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Abstract: It has been observed that 80% of development time and a lots of memory space is spend over handling the 

abnormal conditions and exceptions in any programming Environment. It also affects the cost factor of program development 

also. The support for precise exceptions in optimizing Java program states, combined with frequent checks for runtime 

exceptions, leads to severe limitations on the compiler’s ability to perform program optimizations that involve reordering of 
instructions. This paper presents a basic framework that allows the application programmers to recognise the constraints of 

application programs in instruction scheduling. We first present a formulated way for analysing the problem caused in coded 

program and its related Exception-handling constructs, and a methodology, to identify the subset of program state that needs 

to be preserved if an exception is thrown. This allows many spurious dependence constraints between potentially excepting 

instructions (PEIs) and writes into variables to be eliminated. Our planned methodology is particularly suitable for 

dynamically dispatched methods in object-oriented languages, where static analysis may be quite conservative. We then 

present the first software-only solution that allows dependence constraints among PEIs to be completely ignored while 

applying program optimizations, with no need to execute any additional instructions if an exception is not thrown. With a 

preliminary implementation, by this we observe that for many benchmark programs, a large percentage of methods can be 

optimized (while honouring the precise exception requirement) without any constraints imposed by frequent runtime 

exceptions. Finally, we show that relaxing these reordering constraints can lead to substantial improvements (up to a factor of 
7 out of 10 for small codes) in the performance of programs 

 

Keywords: Optimization, Compiler-ability, instruction –scheduling, Exception-handling constructs, potentially excepting 

instructions (PEIs), spurious dependence, dispatched methods, dependence constraints, abnormal situations ,protected code, 

Handler-association, instruction-boosting ,potentially implicit exceptions. 

 
 

I. INTRODUCTION 
Java already has been embraced as a Web programming 
language and is beginning to gain acceptance as a language 

for general applications. In response to the acceptance and 

use of this and other OO languages, compile-time analysis 

and code transformations that produce optimized code for 

features found in such languages (e.g., polymorphism, 

exceptions, etc.) are being studied. This paper summarizes 

how exceptions are used in current Java codes. The 

information gathered shows that exceptions are ubiquitous 

and that their use often falls into specific patterns. Among 

different program statements, more of software-engineering 

tasks, such as test-coverage analysis, test-case generation, 

impact analysis, regression testing, static and dynamic 
slicing and dynamic execution profiling (e.g., [1]) require 

information about the control flow, data dependence, and 

the control dependence also. Previous researches have 

addressed the problems of computing such analysis 

information at intra procedural level (for individual 

procedures) and at inter procedural level (for interacting 

procedures). Some of this research has addressed the 

problems of performing analyses for programs with 

transfers of control, such as continue and goto statements, 

that can affect the analyses at the intra procedural level[2]. 

Some other research has addressed the problems of  
 

 

 

performing analyses for programs with transfers of control, 
such as exit () statements, that can affect the analyses at the 

inter procedural level [3]. To be applicable to programs 

written in programming languages, such as Java and C++, 

however, these analysis techniques should, to the extent 

possible, account for the effects of exception-handling 

constructs. 

A mechanism for raising exceptions and a facility for 

designating protected code is provided by Exception-

handling constructs by attaching exception handlers to 

blocks of code.  Any type of failure to account for the 

effects of exception-handling constructs in performing 

analyses can result in incorrect analysis information, which 
in turn can result in unreliable or inefficient software tools. 

For example, a branch-coverage testing tool for C++ that 

fails to recognize the flow of control (for data or execution) 

among exception-handling constructs cannot adequately 

measure the branch coverage of a test suite [1]. As a further 

example, a slicing tool for Java that fails to recognize the 

flow of control among exception-handling constructs cannot 

accurately compute control and data dependence, which 

may result in incorrect slices. The additional expense that is 

required to perform analyses that account for the effects of 

exception-handling constructs may not be justified unless 
these constructs occur frequently in practice [1]. 
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In a number of conducted studies [4] in previous research 

the occurring result shows that the method or classes used in 

any programming language uses some form of Exceptional-

Handling Constructs most of the times. These results 

provide support for our belief that, in practice, the use of 

exception-handling constructs (mostly in Java programs) is 

significant enough that it should be considered during 

various analyses. Recently, several researchers have 

considered and observed the effects of exception-handling 

constructs on various types of analyses. One approach 

constructs control-flow representation for exception-
handling constructs, and uses the representation to perform 

data-flow analysis [5]. Another approach considers the 

control flow caused by exceptions while performing points-

to and data-flow analysis [6].  Some other research has 

analyzed the flow of exceptions, and built tools to facilitate 

understanding of the exceptional behaviour of programs [7]. 

Due to this reason the Exception-Handling mechanism has 

become a necessary way for handling abnormal situations in 

software development, especially since the Java language 

came in the existence, where exceptions are part of the 

language, libraries and frameworks. In the Java exception-
handling paradigm, an exception can be raised explicitly 

through a throw statement, or implicitly, through a call to a 

library routine or by the runtime environment. The main 

concern behind the popularity of this mechanism the 

developers need not to be aware of exceptional situations 

throughout the entire development process (starting from 

modelling end of development of a software project to till 

the implementation end).  

 
An Overview of effect of Exception-Handling Constructs 

on various analysis and testing techniques 

This section posse an overview of exception-handling 

constructs in Java. For this the language model; details of 

the Java language can be found in Reference [8].  

In Java, an exception is an object: each exception is an 

instance of a class that is derived from the class 

java.lang.Throwable. In a program an exception can be 

raised at any point through a throw statement. The 

expression associated with the throw statement denotes the 
exception object. A throw statement can appear anywhere in 

the program—it may or may not be enclosed in a try 

statement and the expression can be a variable (e.g., throw 

e), a method call (e.g., throw m()), or a new instance 

expression (e.g., throw new E()). 

A try block contains statements whose execution is 

monitored for exception occurrences. A catch block, which 

may be associated with each try block, is a sequence of 

catch clauses that specify exception handlers. Each catch 

clause specifies the type of exception it handles, and 

contains a block of code that is executed when an exception 
of that type is raised in the associated try block. A catch 

clause also specifies a variable that is initialized with the 

handled exception, and whose scope is limited to the block 

of code for that catch clause. A try statement can have a 

finally block. The code in a finally block is always executed, 

regardless of how control transfers out of the try block. 

Control may exit a try block by reaching the last statement 

in the try block, through an exception that may or may not 

be handled in the associated catch block, or because of 

break, continue, or return statements. 

Java follows the non-resemble model of exception handling: 

after an exception is handled, control does not return to the 

point at which the exception was raised, but continues at the 

first statement following the try statement where the 

exception was handled. A Java exception can be propagated 

up on the call stack: if a method raises but does not handle 

an exception, the exception is re-raised in the context of the 

caller of that method [1] [2]. 

 
Due to an efficient and reliable Exception-Handling 

mechanism Java continues to gain importance as a popular 

object-oriented programming language for general-purpose 

programming [8]. Although some aspects of Java, such as 

strong typing, simplify the task of program analysis and 

optimization, other aspects, such as support for precise 

exceptions, can hamper program analysis and optimizations. 

The Java language specification requires that exceptions be 

precise, which implies that; 

1. Exception(s) must be thrown in the same order as 

specified by the original (un-optimized) program; and 

2. When an exception is thrown, the program state 

observable at the entry of the corresponding exception 

handler must be the same as in the original program [9]. 

To satisfy the precise exception requirement, Java compilers 
disable many important optimizations across instructions 

that may throw an exception (we refer to these potentially 

excepting instructions as PEIs [10]). This hampers a wide 

range of program optimizations such as instruction 

scheduling, instruction selection (across a PEI), loop 

transformations, and parallelization. Furthermore, PEIs are 

quite common in Java programs – frequently occurring 

operations such as reads and writes of instance variables, 

array loads and stores, method calls, and object allocations 

may all throw an exception. Hence, the ability of the 

compiler to perform any program transformation that 

requires instruction reordering is severely limited, which 
impedes the performance of Java programs. This paper 

presents a basic methodology to optimize program 

transformations in the presence of precise exception. 
Exception handling is common in Java programs for the 

Web, but it is also true that exceptions will play a significant 

role in general purpose applications. The use of exceptions 

in general applications is due to several emerging trends. 

Key among these are: the development of automated 

systems with complex control paths, and the shift toward 

exception-based programming paradigms seen in most 

introductory language and data-structures texts. 
 

II.    RELATED WORK 
There is much previous research relevant to this work in: 

fault-injection testing, dataflow testing coverage metrics, 

exception-handler analysis and compilation, points-to 

analysis (for reference variables) and infeasible path 

analysis. Choi  and  colleagues [5] describe an intra 

procedural control-flow representation called the factored 

control-flow graph (FCFG) to analyse efficiently programs 
written in languages, such as Java, that may have frequently 
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occurring exceptional control flow. The FCFG represents 

exceptional control flow caused by both explicit and 

implicit exceptions. For explicit exceptions, the approach 

creates edges that are similar to the edges created in our 

approach. For implicit exceptions, however, the approach 

does not create edges from each potentially exception-

throwing instruction (PEI) because such instructions occur 

very frequently. Instead, the approach merges several such 

instructions in the same basic block, and creates factored 

control-flow edges from the basic block to catch handlers to 

summarize the exceptional control flow for that basic block. 
The approach creates one factored edge for each type of 

implicit exception that can be raised by the statements in a 

basic block. The approach derives the target of the implicit 

exceptional exits from each PEI in a basic block on demand. 

Choi and colleagues also describe modifications to data-

flow analysis techniques, such as reaching-definition and 

live-variable analysis, that allow the techniques to work 

correctly on the FCFG. That work differs from ours in 

several ways. First, the work does not model the 

propagation of exceptions across methods. Although Choi 

and colleagues discuss alternative representations for inter 
procedural control flow, their current tool does not construct 

inter procedural representations. Second, the work does not 

describe the behaviour of, and representations for, finally 

blocks. Third, the work does not discuss issues relating to 

inferring exception types, and how they affect precision of 

the FCFG and the analyses performed on the FCFG. Finally, 

the scope of the work is limited to data-flow analysis, and it 

does not consider the effects of exceptions on control 

dependence, slicing, and structural testing. Chatterjee and 

Ryder [6] describe an approach to performing points-to 

analysis that incorporates exceptional control flow in 

languages such as Java. Their approach derives the 
exceptional control flow during the points-to analysis, and 

does not represent it explicitly in an inter procedural 

control-flow graph. Their approach does not consider 

implicit exceptions. In subsequent work [11], Chatterjee and 

Ryder provide an algorithm for computing definition- Use 

pairs that arise because of exception variables, and along 

exceptional control-flow paths. In this work, however, they 

ignore the control flow within finally blocks. 

Chatterjee and Ryder do not describe representations for 

exceptional control flow, and the scope of their work is 

limited to points-to and data-flow analysis. Schaefer and 
Bundy [12] analyze the flow of exceptions in Ada programs, 

and extract information that describes how exceptions are 

propagated across modules. They define several relations 

that let them specify formally the set of exceptions 

propagated by different blocks of code. The goal of their 

analysis is to identify potential violations in 

the code of application-specific guidelines that govern the 

usage of exception handling. Robillard and Murphy [13] 

have similar goals for Java programs. They describe a tool 

that extracts the flow of exceptions in a Java program, and 

generates views of the exception structure. These views 

enable a developer to reason about the flow of exceptions 
across modules, and identify program points where 

exceptions are caught unintentionally, or where finer-

grained exception handling may be possible. The tool 

extracts potential implicit exceptions by examining module 

interface and documentation. The techniques described by 

both Schafer and Bundy [12] and Robillard and Murphy [13] 

omit reporting several common implicit exceptions because 

including them can generate too much information, which 

adversely affects the usability of their tools. Their 

techniques are primarily intended for program 

understanding and detection of inconsistencies in coding. 

Therefore, they do not consider the effects of exceptions on 

various program-analysis techniques and testing. Using our 

control-flow representations, we can generate information 
that is similar to the information generated by their 

techniques. Melski and Reps [14] present techniques for 

inter procedural path profiling, and briefly discuss how path 

profiles for inter procedural exceptional control flow may be 

generated. Their work neither describes representations for 

exceptional control flow, nor analyses the effects of 

exceptional control flow on program-analysis techniques. 

Other researchers have addressed the problem of computing 

accurate slices for programs that contain arbitrary intra 

procedural control flow [15], [16], [17]. Such control flow is 

caused by intra procedural goto statements and statements 
such as break and continue. Because statements, such as 

break and continue, neither control other statements nor use 

data values, they are never included in a slice. References 

[15], [16], [17] present solutions in which the statements are 

included in the slices, when necessary. The same problem 

can occur in the presence of exception-handling constructs: 

statements, such as throw and catch can be excluded from 

slices. Our slicing technique for handling constructs [18] 

ensures that throw and exception catch statements are 

included in the slices, when necessary. Ryder and 

colleagues [4] conducted a study of the usage patterns of 

exception-handling constructs in Java programs. They 
studied a suite of thirty-one Java programs, which contained 

from two to 2,096 methods. They examined 10,161 methods, 

and found that, on average, 16% of the methods contained 

either a throw statement or a try statement. Our subjects 

contain four of the subjects that were included in their study. 

For those four subjects, our results are consistent with theirs. 

Their study thus offers further evidence to support our belief 

that exception-handling constructs are used frequently in 

Java programs. 

 

III.   PROBLEM FORMULATION 
The problem formulation of the proposed work mainly 

depends on the different exceptional-handling constructs. A 

particular exceptional-handling construct is a formulation of 

following blocks in the respect of completeness of its 

functionality (Figure 1):- 

 

A. Problem 

This block specifies that the particular exceptional handling 

construct defined or constructed for which problem (i.e. 
exception or error). 
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Figure 1: Formulation blocks of EH-Construct 

 

The problem of debugging optimized programs also has 

some similarities with optimizing programs in the presence 

of exceptions, in that the notion of preserving the currency 

of variables at a breakpoint [23] is similar to that of 

preserving program state at exception points. Holzle et al. 
[24] restrict optimizations across interrupt points and use 

dynamic de-optimization of code to support debugging. 

Other researchers have proposed various approaches to 

detect variables whose value may not be current at a 

breakpoint due to program optimizations [25,26] and 

possibly recovering the original value of variables that are 

not current [26]. In contrast, our work must ensure that the 

value of each relevant variable is ―current‖ at an exception 

point, and focus on determining the minimal set of such 

relevant variables. Furthermore, we deal with the problem 

of ensuring the correct ordering of exceptions (without 

adversely affecting program optimizations), which does not 
occur in the context of debugging optimized programs. 

 

B. Representation 

This block specifies how a particular EH-Construct 

represent semantic (including throw statement and try, catch 

or finally blocks). 

We can use a form of program dependence graph [20] to 
model control and data dependences in the program, with a 

special representation for exception-related dependences. 

This representation exploits ideas from the factored control-

flow graph (FCFG) [22] to model control flow due to 

exceptions. The FCFG representation does not terminate 

basic blocks at PEIs, which results in larger basic blocks and 

fewer edges than a regular control flow graph. The low level 

intermediate representation (LIR) of the Jalapeno 

optimizing compiler [19] we employ for our optimization 

uses condition registers to represent the exception-

conditional dependences. An instruction that is exception-

conditionally dependent on exception-check instructions 

should execute only if none of these exception-check 

instructions indicates that an exception should be thrown. 

C. Analysis 

This block specifies weather a particular newly built EH-

Construct is more efficient or not in handling a no. of 

exceptions as compare to previously use those can handle 

less no. of exceptions. 

Exception-handling constructs belong to a class of control 

structures that cause arbitrary inter procedural control flow, 

and affect program-analysis techniques in similar ways. 

Other examples of such control structures include inter 

procedural  jump statements, such as the setjmp()–longjmp() 
calls in C, and halt statements, such as the exit() call in C. 

Such constructs affect the flow of control across procedures, 

and in doing so, affect all analyses that are derived from 

control-flow analysis. The common effect of such control 

structures is that, at a call site, control may not return from 

the called procedure back to the call site. Instead, control 

may return to a different point in the calling procedure, or 

control may not return to the calling procedure at all. 

Through such an effect, the control structures influence 

program-analysis techniques, such as control-flow analysis, 

data-flow analysis, and control-dependence analysis [1]. 

An EH-Construct is the basic building aspect(or reason) to 

define an exception/exception-type. For e.g. The EH-

Construct behind the Null Pointer Exception is that we 

cannot assign an object to a variable which is declared as 

null        (i.e. x= 0 ;). An EH-Construct includes the overall 

semantic representation of throw statement and try, catch 

and finally blocks. 

IV.    METHODOLOGY 
Our approach relies on the following facts:- 

First, the program state that needs to be preserved when an 

exception is thrown is often a very small subset of the 

program state that is conservatively preserved by compilers 

to support precise exceptions. By identifying this subset, 

many spurious constraints on instruction reordering can be 

removed (Figure-2). 

Second, exceptions are rarely thrown by correctly executing 

Java programs, and so it is desirable to optimize the 
program for this expected case even at the expense of some 

inefficiency when an exception is thrown. 

So for achieving our goal of optimization of program states 

in analysis and testing  phase of program development with 

the help of Exceptional-Handling we are going to 

implement  following step by step evaluation:- 

1. Recognise the most time consuming block of program 

states during the occurrence of an error exception. 

2. Recognise how these program states affect the flow of 

Program execution and how we can overcome this 

situation with a suitable exception-handler. The flow of 
program execution decides with the help of different 

Path-Finder Algorithms(For example; 
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Factored Control Flow Graph (FCFG) Algorithm 

decides the actual path of flow of program Execution 

 

 

Figure 2: States of program in execution area (when any exception occurs). 

3. Then we have to recognise that the occurring 

error/exception is of which type and this belong to 

which class. 

4. If no exception type or class is defined for the occurring 

error/exception a new exception type or class have to be 

defined for it and then decide which exception-Handler 

is applicable for it. This  process is totally based on the 

EH-constructs behind the occurrence of the exception.  
5.  In the next step if the there is a requirement to build 

new construct for handling this new kind of Exception 

it should be built (or New Exception-Handler can also 

be define).  

6. Now we have to develop new subsets of program states 

those are require to improve time factors in the 

implementation phases (i.e. analysis and testing) These 

can be related to the Exception-Handling Mechanism 

also. These subsets can be developed by the reordering 

of instructions and by removing and adding some 

constraints in the subset of program states. 
7. In the next step we have to put these subsets of the 

program states in the complete superset of program 

execution state. 

8. The efficiency of program states can be checked with 

the implementation of different Path-Finding 

Algorithms. 

Previous work on speculative code motion for superscalar 

and VLIW processors [28, 31, 30, 29] has some similarities 

with our work, in that it involves aggressive code motion 

and recovery from exceptions thrown by speculative 

instructions. The general percolation scheduling model [28] 

uses hardware support for silent exceptions, but possibly 

fails to detect an exception that should be thrown. The 

instruction-boosting scheduling model [31] avoids this 

drawback, but requires greater hardware support in the form 

of shadow register files and shadow store buffers, which 

hold the results of speculative instructions. Sentinel 

scheduling [30] and its variants use less expensive hardware 

support. Broadly, our work differs in at least two ways. First, 

it does not require any hardware support, while these 

approaches rely on special hardware to support silent 

exceptions or to store the results of speculative instructions. 

Second, (since we are looking at a different problem, that of 
handling precise exceptions in Java) our work is unique in 

addressing the problem of reducing the program state that 

must be preserved at a possible exception point. 

Automated systems are being built around legacy codes that 

were designed to be controlled by humans and are now 

being controlled by programs. Not surprisingly, human-

friendly codes are proving to be program-unfriendly, 

necessitating the adaptation of these codes for use under 

program, as opposed to human, control. These legacy codes 

have been built over several years by several people, have 

been validated against extensive test suites, and are now 
trusted tools. Revalidation of such codes is very expensive 

in time and money thus constraining adaptations of these 

codes to minimize the need for revalidation. One of the most 

promising strategies to facilitate the adaptation of legacy 

codes under the constraint of limited revalidation is the 

introduction of wrappers [32,31,33] that handle unexpected 

situations. Wrappers provide a mechanism that detects when 

a code has failed and passes control to a module designed to 

manage the failure. Java exceptions, in conjunction with 

their catch and throw operators, provide an ideal mechanism 

for implementing wrappers. 

The advantages of Possible Optimizations 
Knowing statically the binding between a thrown exception 

and the catch clause that will process the exception has two 

advantages that can be exploited by an optimizing compiler: 

- No runtime check is necessary to determine if the next 

current method will handle the exception. 

- The code contained in the corresponding catch clause can 

be moved to the site where the exception is thrown, 

allowing better code locality. In addition, the runtime stack 

can be updated with a single multi-frame pop operation. 

This optimization assumes that no statement such as a 

finally occurs in any intermediate method invocation 
between the throw and catch methods. This safety property 

can be easily verified by a compile-time analysis. 

V.    CONCLUSION 
Precise exception support imposes constraints on 

optimizations such as instruction reordering. The novel 

methodology presented in this paper enables the relaxation 

of these constraints. By identifying the subset of program 

state that needs to be preserved if an exception is thrown, 

the framework enables the removal of many spurious 
dependences between writes and potentially excepting 

instructions. The static and dynamic analysis algorithms we 

presented can be used separately or together to improve the 

effectiveness of the analysis. Our framework further allows 
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aggressive optimization of the program, ignoring all 

dependences between potentially excepting instructions, by 

generating compensation code that is executed only when an 

exception is thrown. This code ensures that the same 

exception is raised as in the original un-optimized code. The 

solution presented requires no hardware support and can be 

implemented in both static and dynamic compilers. The 

various algorithms are applicable to any language that 

constrains program transformations due to dependences 

involving exceptions. The preliminary implementation using 

a conservative version of various algorithms(aseptically 
path-Finding and control-flow algorithms ) shows promising 

results: using the static analysis, in 11 out of 13 benchmarks, 

over 65% of methods are recognized as targets of our 

aggressive optimization techniques for ignoring program 

state dependences at potentially excepting instructions; 

using the dynamic analysis, over 96% of the method 

invocations can be aggressively optimized in 9 of those 

benchmarks. We have also demonstrated that significant 

speedups, up to a factor of 7 on small programs, can be 

obtained using our techniques and well-known 

transformations. We expect the importance of technique 
presented in this paper to grow further, as Java is used more 

heavily in application areas that require high performance, 

and also as Java compilers become more mature, and run 

into the limitations imposed by precise exception semantics 

while applying aggressive optimizations that involve code 

reordering. This will also posses the cost effectiveness and 

minimal time requirement of a java programming 

environment. 
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