
IOSR Journal of Engineering

May. 2012, Vol. 2(5) pp: 1168-1176

ISSN: 2250-3021 www.iosrjen.org 1168 | P a g e

A Study on Performance Evaluation of Peer-to-Peer Distributed

Databases

Dr. D.I. George Amalarethinam
1
, C. Balakrishnan

2

1(Director-MCA, Associate Professor, Department of Computer Science, Jamal Mohamed College (Autonomous),

Tiruchirappalli, India)

2(Assistant Professor, Department of Computer Science, St. Joseph’s College (Autonomous),Tiruchirappalli, India)

ABSTRACT
The design phase of the distributed database environment holds a vital part in affecting the performance. The Peer-

to-Peer architecture gives a great degree of hope to handle the data in an efficient manner. This work analyses a

cluster based Peer-to-Peer architecture named FlexiPeer for the distributed databases to address the fragmentation

and allocation phases of database design. This work takes the inspiration of the previous works done based on the

predicate based fragmentation and introduces the clustering approach for drafting the database architecture and to

allocate the fragmented data across the sites. The performance of the FlexiPeer is studied in a simulated environment.

Keywords: Clustering approach, FlexiPeer, Fragmentation and allocation, Peer-to-Peer databases, priority factor values

1. Introduction
At the heart of the idea of a distributed system, Distributed

database is the distribution of data over multiple sites and is

a collection of multiple, logically interrelated databases

distributed over a computer network [1]. There will be a

possibility of improved response times to queries and

upgrading system capacity or performance incrementally.

Distributed database design is one of the major research

issues in the area of distributed database system. A

technique of breaking up the database into logical units,

which may be assigned for storage at the various sites

called data fragmentation and allocation.
Fragmentation can be horizontal, vertical and mixed or

hybrid. Allocation describes the process of assigning each

fragment or each copy of a fragment to a particular site in

the distributed system [1].

Peer-to-Peer (P2P) based distributed database technology

has no strict definition; it is generally described as having a

structure that is contrast to the traditional client-server

model. Each node in the network acts as both client and

server, requesting data from neighboring nodes as well as

routing and serving data for others. The nature of P2P

technology makes it well suited for storing multiple copies

of data between several nodes, in turn offering reliable
access to data and distributing the load of requests. All the

features inherent in P2P technology promise a network that

is dynamic, scalable and reliable.

Of the several issues in P2P based distributed database

environment, the basic and first and foremost problem is to

know the location of neighbors [2]. Without the knowledge

of the neighbors the unsuccessful queries cannot be

transformed across the network to find the appropriate data

to execute the query.

The above narrated problem is addressed in two ways in

general file sharing systems, such as, Chord and Freenet.
Since, the Chord and Freenet are widely used in data

sharing P2P environments, the characteristics of the two

concepts encourage the research directions to include Chord

and Freenet in Database environment. Chord was designed

to create a network that is reliable, scalable, and

decentralized [3]. Chord uses consistent-hashing, a method

that evenly distributes hash keys to nodes. Each node

contains a finger table of its neighbors and their possible

assignments of keys. Nodes are organized in a ring

topology, maintaining keys of values that are less than or

equal to the assigned node value and greater than the value

of the node’s predecessor. Unsuccessful queries are

forwarded around the ring to successive nodes, which

allows each node only track on the order of ‘log N’

neighbors, where ‘N’ is the total number of nodes in the

network.
The design goals of Freenet were to create a completely

decentralized, scalable peer-to-peer application allowing

anonymous input, retrieval and storage of data [4]. Unlike

Chord, Freenet assigns hash keys to specific items (data).

Like Chord, Freenet nodes contain a table of information

about their neighbors.

In this paper cluster based architecture of the distributed

databases to address the fragmentation and allocation

phases of database design has been introduced. This work

takes the inspiration of the previous works done based on

the predicate based fragmentation and introduces the

clustering approach for drafting the database architecture
and for allocating the data across the sites.

The paper is organized as follows. The next section of this

work presents literature reviews of fragmentation,

allocation, clustering, Chord and Freenet. Section III

describes the FlexiPeer architecture. In Section IV

implementation details are presented. The Section V

illustrates the evaluation of simulation of Chord and

FlexiPeer architectures. Finally Section VI concludes the

paper with future research directions.

2. Literature review

Most of the research related to fragmentation and allocation

has been carried out in the context of relational databases.

Navathe [5] has proposed a mixed fragmentation method

for distributed database design at the initial level and a

mixed fragmentation tool to partition relations using a grid

IOSR Journal of Engineering

May. 2012, Vol. 2(5) pp: 1168-1176

ISSN: 2250-3021 www.iosrjen.org 1169 | P a g e

approach. It is based on a graph theoretic algorithm which

clusters a set of attributes and predicates into a set of

vertical and horizontal fragments, respectively. Karlapalem

and Li [6] made a study on different types of partitioning

schemes in object oriented databases. Horizontal

fragmentation algorithm for distributed deductive database

systems has been proposed by Lim et. Al [7]. This

algorithm handled the horizontal fragmentation by

clustering all the tuples in a base relation that are used by
queries. Lim and Yiu-Kai Ng [8] presented different

approaches for vertical fragmentation of relations and

allocation of rules and fragments. It helps to maximize

locality of query evaluation and minimizes communication

cost and execution time during processing the queries.

Zhou and Sheng [9] tried to solve the vertical fragmentation

problem and fragment allocation problem together.

Bellatreche et al., [10] made a study on horizontal

fragmentation in the object-oriented model. Huang and

Chen [11] proposed a simple and comprehensive model for

a fragment allocation problem. Also, they have developed
Huang and Chen, two heuristics algorithms to find an

optimal allocation of the fragments.

Ahmad et al., [12] have addressed the allocation of

fragments problem in distributed database system. They

have developed a query driven data allocation approach.

Various algorithms based on evolutionary computing

paradigm have also been proposed by them. Du et al., [13]

have proposed new algorithms based on a new

measurement to evaluate togetherness among the attributes

in a relation. An incremental re-fragmentation method was

proposed by Ezeife and Dey [14] and Darabant et al., [15]

to define new fragments more quickly. It helps to save
system resources and make data to be easily available for

network and web access. Grebla et al., [16][17] focused

only on allocation problem of fragments. They used mobile

intelligent agents to provide a solution in allocation

problem for distributed database systems. They have also

proposed a new method for horizontal partitioning of

classes with complex attributes and methods, using AI

clustering techniques.

Darabant et al., [18,19,20,21] proposed some methods for

horizontal fragmentation of objects with complex attributes

and some methods were based on different similarity
measures applied in hierarchical agglomerative clustering

algorithms. They rely on AI clustering techniques for

grouping objects into fragments. Hababeh et al., [22]

proposed a method for allocating fragments to a cluster.

Sites in the distributed database systems are grouped based

on their communication cost. A method for incrementally

maintaining the primary horizontal fragments of an object

oriented database has been proposed by Campan et al., [23].

Abdalla and Marir [24] made a comparative study on

vertical partitioning algorithms to find the most efficient

vertical partitioning schema. Ma et al., [25] addressed
vertical fragmentation and allocation simultaneously in the

context of the relational model. A heuristic approach to

vertical fragmentation, which uses a cost model is followed

and is targeted at globally minimizing the costs. Hui Ma

and Markus Kirchberg [26] presented a cost-based

approach for horizontal and vertical fragmentation.

Algorithms were presented for each of the fragmentation

techniques used in distribution design to obtain

fragmentation schema, which would improve the system

performance.

Eltayeb Salih Abuelyaman [27] proposed a vertical

partitioning algorithm for improving the performance of

database systems without the knowledge of empirical data.

The algorithm uses the number of occurrences of an

attribute in a set of queries rather than the frequencies of
queries accessing these attributes. John and Saravanan [28]

proposed a new algorithm for vertical partitioning in object-

oriented databases using intelligent agents based on

attributes and methods. Arjan Singh and K.S. Kahlon [29]

proposed a new dynamic data allocation algorithm for non-

replicated distributed database system. The proposed

algorithm reallocates data with respect to the changing data

access patterns with time constraint. This algorithm will

decrease the movement of data over the network and also

improve the overall performance of the system.

Shahidul Islam Khan and A. S. M. Latiful Hoque [30] have
proposed a new technique of fragmentation to solve the

problem of taking fragmentation decision at the initial stage

of a distributed database design, according to the attribute

locality precedence table. Nilarun Mukherjee [31] proposed

a new dynamic fragment allocation algorithm in Non-

Replicated allocation scenario incorporating the time

constraints of database accesses, the volume threshold and

most importantly the volume of data transmitted in

successive time intervals to dynamically reallocate

fragments to sites at runtime in accordance with the

changing access patterns. It was helpful to decrease the

movement of fragments over the network and data transfer
cost and improve the overall performance of the system by

dynamically allocating fragments in a most optimum and

intuitive manner. Dimovski et al., [32] presented a novel

formal approach for horizontal partitioning of relations

based on predicate abstraction.

Several works were carried out about Chord [33] only on

Network based file sharing systems. Hence, this paper tries

to employ the concept of Chord in P2P based data

management. Chord methodology was proposed to assist a

node in a P2P network to know about its neighbors using a

look up table with a layered approach and worked using
three bit identifier space. The Chord concept evaluated

using consistent hashing to assign keys to Chord nodes

[34]. An effective routing algorithm [35] was developed for

P2P overlays using small lookup paths with one-hop and

two-hop routing schemes to execute the queries without re-

routed. During the operation of P2P systems, the

maintenance bandwidth [36] is a very important issue. This

issue was analyzed using Chord and an algorithm was

analyzed to converge to a correct routing state from an

arbitrary initial condition. The operations of Chord were

examined in the process of finding neighbors in growth
restricted metrics [37], this is very useful in Internet and

vector quantization based applications. The characteristics

and performance analysis of Freenet [38,39] were explained

as an un-structured P2P network architecture.

IOSR Journal of Engineering

May. 2012, Vol. 2(5) pp: 1168-1176

ISSN: 2250-3021 www.iosrjen.org 1170 | P a g e

3. Flexi Peer Architecture

The proposed architecture for FlexiPeer follows the

clustering of sites based on the locality priority factor

factor. The block diagram of proposed architecture is

shown in Fig. 1.

Figure 1. Clustered approach for FlexiPeer architecture

As mentioned in Fig. 1 the sites are clustered with its

locality priority factor value and each cluster will be

managed by Local Cluster Administrator (LCA) and the

whole architecture is administered by Global Cluster

Administrator (GCA). The clustering process at the top

level (architecture level) is done by the GCA based on the

unique number of regions of the sites using Site

Information Table (SIT). SIT will give details about each
site. It contains information such as site ID, Locality and

Region using which clustering of sites is done. The

attributes of sites such as, Local Cluster Identification

(LCA_id), Site identification (site_id), region of the cluster

(cluster_region), Location of the site (site_location) and

type of the data stored in that site (site_type) will be

handled by LCA of the respective cluster. The global

attributes of all clusters like, Global cluster identification

(GCA_id), Local Cluster identification (LCA_id) and the

region of the cluster (cluster_region) are maintained by

GCA of the architecture.

The LCA and GCA are equipped with the functions like,
Validator, which validates the relevance of the query. The

queries that dissatisfy the criteria expected by Validator will

be rejected. Hence, wastage of processing capacity with

irrelevant queries is reduced. The LCA Resource Checker

finds the appropriate site and data within the cluster and the

GCA Resource Checker finds the respective Cluster which

owns the required data. The LCA Forwarder, will forward

the un-successful queries to GCA and GCA Forwarder will

re-direct the query to the appropriate cluster (LCA of the

cluster).

Based upon the region of the sites, the sites are categorized
by the GCA and send the values to the LCA. When the

database is submitted for fragmentation and allocation, the

GCA will fragment the records horizontally based on the

region value mentioned as one of the field of the record.

This group of records is framed as a sub-relation and is

given to the respective LCA. The particular LCA takes the

next highest priority factor value of the sub-relation (type of

data) and re-fragment the records horizontally and creates

multiple numbers of sub-relations (equivalent to the number

of unique values in the type of data). After this re-

fragmentation, the LCA compares the number of sites

within the cluster and number of sub-relations derived from

re-fragmentation, if the number of sites is more, then the

LCA will once again horizontally fragment a sub-relation

which has large number of records based on the next

highest priority factor valued attribute.

The relational algebraic notations for the fragmentation and

re-fragmentation of relation is as follows in the Equations

1,2 and 3.

Let

R be the Relation
 n be the number of sites

 ti are the tuples of the relation

 th is set of ordered tuples based on highest

priority factor value

 thl is a tuple having highest priority factor

value

thn is a tuple having next highest priority factor

value

 thm is a tuple having next highest priority factor

value

 SRi be the Sub-relations of original relation for
Clusters

RSRi be the re-fragmented relations of sub-

relation for the sites within the Cluster

NSRi be the next level re-fragmented relations

of re-fragmented relations for the newly

added sites of the Cluster

 Equation 1 is the predicate for Fragmentation of

relation into sub-relations for Clusters

SRi σ thx
(R) where i = 1…n and x = 1 (1)

 Equation 2 will be used for Fragmentation of sub-

relation into re-fragmented relations for sites

RSRi σ thy
(SR) where i = 1…n and y = 2 (2)

 Equation 3. Fragmentation of re-fragmented

relations into sub-relations for newly added sites or the

number of sites more than the number of re-fragmented

relations

NSRi σ thz
(RSR) where i = 1…n and z = 3…n (3)

After fragmentation and allocation processes,

query processing can be handled by LCA and GCA. The

working methodology of LCA, GCA and Fragments and

Sites Cluster Algorithm is given in the following sections.

3.1 LCA
The LCA in FlexiPeer architecture works in the following

mechanism. The query that requires data will be submitted

to any node of the architecture. The node is equipped with

resource analyzer, this will take responsibility of checking

the query syntax and required data is found in the particular

node or not. If a query satisfies the syntax check and data

are not found, then, that node will redirect the query to the

LCA of that cluster. The respective LCA of that node will

receive the query with its identifier and checks whether the

query comes from a node or from GCA. If the query comes

from a node, the Validator of LCA checks the query for
redundancy and relevance; this will work as a semantic

checker. If a query satisfies the requirements during

validation, it will be sent to the Resource Checker, which

owns a relation contains the information about the sites of

that particular cluster. If the Resource Checker finds the

required data within any of the sites of that particular

IOSR Journal of Engineering

May. 2012, Vol. 2(5) pp: 1168-1176

ISSN: 2250-3021 www.iosrjen.org 1171 | P a g e

cluster, it directs the query to the Executor for execution.

Then the Executor fetches the required data from the

specified site and query will be processed to publish the

result. If the query requirement fails during Resource

Checking, the Resource Checker will pass the query to the

Forwarder to forward the query to GCA for further

execution. The workflow of LCA is shown in Fig. 2.

Figure 2. Flow diagram of LCA

PSEUDO CODE FOR LCA:

LCA (query_id qi, site_id ni, flag f)

{

 li = LCA id;

 FLAG_CHECK (f)

 {
 if f = 0 // query from a node

 VALIDATOR(qi, ni);

 else

 {

 LCA_RESOURCE_CHECK (qi, ni)

//query from GCA & LCA receives query

 {

 if (data available)

 EXECUTOR (qi, ni);

// data found within cluster

 else

 FORWARDER (qi);
// data not found in cluster

 }

 }

 }

 VALIDATOR(qi, ni)

 {

let irrelevant = return (if (qi is the

copy or irrelevant query))

irrelevant0 // no redundancy

 LCA_RESOURCE_CHECK (qi, ni);

 else
 irrelevant1; display ERROR; // irrelevant query

 }

 FORWARDER (qi, li)

 {

 Forward query to GCA along with

LCA-id; // data not found in cluster

 }

}

3.2 GCA

The GCA in FlexiPeer architecture works in the following

mechanism. The GCA will receive the query with its

identifier which is given to that node for execution. The

GCA Resource Checker checks the query for redundancy

and relevance. If a query satisfies the requirements during

validation, it will be sent to the Forwarder to forward the

query to the LCA of the corresponding cluster for

execution. If it fails during validation, an error will be
created and the process will be terminated.

The workflow of GCA is shown in Fig. 3.

Figure 3. Flow diagram of GCA

PSEUDO CODE FOR GCA:

 GCA (query_id qi, LCA_id li)

 {

 GCA_RESOURCE_CHECK (qi)

 //Assumes that GCA receives

query

 {

 let li = return (respective LCA-id owns data)

GCA_FORWARDER (qi, li)

// data found in cluster

 }

 GCA_FORWARDER (qi, li)

 {

 Forward query qi to LCA li;

// data found in li

 } }

4. Cluster algorithm for fragmentation

Shahidul Islam Khan and A. S. M. Latiful Hoque [30] have

proposed a new technique of fragmentation to solve the

problem of taking fragmentation decision at the initial stage

of a distributed database. By taking their work as an

inspiration, a new architecture has been proposed by

incorporating the clustering approach for architecture

drafting. Initially horizontally fragment the relation based

on the highest priority factor based on the attribute locality,

and re-fragment the relations within the cluster using the

next highest priority factor to allocate the sub-relations in
the sites of the cluster.

A relation is horizontally fragmented according to priority

factor based on attribute locality, i.e., the value of

importance of an attribute with respect to sites of

distributed database. At the time of designing the database,

database designer will construct Attribute Locality Priority

factor Table (ALPT) using the Enhanced CRUD (Create,

Read, Update and Delete) matrix and cost functions.

ECRUD matrix is a table constructed by placing predicates

of attributes of a relation as the rows and applications of the

IOSR Journal of Engineering

May. 2012, Vol. 2(5) pp: 1168-1176

ISSN: 2250-3021 www.iosrjen.org 1172 | P a g e

sites of a distributed database management system as

columns.

Cost is treated as the effort of access and modification of a

particular attribute of a relation by an application from a

particular site. Using ECRUD matrix and cost functions

[30], priority factor of an attribute of a relation is

calculated. Since fragmentation is done at the initial stage,

the actual frequencies of read, write, delete and update of a

particular attribute from different applications of a site is
not known. Hence it is assumed that fC, fR, fD and fU =1 and

C=2, R=1, D=2 and U=3, where

fC = frequency of create operation

fR = frequency of read operation

fD = frequency of delete operation

fU = frequency of update operation

C = weight of create operation

R = weight of read operation

D = weight of delete operation

U = weight of update operation

Set of predicates is generated for the attribute with

highest priority factor value in the Attribute Locality

Priority factor Table. Then each relation is fragmented

horizontally using the predicates. Fragmented segments are

clustered. After this clustering process, re-fragmentation is

done based on the next highest priority factor value in the

ALPT within the cluster. Finally allocate the fragmented

sub-relations to the sites within the cluster. The algorithm

for this procedure is given in Fig. 4.

Figure 4. Fragments and Sites Cluster Algorithm

To analyze the performance of the FlexiPeer architecture

and implementation a distributed banking database system

has been taken.

To demonstrate the performance of FlexiPeer, initially the

number of sites is considered to be ten as shown in Fig. 5.

Figure 5. Initial number of sites

Information about each and every site will be given in Site

Information Table (SIT) as shown in Table 1

.

TABLE 1. SITE INFORMATION TABLE (SIT)

Site Id Locality Region

1 L1 R1

2 L2 R2

3 L3 R1

4 L4 R3

5 L5 R2

6 L6 R1

7 L7 R3

8 L8 R4

9 L9 R4

10 L10 R1

Based on the initial requisites of FlexiPeer architecture, the

sites are clustered as follows, there are four unique regions

given in the SIT, hence, the FlexiPeer is framed with four
clusters and the sites are categorized as four groups based

on the respective regions of the site. The clustered

formation is as shown in Fig. 6.

Figure 6. Clustered framework of sites

By taking the derived clusters, the FlexiPeer architecture is

as shown in Fig. 7.

Figure 7. Flexi Peer architecture with four

Clusters

The Accounts relation is taken for analyzing the

Fragmentation and Allocation in FlexiPeer. The attributes

and values in Accounts relation is shown in Table 2.

Input: Total number of sites

 Site Information Table: LCA and GCA

 Relation to be fragmented: R

 Enhanced CRUD matrix: ECRUD

Output: Fragmented segments

Step 1: Construct ALPT[R] from ECRUD[R]

based on cost functions

Step 2: Generate predicate set P for the

attribute with highest priority factor

value

Step 3: Fragment the relation using the

predicate

Step 4: Cluster fragmented sub-relations.

Step 5: Re-fragment the fragments based on

next highest priority factor valued

attribute within the cluster.

Step 6: Allocate the fragments to sites within

the cluster.

IOSR Journal of Engineering

May. 2012, Vol. 2(5) pp: 1168-1176

ISSN: 2250-3021 www.iosrjen.org 1173 | P a g e

TABLE 2. ACCOUNTS RELATION

Ano Category Cid Date Balance Region

1 A C1 11/1/11 21000 R1

2 B C2 21/1/11 13500 R2

3 B C3 2/2/11 18000 R1

4 C C4 8/2/11 22000 R3

5 D C5 24/2/11 3200 R4

6 C C6 15/3/11 52000 R1

7 E C7 18/3/11 38000 R2

8 D C8 28/3/11 11500 R1

9 A C9 4/4/11 16800 R3

10 A C10 9/4/11 78000 R1

11 B C11 11/4/11 23000 R4

12 B C12 18/4/11 11800 R2

ECRUD matrix should be constructed for the Accounts

relation during the requirement analysis phase. From this

matrix ALP values will be calculated using the cost

functions [30]. For example a sample ALPT for Accounts

relation in shown in Table 3.

TABLE.3. PRIORITY FACTOR VALUES OF

ACCOUNTS RELATION

Name of

Attributes

Priority factor

Value

ANO 10

CATEGORY 25

CID 11

DATE 14

BALANCE 18

REGION 58

The highest priority factor valued attribute will be

considered as an important attribute for fragmentation.

According to that predicate set will be generated. For

instance, our ALPT shows that Region has the highest
priority factor value. So the predicate set will be as follows:

P={Region=R1; Region=R2; Region=R3; Region=R4}

Based on these predicate sets, relation will be fragmented.

So we will get the fragments as shown in Table 4.

TABLE 4. SUB-RELATION BASED ON PREDICATE

‘REGIONS’

AN

O

CATEG

ORY

CI

D

DATE BALAN

CE

REGI

ON

1 A C1 11/1/1

1

21000 R1

3 B C3 2/2/11 18000 R1

6 C C6 15/3/1

1

52000 R1

8 D C8 28/3/1

1

11500 R1

10 A C1

0

9/4/11 78000 R1

2 B C2 21/1/1
1

13500 R2

7 E C7 18/3/1

1

38000 R2

12 B C1

2

18/4/1

1

11800 R2

4 C C4 8/2/11 22000 R3

9 A C9 4/4/11 16800 R3

5 D C5 24/2/1

1

3200 R4

11 B C1

1

11/4/1

1

23000 R4

After clustering, re-fragmentation is done on the fragments

based on the next highest priority factor value in the ALPT

within the cluster. The re-fragmented sub-relations are then

allocated to the sites within the cluster as shown in Table 5.

TABLE 5. RE-FRAGMENTED SUB-RELATIONS

ALLOCATED TO SITES IN CLUSTERS

A B C D E F G H

1 A C1 11/1/11 21000 R1 1 1

10 A C10 9/4/11 78000 R1 1 1

3 B C3 2/2/11 18000 R1 3 1

6 C C6 15/3/11 52000 R1 6 1

8 D C8 28/3/11 11500 R1 10 1

2 B C2 21/1/11 13500 R2 2 2

12 B C12 18/4/11 11800 R2 2 2

7 E C7 18/3/11 38000 R2 5 2

4 C C4 8/2/11 22000 R3 4 3

9 A C9 4/4/11 16800 R3 7 3

5 D C5 24/2/11 3200 R4 8 4

11 B C11 11/4/11 23000 R4 9 4

Description of Attributes of Table 5 is as follows:

A – ACCOUNT NO B - CATEGORY

C- CUSTOMER ID D - DATE

E - BALANCE F - REGION

G - SITE H – CLUSTER

If another site is added to any of the clusters, next highest
priority factor valued attribute will be taken for further

fragmentation.

V. PERFORMANCE EVALUATION OF

FlexiPeer

The performance of FlexiPeer Distributed Database

Architecture is studied in a simulated environment. The

simulation encompassed a tool written in Java® and having
the data in Oracle® 10g. This simulation is intended to

evaluate the performance of FlexiPeer in execution of

transactions to reach out the data in an appropriate site and

the time taken to notice an error when the data not found or

an invalid query. The execution time and error indication

time is measured in milliseconds. This evaluation includes

15 cases for analyzing the transaction execution and 10

cases for measuring time taken to indicate error.

The evaluation results as shown in below:

Table 6 describes the evaluation results of time taken to

execute a transaction in both Chord and FlexiPeer
architectures.

IOSR Journal of Engineering

May. 2012, Vol. 2(5) pp: 1168-1176

ISSN: 2250-3021 www.iosrjen.org 1174 | P a g e

TABLE 6. TIME TAKEN TO EXECUTE A

TRANSACTION IN Chord AND FlexiPeer

A1 A2 A3 A4 A5

1 2 6 432 276

2 1 7 528 277

3 4 4 162 180

4 5 6 281 275

5 6 3 452 274

6 3 3 160 178

7 4 10 540 278

8 2 9 560 277

9 8 8 159 179

10 7 9 362 276

11 10 1 285 277

12 8 7 575 275

13 2 5 417 276

14 3 7 431 275

15 1 10 561 277

Description of Attributes of Table 6 is as follows:

A1 - Transaction ID A2 - Queried in (Site ID)

A3 - Data found in (Site ID)

A4 - Execution time in Chord (ms)

A5 - Execution time in FlexiPeer (ms)

Fig. 8 illustrates the evaluation results for reach out an

appropriate site for each transaction in both Chord and

FlexiPeer architectures

Figure 8. Graph illustrates the time taken for executing
Transaction in Chord and FlexiPeer

Table 7 depicts the time taken for indicating the errors

against ‘no data found’ / ‘invalid’ queries in Chord and

FlexiPeer architectures.

TABLE 7. TIME TAKEN TO NOTICE ERROR FOR NO

DATA FOUND / INVALID QUERY IN Chord AND

FlexiPeer

B1 B2 B3 B4 B5 B6

1 2 10 2 522 172

2 4 10 4 472 171

3 5 10 5 436 174

4 6 10 6 417 173

5 10 10 10 157 171

6 2 10 2 487 172

7 8 10 8 434 172

8 7 10 7 461 171

9 9 10 9 288 174

10 1 10 1 561 173

Description of Attributes of Table 7 is as follows

B1 - Transaction ID B2 - Queried in (Site ID)

B3 - Error displayed in Chord (Site ID)

B4 - Error displayed in FlexiPeer (Site ID)

B5 - Execution time in Chord (millisecond)

B6 - Execution time in FlexiPeer (millisecond)

Fig. 9 correlates the time taken to indicate the errors for ‘No
data found’ / ‘invalid’ queries in Chord and FlexiPeer

architectures

Figure.9. Graph illustrates the time taken for executing

Transaction in Chord and FlexiPeer

VI. CONCLUSION
This paper addressed the design requirements for a Peer-to-

Peer distributed database. This paper also framed an

architecture named FlexiPeer. The clustering of sites is

done based on the geographical regions of the sites. The

clusters are managed by LCA and the overall architecture

managed by GCA. Both LCA and GCA are equipped with

functions to facilitate the data processing. With this

FlexiPeer, the data are stored only in sites and the

information about sites in a cluster is stored in respective

LCA and the information about all clusters is stored in
GCA. The relation will be fragmented based on the highest

priority factor and those fragments are clustered along with

the sites based on common predicate. Within a particular

cluster, once again the sub-relation is re-fragmented to

allocate data to the sites within the particular cluster based

on the next highest priority factor. Finding appropriate data

and respective site will be taken care by LCA and GCA.

Hence the sites can effectively store and produce results for

queries instead of wasting its processing capacity by

listening to all queries though the required data are not

available in that particular site. The query processing

operations are simulated and studied with the results
produced with Chord architecture. In future, the query

IOSR Journal of Engineering

May. 2012, Vol. 2(5) pp: 1168-1176

ISSN: 2250-3021 www.iosrjen.org 1175 | P a g e

processing and concurrency control mechanisms can be

studied in FlexiPeer environment.

REFERENCES
[1] M. T. Ozsu and P. Valduriez, Principles of Distributed

Database Systems, (2nd ed., New Jersey: Prentice-Hall,
1999).

[2] David R. Karger and Matthias Ruhl, Finding Nearest

Neighbors in Growth-restricted Metrics. ACM

Symposium on Theory of Computing (STOC '02),

Montréal, May 2002

[3] Chord website: http://pdos.lcs.mit.edu/chord

[4] Freenet website: http://freenetproject.org

[5] Shamkant Navathe, A Mixed Fragmentation

Methodology for Initial Distributed Database Design,

1995.

[6] Kamalakar Karlapalem and Qing Li, A Framework for

Class Partitioning in Object-Oriented Databases,
Distributed and Parallel Databases, Vol. 8, No. 3,

2000.

[7] Seung-Jin Lim and Yiu-Kai Ng, A Formal Approach

for Horizontal Fragmentation in Distributed Deductive

Database Design, Proceedings of the 7th International

Conference on Database and Expert Systems

Applications, 1996.

[8] Seung-Jin Lim and Yiu-Kai Ng, Vertical

Fragmentation and Allocation in Distributed Deductive

Database Systems, Information Systems, Vol. 22, No. 1,

pp. 1-24, 1997.
[9] Zehai Zhou and Olivia R.Liu Sheng, Vertical Data

Fragmentation and Fragment Allocation in Distributed

Database Systems, Proceedings of PACIS, 1997.

[10] Ladjel Bellatreche, Kamalakar Karlapalem and Ana

Simonet, Algorithms and Support for Horizontal Class

Partitioning in Object-Oriented Databases, Distributed

and Parallel Databases, Vol. 8, No. 2, pp. 155-179,

2000.

[11] Yin-Fu Huang and Jyh-Her Chen, Fragment Allocation

in Distributed Database Design, Journal Of

Information Science And Engineering 17, pp. 491-506,

2001.
[12] Ishfaq Ahmad, Yu-Kwong Kwok and Siu-Kai So,

Evolutionary Algorithms for Allocating Data in

Distributed Database Systems, Distributed and

Parallel Databases, Vol. 11, 2002.

[13] Jun Du, Ken Barker and Reda Alhajj, Attraction- A

Global Affinity Measure for Database Vertical

Partitioning, Proceedings of ICWI, 2003.

[14] C.I.Ezeife and Pinakpani Dey, Incremental Horizontal

Fragmentation of Database Class Objects, Proceedings

of ICEI, 2003.

[15] A.S.Darabant, A.Campan and H.Todoran, Incremental
Horizontal Fragmentation: A New Approach in the

Design of Distributed Object Oriented Databases,

International Conference on Computers,

Communications and Control, ICCCC 2006, 2006, pp

170-174,.

[16] Horea Grebla, Grigor Moldovan, Sergiu Adrian

Darabant and Alina Campan, Data Allocation in

Distributed Database Systems Performed by Mobile

Intelligent Agents, Proceedings of the International

Conference on Theory and Applications of

Mathematics and Informatics, 2004.

[17] Sergiu Adrian Darabant, Alina Campan, Grigor

Moldovan and Horea Grebla, AI Techniques: A New

Approach in Horizontal Fragmentation of Classes with

Complex Attributes and Methods in Object Oriented

Databases, Proceedings of the International

Conference on Theory and Applications of
Mathematics and Informatics, 2004.

[18] Sergiu Adrian Darabant, Alina Campan and Octavian

Cret, Hierarchical Clustering in Object Oriented Data

Models with Complex Class Relationships,

Proceedings of the Eighth IEEE International

Conference on Intelligent Engineering Systems

INES2004, 2004, pp. 307-312,.

[19] Sergiu Adrian Darabant and Alina Campan, AI

Clustering Techniques: A New Approach to Object

Oriented Database Fragmentation, Proceedings of the

8th IEEE International Conference on Intelligent
Engineering Systems, 2004, pp. 73-78.

[20] Sergiu Adrian Darabant and Alina Campan, Semi-

supervised Learning Techniques: k-means Clustering

in OODB Fragmentation, IEEE International

Conference on Computational Cybernetics ICCC 2004,

2004, pp 333-338.

[21] Sergiu Adrian Darabant, Horea Todoran, Octavian Cret

and George Chis, The Similarity Measures and their

Impact on OODB Fragmentation Using Hierarchical

Clustering Algorithms, WSEAS Transactions on

Computers, Vol. 5, 2006.

[22] Ismail O. Hababeh, A Method for Fragment Allocation
Design in the Distributed Database Systems, The Sixth

Annual U.A.E. University Research Conference, 2005.

[23] Alina Campan, Sergiu Adrian Darabant and Gabriela

Serban, Clustering Techniques for Adaptive Horizontal

Fragmentation in Object Oriented Databases,

Proceedings of the International Conference on Theory

and Applications of Mathematics and Informatics

ICTAMI, 2005, pp 263-274.

[24] Hassan I. Abdalla and F. Marir, Vertical Partitioning

Impact on Performance and Manageability of

Distributed Database Systems (A Comparative study of
some vertical partitioning algorithms), 18th National

Computer Conference, Saudi Computer Society, 2006.

[25] Hui Ma, Klaus-Dieter Schewe and Markus Kirchberg,

A Heuristic Approach to Vertical Fragmentation

Incorporating Query Information, Proceedings of the

2007 conference on Databases and Information

Systems IV: Selected Papers from the Seventh

International Baltic Conference DB&IS'2006 IOS

Press Amsterdam, The Netherlands, The Netherlands ,

2007.

[26] Hui Ma and Markus Kirchberg, Cost-Based
Fragmentation for Distributed Complex Value

Databases, Proceedings of the 26th International

Conference on Conceptual modeling, 2007.

[27] Eltayeb Salih Abuelyaman, An Optimized Scheme for

Vertical Partitioning of a Distributed Database, IJCSNS

IOSR Journal of Engineering

May. 2012, Vol. 2(5) pp: 1168-1176

ISSN: 2250-3021 www.iosrjen.org 1176 | P a g e

International Journal of Computer Science and

Network Security, Vol.8, No.1, 2008.

[28] Rajan John and Dr. V. Saravanan, Vertical Partitioning

in Object Oriented Databases Using Intelligent Agents,

IJCSNS International Journal of Computer Science

and Network Security, Vol.8, No.10, 2008.

[29] Arjan Singh and K.S. Kahlon, Non-replicated Dynamic

Data Allocation in Distributed Database Systems,

IJCSNS International Journal of Computer Science
and Network Security, Vol.9, No.9, 2009.

[30] Shahidul Islam Khan and Dr. A. S. M. Latiful Hoque,

A New Technique for Database Fragmentation in

Distributed Systems, International Journal of

Computer Application, Vol. 5, No.9, 2010.

[31] Nilarun Mukherjee, Synthesis of Non-Replicated

Dynamic Fragment Allocation Algorithm in

Distributed Database Systems, Proceedings of

International Conference on Advances in Computer

Science, 2010.

[32] Aleksandar Dimovski, Gorgan Velinov and Dragan
Sahpaski, Horizontal Partitioning by Predicate

Abstraction and its Application to Data Warehouse

Design, Proceedings of the 14th east European

conference on Advances in databases and information

systems, 2010.

[33] Frank Dabek, Emma Brunskill, M. Frans Kaashoek,

David Karger, Robert Morris, Ion Stoica, and Hari

Balakrishnan, Building Peer-to-Peer Systems With

Chord, a Distributed Lookup Service, Proceedings of

the 8th Workshop on Hot Topics in Operating Systems

(HotOS-VIII), May 2001.

[34] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan, Chord: A Scalable

Peer-to-peer Lookup Service for Internet Applications,

ACM SIGCOMM 2001, San Deigo, CA, August 2001,

pp. 149-160.

[35] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues,

Efficient routing for peer-to-peer overlays,

Proceedings of the 1st conference on Symposium on

Networked Systems Design and Implementation -

Volume 1 San Francisco, California, 2004

[36] David Liben-Nowell, Hari Balakrishnan, David

Karger, Observations on the Dynamic Evolution of

Peer-to-Peer Networks, Proceedings of the First

International Workshop on Peer-to-Peer Systems
(IPTPS '02), Cambridge, MA, March 2002.

[37] David R. Karger and Matthias Ruhl, Finding Nearest

Neighbors in Growth-restricted Metrics . ACM

Symposium on Theory of Computing (STOC '02),

Montréal, May 2002

[38] Ian Clarke, Scott G.Miller, Theodore W.Hong, Oskar

Sandberg and Brandon Wiley, Protecting Free

Expression Online with Freenet, IEEE Internet

Computing, Jan.2002

[39] Xiuguo Bao, Binxing Fang, Mingzhen Hu and Binbin

Xu, Heterogeneous Search in Unstructured Peer-to-
Peer Networks, IEEE DISTRIBUTED SYSTEMS

ONLINE Published by the IEEE Computer Society

Vol. 6, No. 2; 2005

