose

programming [8]. Although some aspects of Java, such as

strong typing, simplify the task of program analysis and

optimization, other aspects, such as support for precise

exceptions, can hamper program analysis and optimizations.

The Java language specification requires that exceptions be

precise, which implies that;

1. Exception(s) must be thrown in the same order as

specified by the original (un-optimized) program; and

2. When an exception is thrown, the program state

observable at the entry of the corresponding exception

handler must be the same as in the original program [9].

To satisfy the precise exception requirement, Java compilers
disable many important optimizations across instructions

that may throw an exception (we refer to these potentially

excepting instructions as PEIs [10]). This hampers a wide

range of program optimizations such as instruction

scheduling, instruction selection (across a PEI), loop

transformations, and parallelization. Furthermore, PEIs are

quite common in Java programs – frequently occurring

operations such as reads and writes of instance variables,

array loads and stores, method calls, and object allocations

may all throw an exception. Hence, the ability of the

compiler to perform any program transformation that

requires instruction reordering is severely limited, which
impedes the performance of Java programs. This paper

presents a basic methodology to optimize program

transformations in the presence of precise exception.
Exception handling is common in Java programs for the

Web, but it is also true that exceptions will play a significant

role in general purpose applications. The use of exceptions

in general applications is due to several emerging trends.

Key among these are: the development of automated

systems with complex control paths, and the shift toward

exception-based programming paradigms seen in most

introductory language and data-structures texts.

II. RELATED WORK
There is much previous research relevant to this work in:

fault-injection testing, dataflow testing coverage metrics,

exception-handler analysis and compilation, points-to

analysis (for reference variables) and infeasible path

analysis. Choi and colleagues [5] describe an intra

procedural control-flow representation called the factored

control-flow graph (FCFG) to analyse efficiently programs
written in languages, such as Java, that may have frequently

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 544-554

ISSN: 2250-3021 www.iosrjen.org 611 | P a g e

occurring exceptional control flow. The FCFG represents

exceptional control flow caused by both explicit and

implicit exceptions. For explicit exceptions, the approach

creates edges that are similar to the edges created in our

approach. For implicit exceptions, however, the approach

does not create edges from each potentially exception-

throwing instruction (PEI) because such instructions occur

very frequently. Instead, the approach merges several such

instructions in the same basic block, and creates factored

control-flow edges from the basic block to catch handlers to

summarize the exceptional control flow for that basic block.
The approach creates one factored edge for each type of

implicit exception that can be raised by the statements in a

basic block. The approach derives the target of the implicit

exceptional exits from each PEI in a basic block on demand.

Choi and colleagues also describe modifications to data-

flow analysis techniques, such as reaching-definition and

live-variable analysis, that allow the techniques to work

correctly on the FCFG. That work differs from ours in

several ways. First, the work does not model the

propagation of exceptions across methods. Although Choi

and colleagues discuss alternative representations for inter
procedural control flow, their current tool does not construct

inter procedural representations. Second, the work does not

describe the behaviour of, and representations for, finally

blocks. Third, the work does not discuss issues relating to

inferring exception types, and how they affect precision of

the FCFG and the analyses performed on the FCFG. Finally,

the scope of the work is limited to data-flow analysis, and it

does not consider the effects of exceptions on control

dependence, slicing, and structural testing. Chatterjee and

Ryder [6] describe an approach to performing points-to

analysis that incorporates exceptional control flow in

languages such as Java. Their approach derives the
exceptional control flow during the points-to analysis, and

does not represent it explicitly in an inter procedural

control-flow graph. Their approach does not consider

implicit exceptions. In subsequent work [11], Chatterjee and

Ryder provide an algorithm for computing definition- Use

pairs that arise because of exception variables, and along

exceptional control-flow paths. In this work, however, they

ignore the control flow within finally blocks.

Chatterjee and Ryder do not describe representations for

exceptional control flow, and the scope of their work is

limited to points-to and data-flow analysis. Schaefer and
Bundy [12] analyze the flow of exceptions in Ada programs,

and extract information that describes how exceptions are

propagated across modules. They define several relations

that let them specify formally the set of exceptions

propagated by different blocks of code. The goal of their

analysis is to identify potential violations in

the code of application-specific guidelines that govern the

usage of exception handling. Robillard and Murphy [13]

have similar goals for Java programs. They describe a tool

that extracts the flow of exceptions in a Java program, and

generates views of the exception structure. These views

enable a developer to reason about the flow of exceptions
across modules, and identify program points where

exceptions are caught unintentionally, or where finer-

grained exception handling may be possible. The tool

extracts potential implicit exceptions by examining module

interface and documentation. The techniques described by

both Schafer and Bundy [12] and Robillard and Murphy [13]

omit reporting several common implicit exceptions because

including them can generate too much information, which

adversely affects the usability of their tools. Their

techniques are primarily intended for program

understanding and detection of inconsistencies in coding.

Therefore, they do not consider the effects of exceptions on

various program-analysis techniques and testing. Using our

control-flow representations, we can generate information
that is similar to the information generated by their

techniques. Melski and Reps [14] present techniques for

inter procedural path profiling, and briefly discuss how path

profiles for inter procedural exceptional control flow may be

generated. Their work neither describes representations for

exceptional control flow, nor analyses the effects of

exceptional control flow on program-analysis techniques.

Other researchers have addressed the problem of computing

accurate slices for programs that contain arbitrary intra

procedural control flow [15], [16], [17]. Such control flow is

caused by intra procedural goto statements and statements
such as break and continue. Because statements, such as

break and continue, neither control other statements nor use

data values, they are never included in a slice. References

[15], [16], [17] present solutions in which the statements are

included in the slices, when necessary. The same problem

can occur in the presence of exception-handling constructs:

statements, such as throw and catch can be excluded from

slices. Our slicing technique for handling constructs [18]

ensures that throw and exception catch statements are

included in the slices, when necessary. Ryder and

colleagues [4] conducted a study of the usage patterns of

exception-handling constructs in Java programs. They
studied a suite of thirty-one Java programs, which contained

from two to 2,096 methods. They examined 10,161 methods,

and found that, on average, 16% of the methods contained

either a throw statement or a try statement. Our subjects

contain four of the subjects that were included in their study.

For those four subjects, our results are consistent with theirs.

Their study thus offers further evidence to support our belief

that exception-handling constructs are used frequently in

Java programs.

III. PROBLEM FORMULATION
The problem formulation of the proposed work mainly

depends on the different exceptional-handling constructs. A

particular exceptional-handling construct is a formulation of

following blocks in the respect of completeness of its

functionality (Figure 1):-

A. Problem

This block specifies that the particular exceptional handling

construct defined or constructed for which problem (i.e.
exception or error).

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 544-554

ISSN: 2250-3021 www.iosrjen.org 612 | P a g e

Figure 1: Formulation blocks of EH-Construct

The problem of debugging optimized programs also has

some similarities with optimizing programs in the presence

of exceptions, in that the notion of preserving the currency

of variables at a breakpoint [23] is similar to that of

preserving program state at exception points. Holzle et al.
[24] restrict optimizations across interrupt points and use

dynamic de-optimization of code to support debugging.

Other researchers have proposed various approaches to

detect variables whose value may not be current at a

breakpoint due to program optimizations [25,26] and

possibly recovering the original value of variables that are

not current [26]. In contrast, our work must ensure that the

value of each relevant variable is ―current‖ at an exception

point, and focus on determining the minimal set of such

relevant variables. Furthermore, we deal with the problem

of ensuring the correct ordering of exceptions (without

adversely affecting program optimizations), which does not
occur in the context of debugging optimized programs.

B. Representation

This block specifies how a particular EH-Construct

represent semantic (including throw statement and try, catch

or finally blocks).

We can use a form of program dependence graph [20] to
model control and data dependences in the program, with a

special representation for exception-related dependences.

This representation exploits ideas from the factored control-

flow graph (FCFG) [22] to model control flow due to

exceptions. The FCFG representation does not terminate

basic blocks at PEIs, which results in larger basic blocks and

fewer edges than a regular control flow graph. The low level

intermediate representation (LIR) of the Jalapeno

optimizing compiler [19] we employ for our optimization

uses condition registers to represent the exception-

conditional dependences. An instruction that is exception-

conditionally dependent on exception-check instructions

should execute only if none of these exception-check

instructions indicates that an exception should be thrown.

C. Analysis

This block specifies weather a particular newly built EH-

Construct is more efficient or not in handling a no. of

exceptions as compare to previously use those can handle

less no. of exceptions.

Exception-handling constructs belong to a class of control

structures that cause arbitrary inter procedural control flow,

and affect program-analysis techniques in similar ways.

Other examples of such control structures include inter

procedural jump statements, such as the setjmp()–longjmp()
calls in C, and halt statements, such as the exit() call in C.

Such constructs affect the flow of control across procedures,

and in doing so, affect all analyses that are derived from

control-flow analysis. The common effect of such control

structures is that, at a call site, control may not return from

the called procedure back to the call site. Instead, control

may return to a different point in the calling procedure, or

control may not return to the calling procedure at all.

Through such an effect, the control structures influence

program-analysis techniques, such as control-flow analysis,

data-flow analysis, and control-dependence analysis [1].

An EH-Construct is the basic building aspect(or reason) to

define an exception/exception-type. For e.g. The EH-

Construct behind the Null Pointer Exception is that we

cannot assign an object to a variable which is declared as

null (i.e. x= 0 ;). An EH-Construct includes the overall

semantic representation of throw statement and try, catch

and finally blocks.

IV. METHODOLOGY
Our approach relies on the following facts:-

First, the program state that needs to be preserved when an

exception is thrown is often a very small subset of the

program state that is conservatively preserved by compilers

to support precise exceptions. By identifying this subset,

many spurious constraints on instruction reordering can be

removed (Figure-2).

Second, exceptions are rarely thrown by correctly executing

Java programs, and so it is desirable to optimize the
program for this expected case even at the expense of some

inefficiency when an exception is thrown.

So for achieving our goal of optimization of program states

in analysis and testing phase of program development with

the help of Exceptional-Handling we are going to

implement following step by step evaluation:-

1. Recognise the most time consuming block of program

states during the occurrence of an error exception.

2. Recognise how these program states affect the flow of

Program execution and how we can overcome this

situation with a suitable exception-handler. The flow of
program execution decides with the help of different

Path-Finder Algorithms(For example;

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 544-554

ISSN: 2250-3021 www.iosrjen.org 613 | P a g e

Factored Control Flow Graph (FCFG) Algorithm

decides the actual path of flow of program Execution

Figure 2: States of program in execution area (when any exception occurs).

3. Then we have to recognise that the occurring

error/exception is of which type and this belong to

which class.

4. If no exception type or class is defined for the occurring

error/exception a new exception type or class have to be

defined for it and then decide which exception-Handler

is applicable for it. This process is totally based on the

EH-constructs behind the occurrence of the exception.
5. In the next step if the there is a requirement to build

new construct for handling this new kind of Exception

it should be built (or New Exception-Handler can also

be define).

6. Now we have to develop new subsets of program states

those are require to improve time factors in the

implementation phases (i.e. analysis and testing) These

can be related to the Exception-Handling Mechanism

also. These subsets can be developed by the reordering

of instructions and by removing and adding some

constraints in the subset of program states.
7. In the next step we have to put these subsets of the

program states in the complete superset of program

execution state.

8. The efficiency of program states can be checked with

the implementation of different Path-Finding

Algorithms.

Previous work on speculative code motion for superscalar

and VLIW processors [28, 31, 30, 29] has some similarities

with our work, in that it involves aggressive code motion

and recovery from exceptions thrown by speculative

instructions. The general percolation scheduling model [28]

uses hardware support for silent exceptions, but possibly

fails to detect an exception that should be thrown. The

instruction-boosting scheduling model [31] avoids this

drawback, but requires greater hardware support in the form

of shadow register files and shadow store buffers, which

hold the results of speculative instructions. Sentinel

scheduling [30] and its variants use less expensive hardware

support. Broadly, our work differs in at least two ways. First,

it does not require any hardware support, while these

approaches rely on special hardware to support silent

exceptions or to store the results of speculative instructions.

Second, (since we are looking at a different problem, that of
handling precise exceptions in Java) our work is unique in

addressing the problem of reducing the program state that

must be preserved at a possible exception point.

Automated systems are being built around legacy codes that

were designed to be controlled by humans and are now

being controlled by programs. Not surprisingly, human-

friendly codes are proving to be program-unfriendly,

necessitating the adaptation of these codes for use under

program, as opposed to human, control. These legacy codes

have been built over several years by several people, have

been validated against extensive test suites, and are now
trusted tools. Revalidation of such codes is very expensive

in time and money thus constraining adaptations of these

codes to minimize the need for revalidation. One of the most

promising strategies to facilitate the adaptation of legacy

codes under the constraint of limited revalidation is the

introduction of wrappers [32,31,33] that handle unexpected

situations. Wrappers provide a mechanism that detects when

a code has failed and passes control to a module designed to

manage the failure. Java exceptions, in conjunction with

their catch and throw operators, provide an ideal mechanism

for implementing wrappers.

The advantages of Possible Optimizations
Knowing statically the binding between a thrown exception

and the catch clause that will process the exception has two

advantages that can be exploited by an optimizing compiler:

- No runtime check is necessary to determine if the next

current method will handle the exception.

- The code contained in the corresponding catch clause can

be moved to the site where the exception is thrown,

allowing better code locality. In addition, the runtime stack

can be updated with a single multi-frame pop operation.

This optimization assumes that no statement such as a

finally occurs in any intermediate method invocation
between the throw and catch methods. This safety property

can be easily verified by a compile-time analysis.

V. CONCLUSION
Precise exception support imposes constraints on

optimizations such as instruction reordering. The novel

methodology presented in this paper enables the relaxation

of these constraints. By identifying the subset of program

state that needs to be preserved if an exception is thrown,

the framework enables the removal of many spurious
dependences between writes and potentially excepting

instructions. The static and dynamic analysis algorithms we

presented can be used separately or together to improve the

effectiveness of the analysis. Our framework further allows

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 544-554

ISSN: 2250-3021 www.iosrjen.org 614 | P a g e

aggressive optimization of the program, ignoring all

dependences between potentially excepting instructions, by

generating compensation code that is executed only when an

exception is thrown. This code ensures that the same

exception is raised as in the original un-optimized code. The

solution presented requires no hardware support and can be

implemented in both static and dynamic compilers. The

various algorithms are applicable to any language that

constrains program transformations due to dependences

involving exceptions. The preliminary implementation using

a conservative version of various algorithms(aseptically
path-Finding and control-flow algorithms) shows promising

results: using the static analysis, in 11 out of 13 benchmarks,

over 65% of methods are recognized as targets of our

aggressive optimization techniques for ignoring program

state dependences at potentially excepting instructions;

using the dynamic analysis, over 96% of the method

invocations can be aggressively optimized in 9 of those

benchmarks. We have also demonstrated that significant

speedups, up to a factor of 7 on small programs, can be

obtained using our techniques and well-known

transformations. We expect the importance of technique
presented in this paper to grow further, as Java is used more

heavily in application areas that require high performance,

and also as Java compilers become more mature, and run

into the limitations imposed by precise exception semantics

while applying aggressive optimizations that involve code

reordering. This will also posses the cost effectiveness and

minimal time requirement of a java programming

environment.

VI. ACKNOWLEDGEMENT
We thank Sandhya Nagar and Gajender Nagar for useful

technical discussions. We thank Kajal Sharma, Anamika

Sharma and Sonu Kr. Singh for their help in Java Run Time

Environment and in Programming related Issues. We also

thank Saurabh Kackar, E.H.Ansari for their useful feedback

on earlier drafts of this work and Nakul Nagar for his

support of this work.

REFERENCES
[1] Saurabh Sinha and Mary Jean Harrold‖ Analysis and

Testing of Programs With Exception-Handling

Constructs‖ IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING, VOL. 26, NO. 9, SEPTEMBER
2000.

[2] H. Agrawal, ―On slicing programs with jump

statements,‖ in Proc. of the ACM SIGPLAN ’94 Conf.

on Prog. Lang. Design and Impl., June 1994, pp. 302–

12.

[3] M. J. Harrold, G. Rothermel, and S. Sinha,

―Computation of interprocedural control dependence,‖

in Proc. of the ACM Int’l. Symp. on Softw. Testing and

Analysis, Mar. 1998, pp. 11–20.

[4] B. G. Ryder, D. Smith, U. Kremer, M. Gordon, and N.
Shah, ―A static study of Java exceptions using JSEP,‖

Tech. Rep. DCS-TR-403, Rutgers University, Nov.

1999.

[5] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar,

―Efficient and precise modeling of exceptions for

analysis of Java programs,‖ in Proceedings of PASTE

’99 ACM SIGPLAN–SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering,

September 1999, pp. 21–31.

[6] R. K. Chatterjee, B. G. Ryder, and W. A. Landi,

―Complexity of concrete type-inference in the presence

of exceptions,‖ Lecture Notes in Computer Science,

vol. 1381, pp. 57–74, Apr. 1998.

[7] M. P. Robillard and G. C. Murphy, ―Analyzing
exception flow in Java programs,‖ in Proc. of

ESEC/FSE ’99 Seventh European Softw. Eng. Conf.

and Seventh ACM SIGSOFT Symp. On the Found. of

Softw. Eng. September 1999, vol. 1687 of Lecture

Notes in Computer Science, pp. 322–337, Springer-

Verlag.

[8] J. Gosling, B. Joy, and G. Steele, The Java Language

Specification, Addison-Wesley, Reading, MA, 1996.

[9] ―Optimizing Java Programs in the Presence of

Exceptions‖Manish Gupta, Jong-Deok Choi, Michael
Hind IBM T. J. Watson Research Center, P. O. Box

218, Yorktown Heights, NY 10598.

[10] S. Mahlke, W. Chen, R. Bringmann, R. Hank, W.-M.

Hwu, B. Rau, and M. Schlansker. Sentinel scheduling:
A model for compiler-controlled speculative execution.

ACM Transactions on Computer Systems, 11(4):376–

408,November 1993.

[11] R Chatterjee and B. G. Ryder, ―Data-flow-based testing

of object-oriented libraries,‖ Tech. Rep. DCS-TR-382,

Rutgers University, Mar. 1999.

[12] C. F. Schaefer and G. N. Bundy, ―Static analysis of

exception handling in Ada,‖ Software—Practice and

Experience, vol. 23, no. 10, pp. 1157–1174, Oct. 1993.

[13] M. P. Robillard and G. C. Murphy, ―Analyzing

exception flow in Java programs,‖ in Proc. of

ESEC/FSE ’99 Seventh European Softw. Eng. Conf.

and Seventh ACM SIGSOFT Symp. On the Found. of

Softw. Eng. September 1999, vol. 1687 of Lecture

Notes in Computer Science, pp. 322–337, Springer-

Verlag.

[14] D. Melski and T. Reps, ―Interprocedural path

profiling,‖ in Proceedings of the 8th International

Conference on Compiler Construction. March 1999,
vol. 1575 of Lecture Notes in Computer Science, pp.

47–62, Springer-Verlag.

[15] T. Ball and S. Horwitz, ―Slicing programs with

arbitrary control flow,‖ in Proc. of 1st Int’l Workshop

on Automated and Algorithmic Debugging. Nov. 1993,
vol. 749 of Lec. Notes in Computer Science, pp. 206–

222, Springer-Verlag.

[16] H. Agrawal, ―On slicing programs with jump

statements,‖ in Proc. of the ACM SIGPLAN ’94 Conf.

on Prog. Lang. Design and Impl., June 1994, pp. 302–

12.

[17] J-D. Choi and J. Ferrante, ―Static slicing in the presence

of goto statements,‖ ACM Trans. on Prog. Lang. and

Sys., vol. 16, no. 4, pp. 1097–1113, July 1994.

[18] S. Sinha, M. J. Harrold, and G. Rothermel,

―Systemdependence-graph-based slicing of programs

IOSR Journal of Engineering

Apr. 2012, Vol. 2(4) pp: 544-554

ISSN: 2250-3021 www.iosrjen.org 615 | P a g e

with arbitrary interprocedural control flow,‖ in Proc. of

the 21st Int’l Conf. On Softw. Eng., May 1999, pp.

432–441.

[19] Michael G. Burke, Jong-Deok Choi, Stephen Fink,
David Grove, Michael Hind, Vivek Sarkar, Mauricio J.

Serrano,V. C. Sreedhar, Harini Srinivasan, and John

Whaley. The Jalape˜no dynamic optimizing compiler

for Java.In ACM 1999 Java Grande Conference, pages

129–141, June 1999.

[20] Craig Chambers, Igor Pechtchanski, Vivek Sarkar,

Mauricio J. Serrano, and Harini Srinivasan.

Dependence analysis for Java. In 12th

InternationalWorkshop on Languages and Compilers

for Parallel Computing, August 1999.

[21] P. Chang, S. Mahlke, W. Chen, N. Warter, and W.-M.

Hwu. IMPACT: An architectural framework for

multipleinstruction-issue processors. In Proc. 18th

International Symposium on Computer Architecture,

pages 266–275,1991.

[22] Jong-Deok Choi, David Grove, Michael Hind, and

Vivek Sarkar. Efficient and precise modeling of

exceptions for the analysis of Java programs. In ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering, September 1999.

[23] John Hennessy. Program optimization and exception

handling. In 8th Annual ACM Symposium on the

Principles of Programming Languages, pages 200–206,

1981.

[24] U. Holzle, C. Chambers, and D. Ungar. Debugging

optimized code with dynamic deoptimization. In

SIGPLAN ’92 Conference on Programming Language

Design and Implementation, San Francisco, CA, June

1992.

[25] M. Cooperman. Debugging optimized code without

being misled. ACM Transactions on Programming

Languagesand Systems, 16(3):387–427, 1994.

[26] D. Dhamdhere and K. Sankaranarayanan. Dynamic

currency determination in optimized programs. ACM
Transactions on Programming Languages and Systems,

20(6), November 1998.

[27] P. Chang, S. Mahlke, W. Chen, N. Warter, and W.-M.

Hwu. IMPACT: An architectural framework for
multipleinstruction-issue processors. In Proc. 18th

International Symposium on Computer Architecture,

pages 266–275,1991.

[28] K. Ebcioglu and E. Altman. DAISY: Dynamic

compilation for 100% architectural compatbility. In
Proc. 24th International Symposium on Computer

Architecture, pages 26–37, June 1997.

[29] S. Mahlke, W. Chen, R. Bringmann, R. Hank, W.-M.

Hwu, B. Rau, and M. Schlansker. Sentinel scheduling:

A model for compiler-controlled speculative execution.
ACM Transactions on Computer Systems, 11(4):376–

408, November 1993.

[30] M.D. Smith, M.S. Lam, and M.A. Horowitz. Boosting

beyond static scheduling in a superscalar processor. In

Proc. 17th International Symposium on Computer

Architecture, pages 344–354,May 1990.

[31] J. Keane. Knowledge-based Management of Legacy

Codes for Automated Design. PhD thesis, Rutgers

University, October 1996.

[32] J. Keane and T. Ellman. Knowledge-based re-
engineering of legacy programs for robustness in

automated designs. In Proceedings of the Eleventh

Knowledge-Based Software Engineering Conference,

1996.

[33] Andrew Gelsey, Don Smith, Mark Schwabacher,
Khaled Rasheed, and Keith Miyake. A search space

toolkit. Decision Support Systems - special issue on

Unication of Arti_cial Intelligence with Optimization,

18:341-356, 1996.

Pawan Nagar

M.Tech. CSE (Lingaya’s University,

Faribabad)

B.E., CSE (LIMAT, Faridabad)
Diploma, ECE (G.P. Nilokheri, Karnal)

 Nitasha Soni Asst. Professor, Dept. of
 CSE (Lingaya’s University, Faridabad)

