

QUALITATIVE ANALYSIS OF INTERNAL AND EXTERNAL RISKS FOR READY MIX CONCRETE PLANTS – A CASE STUDY APPROACH

¹R. C. WALKE, ²PROF. V.M. TOPKAR

¹Research student for Ph. D. course, V. J. T. I., Mumbai University ²Head, Civil and Environmental Engineering Department, V. J. T. I., Mumbai University

Abstract

Ready Mix Concrete (RMC) industry is continuously growing all over the world and India is not an exception to it. Like other industries, RMC industry is also exposed to multidimensional risks from all directions. These risks must be addressed properly so that RMC industry shall gain credibility, confidence of the customers and shall have expected profit margins. The risk sources pertaining to RMC industry are internal as well as external. This paper proposes a simple yet effective procedure for qualitative analysis of risks having internal and external sources related to Ready Mix Concrete (RMC) plants. Once the risks are qualitatively analyzed, the appropriate response strategies can be adopted to treat these risks.

Key Words – Risk, Multidimensional, RMC,

QUALITATIVE ANALYSIS OF INTERNAL AND EXTERNAL RISKS FOR READY MIX CONCRETE PLANTS-INDIAN CONTEXT

INTRODUCTION

Ready Mix Concrete (RMC) is a "Concrete delivered at site or into purchaser's vehicle in the plastic condition and requiring no further treatment before being placed in a position in which it is to be set and hardened" (IS 4926-2001). Ready Mix concrete is environmental friendly. Its manufacturing is not messy and time consuming. It can be provided as per the customer's requirements for specifications and quality. Storing materials at site for manufacturing concrete is not required at project sites.

In India, use and demand of RMC is growing rapidly in civil and construction business. Globalization has given a boost to many infrastructure projects in India. Many companies are foraying in RMC business because it has a huge potential. Anticipating huge potential for RMC, many organized and unorganized players are foraying in this area.

RMC industry is exposed to various risks in India. Risk Management at RMC plant is not given adequate importance the way it is given in European countries, where operation managers at RMC Plant manage risks at production plant and delivery sites (www.learn4good.com). The risk causes of any projects can be categorized into internal and external (Zia,H.1995). With this approach, the risks related to RMC plants can be categorized broadly into internal and external risks.

Proposed paper is focused on qualitative analysis approach for internal and external risks to which RMC plants in India are exposed. Qualitative analysis of risks shall help management of RMC plant to decide upon appropriate response strategies to achieve objectives of RMC business.

RISK MANAGEMENT APPROACH

Risk Management is a major feature of the management of large engineering projects to reduce uncertainties and to achieve project success. The risk management approach aims to identify and assess risks in order to enable the risks to be understood clearly and managed effectively David Hilson,2002. It is a critical part of project management as 'unmanaged or unmitigated risks are one of the primary causes of project failure' (Lyons and Skitmore, 2004). Failure to perform effective risk management can cause projects to exceed budget, fall behind schedule, miss critical performance targets, or exhibit any combinations of these troubles (*Carbone and Tippett* 2004). A number of variations of risk management approach have been proposed by different authors and researchers, that in general includes identification, classification and analysis of risks.

Risk identification deals with identification of potential risks affecting the project objectives. Various tools and techniques like Brainstorming, Cause – Effect Diagram, Decision Tree, Delphi Technique, Interviews etc.are used for risk identification. Classification of risks helps in deciding which category of risks is to be focused more for

analysis and risk response. Authors like Baldwin (1971), Mason (1973), Ashley (1981) and, Johnson and Rood (1977), have given different classifications of risks according to their own perception.

The analysis of risks could be qualitative and quantitative. Qualitative risk analysis includes deciding upon the probability of occurrence of a particular risk and tits consequences to find out the exposure of that particular risk. It is a very is rapid and cost effective method to analyze the risks. It results in a list of potential risks that shall have substantial influence on project objectives in terms of cost, time, quality, safety, health and performance. Risk quantification and analysis of quantified risks can be a step further, if needed, using suitable techniques. Some of the techniques used to analyze risks qualitatively and quantitatively are Probability and impact Grid, Fault tree analysis, Event tree analysis, Sensitivity analysis, Simulation, Decision Tree analysis, Expected value Method, Analytical Hierarchy Process.

Appropriate response strategies can be decided after qualitatively analyzing the risks. PMBOK (2004) has given four response strategies as Risk Avoidance, Risk Transfer, Risk Mitigation and Risk Acceptance. Appropriate response strategies are selected and implemented for the selected potential risks and are to be monitored continuously. Selection of effective risk response strategies shall reduce the effect of risks on project objectives.

QUALITATIVE ANALYSIS OF RISKS – AN APPROACH PRESENTED IN PROPOSED STUDY

In the proposed study, risk is considered as a future event which has an adverse effect on the objectives of company running RMC plant and for which possible outcomes can be predicted on the basis of probability. This study considerers risk management as a process having sub- processes like Risk identification, Risk Classification, Risk analysis and Risk response management. In order to identify internal as well as external risks, and to classify them in different categories, interviews of plant managers and other key personnel at RMC plants run by different companies in different location in were conducted. Outcome of this exercise is presented in (Table 1).Table 3 represents categorization of potential risks obtained after qualitative risk analysis.

Sr No.	Description of risks	Internal	External
1	Change in Govt. and Govt. policies		\checkmark
2	War, Riots etc.		\checkmark
3	Interference of local Politicos		\checkmark
4	Contractual liability (breach, third party	\checkmark	
	action)		
5	Inappropriate dispute redressel	\checkmark	
	mechanism		
6	Conflict between various agencies	\checkmark	
7	Errors in contract price calculation	\checkmark	
8	Misinterpretation of contract terms	\checkmark	
9	Litigation due to claim	\checkmark	
10	Ambiguity in specification for delivery	\checkmark	
11	Change in scope	\checkmark	
12	Air Pollution	\checkmark	
13	Water Pollution	\checkmark	
14	Noise Pollution	\checkmark	
15	Soil Pollution	\checkmark	
16	Environmental Litigation		\checkmark
17	Depletion of Natural resources	\checkmark	
18	Extreme weather conditions (cold / hot)		\checkmark
19	Inflation		\checkmark
20	Delay in Payment by client	\checkmark	
21	Investment Risks	\checkmark	
22	Interest rate change		\checkmark
23	Force Majeure(Acts of God)		\checkmark
24	Disease / Epidemic		\checkmark

 Table1

 Identification of External and External risks in RMC Plants in India

25	Fire		\checkmark
26	Terrorism		\checkmark
27	Natural Disaster		\checkmark
28	Changes in local Tax rates		\checkmark
29	Levy of additional taxes and duties on		\checkmark
	RMC (Entry Tax, Excise duty)		
30	Changes in current RMC regulations and		\checkmark
	ministry requirements		
31	Changes in local Tax rates		\checkmark
32	Use of new technology	\checkmark	
33	Lack of technical expertise / personnel	\checkmark	
34	Internal technology system failure	\checkmark	
35	Improper internal infrastructure	\checkmark	
36	Improper site access	\checkmark	
37	Ineffective control over wastage	\checkmark	
38	Confined spaces	\checkmark	
30	regulatory and Govt requirements for		\checkmark
57	production		
40	Operational performance risk	\checkmark	
41	Extended operation hours	\checkmark	
42	Delay during transportation		\checkmark
43	Frequent breakdown of M/Cs. Plant etc.	\checkmark	
44	Damage to M/Cs due to flood, accidents	\checkmark	
	and		
	during transport of concrete		
45	Wrongly designed layout	\checkmark	
46	Unskilled personnel at work	\checkmark	
47	Risk of accidents loosing production	\checkmark	
.,	loosing life		
48	Traffic problems		\checkmark
49	Idle machineries	\checkmark	
50	Technical Risks – Policies and Procedure	\checkmark	
51	Loading wrong material	\checkmark	
52	Oversetting of concrete	\checkmark	
53	Non setting of concrete	\checkmark	
54	Improper infrastructure, scaffolding and	\checkmark	
	platform		
55	Over utilization of plant capacity	\checkmark	
56	Wrong working location	\checkmark	
57	Improper errection and commissioning of	\checkmark	
	Plant		
58	Death/Injury to someone at site or in plant	\checkmark	
	due to accident		
59	High transportation cost	\checkmark	
60	Lack of infrastructural facilities (water,	\checkmark	
	roads, electricity, communication		
	systems)		
61	Use of ungraded machineries in	\checkmark	
	manufacturing process		
62	Delay due to accidents at site	\checkmark	
63	Damage to roads due to transporting	\checkmark	
	through heavy vehicles		
64	No flow through pipes during discharge	\checkmark	

65	Varying degree of moisture in sand	√	
66 Improper or no calibration of water meter		\checkmark	
	weigh balance, machines and equipments		
67	Errors in testing and inspection of	\checkmark	
	materials.	,	
68	Non availability of advanced testing	\checkmark	
	facilities.	, , , , , , , , , , , , , , , , , , , ,	
69	Poor quality of repairs and maintenance	✓	
70	Inaccuracy in batching, weighing, mixing	✓	
71	Inaccuracy in statistical adjustments	<i>√</i>	
72	Risks of drying and loss of workability of	\checkmark	
	concrete		
73	Slump and sand content is not properly	\checkmark	
	governed		
74	Mixer not maintained in an efficient and	\checkmark	
	clean condition		
75	Improper moisture compensation	<i>√</i>	
76	Incorrect Mix design	\checkmark	
77	Improper specification for RMC		\checkmark
78	Incorrect use of admixtures	\checkmark	
79	Irregular quality monitoring	\checkmark	
80	Inappropriate quality standards	\checkmark	
81	Receiving raw material at site without	\checkmark	
	required specifications		
82	Risks related to basic properties of ready	\checkmark	
	mix concrete like workability, strength,		
	durability, segregation and homogeneity		
	during transport		
83	Not using proper checklist for quality	\checkmark	
	control		
84	Non availability / shortage of cement and	\checkmark	
	other materials		
85	Transport strike		\checkmark
86	Vender problems (delays)		\checkmark
87	Poor quality of materials	\checkmark	
88	Non availability of spare parts		\checkmark
89	Difficulties in importing equipments		\checkmark
90	Raw material selection risk	\checkmark	
91	Improper storage system (Dampness, no	\checkmark	
	ventilation)		
92	Theft at site	\checkmark	
93	Risks associated with buying and /or	\checkmark	
	hiring decisions		
94	Eye, skin and respiratory tract irritation	\checkmark	
95	Chemical burns	\checkmark	
96	Over exertion	\checkmark	
97	Ergonomics	\checkmark	
98	Occupational hazards faced by truck	\checkmark	
	drivers		
99	Injuries at site	✓	
100	Slips, trips and falls	✓	
101	Accidents at site	\checkmark	
102	Non functioning of fire fighting system at	✓	

	site		
103	Non availability /no use of safety	\checkmark	
	equipments and tools at site		
104	Unavailability of proper medical facilities	\checkmark	
105 Mishandling of material at site		\checkmark	
106	Demand – Supply Gap	\checkmark	
107	Competition in Market		\checkmark
107	Wrong assessment of market potential and	\checkmark	
100	demand estimation.		
109	Problems created by nearby residents		\checkmark
110	Public outcry with regard to activities like		\checkmark
	quarrying near plant etc		
111	Non productivity / performance of	\checkmark	
	laborers		
112	Non availability of local labor		\checkmark
113	High Labor turnover	\checkmark	
114	Problems by labor union		\checkmark
115	Cultural differences		\checkmark
115	Performance risks	✓	
110	r erformance risks		
117	Improper planning for various works	\checkmark	
118	Less growth opportunities within	\checkmark	
110	organization		
119	Discharge of concrete on ground (slurry is	\checkmark	
	lost)		
120	Improper mixing	\checkmark	
121	No policy for solid waste and runoff	\checkmark	
	management		
122	Inappropriate disposal of sludge	\checkmark	
123	Conveyance of waste water is not	\checkmark	
_	regulated properly		
124	Inappropriate sewage treatment and	\checkmark	
	disposal		
125	Low maintenance	\checkmark	
126	No careful planning is done for repairs	\checkmark	
	and maintenance		
127	No periodical check up of plant and	\checkmark	
	machineries		
128	Not following manufacturers	\checkmark	
	recommended practice for cleaning and		
	lubricating etc		
129	Not maintaining maintenance check sheet	\checkmark	
	and repair records		
130	No set up for regular testing and	\checkmark	
	inspection		
131	Major overhauling is not done by	\checkmark	
	manufacturer's representative or		
	specialist/ experts.		
132	Worn parts are not replaced on regular	\checkmark	
	basis		
133	Hydraulic equipment is not kept free from	\checkmark	
	contamination.		

Qualitative risk analysis was done using five point scales for probability and Impact. This Five po140 scale was used to get the probabilities and impact values on subjective basis (1 to 5 – standing for very low, low, medium, high and very high respectively). A high probability of very low impact and very low probability of a very high impact is not considered as a risky condition. Only when both, the probability of occurrence and the Impact are significant, the situation is considered risky (Baloi Daniel et.al; 2004). On the basis of this concept, the risk acceptance criteria was defined and decided in the proposed study (Table 2). For example, Probability of occurrence of Health risks is very high in RMC plant and Impact is also high considered for the further process in risk management i.e. for risk quantification and quantitative risk analysis. Similarly, risks with low probability of occurrence and low Impact will have low exposure and thus can be excluded from further process in risk management.

Table 2 Combination of the probability and Impact for risks to be considered for Quantification

With the help of Probability –Impact ranges and the acceptance criteria decided upon, a screened list of risks is obtained which will actually have substantial influence on objective of a company running RMC plant. These screened risks are then assigned different sub- categories like political, environmental, legal-contractual, financial, operational, safety, repairs and maintenance, quality, procurement and storage, market and organizational risks. This list is to be taken into account to decide upon suitable response strategies (Table 3). This sub-categorization is important because management of RMC plant may be interested in deciding upon response strategy only for the risks falling under a particular category and may ignore other categories of risks for various reasons.

Table 3				
Selective risks having significant impact				

No.	Significant Risks	Risk	Risk Category	Risk
		Category -	- External	Sub-Category
		Internal		
1.	Interference of local politicos		\checkmark	Political
2.	Inappropriate dispute redressal	\checkmark		Legal/Contractu
	mechanism			al
3.	Conflict between various agencies	\checkmark		Legal/Contractu
	_			al

4.	Extreme weather conditions		\checkmark	Environmental
5.	Delay in payment by client		\checkmark	Financial
6.	Delay during transportation		\checkmark	Operational
7.	Wrongly designed layout	\checkmark		Operational
8.	Accidents at site	\checkmark		Safety
9.	Loading wrong material	\checkmark		Operational
10.	No periodical check up of plant and	\checkmark		Repairs and
	machineries			Maintenance
11.	Receiving raw material at site without	\checkmark		Quality
	required specifications			
12.	Vendor problems(delays)		\checkmark	Procurement
				and storage
13.	Unavailability of proper medical	\checkmark		Safety
	facilities			
14.	competition in market		\checkmark	Market
15.	Wrong assessment and market	\checkmark		Market
	potential and demand estimation			
16.	Less growth opportunities within an	\checkmark		Organizational
	organization			

CONCLUSION

The proposed paper presents an approach for qualitative analysis of internal as well as external risks is RMC plants at various locations in India. On the basis of the information gathered, a checklist of risks is generated. Subjective ratings for both, probability of occurrence and Impact were applied to these risks in order to qualitatively analyze them. An acceptance and rejection criteria is suggested to screen the risks having significant impact on the objectives of companies running RMC plants. Thus, qualitative analysis resulted into a list of potential risks. Suitable response strategies for these screened risks can be decided upon by the management of respective RMC plant.

REFERENCES:

- 1 Ashley, D. B.(1981), Construction project Risks: Mitigation and Management, Proc., PMI/Internet Joint Symp., Project Management Institute, Drexel Hill, Pa., pp. 331-340.
- 2 Baloi Daniel (2003) Modeling global risk factors affecting construction cost performance, International journal of project management, 21(2003), pp. 261-269
- Baldwin, J.R.(1971), Causes of delay in construction industry, Journal of Construction Div, ASCE, pp 105-106
- 4 David Hilson (2002), Use a Risk Breakdown Structure (RBS) TO Understand Your Risks, Proceedings of the Project Management Institute Annual Seminars and Symposium, October 3-10, San Antonio, Texas, USA
- 5 http://www.learn4good.com / jobs / language / english / search / job / 13807 / 12 / 29 /2005 risk mgmt.
- 6 Indian Standard 4926-2003, Bureau of Indian Standard, New Delhi
- 7 Johnson, J., and Rood, O. E. (1977) Elements of a fair and equitable profit determination for construction contract negotiations, Draft Report CERL.
- 8 Mason, G. E. (1973), A quantitative risk management approach to selection of construction contract provisions, Technical Report no 173, Construction Institute, Deptt. of Civil Engrg., Stanford Uni., Stanford, California
- 9 PMBOK (2004), A Guide to the project Management body of knowledge, Edition 2004, Project Management Institute
- 10 Thomas a. Carbone and Donald D. Tippett.(2004), Project Risk Management Using the Project Risk FMEA, Engineering Management journal, Volume 16, No. 4
- 11 Terry Lyons and Martin Skitmore (2004), Project risk management in the Queensland engineering construction industry: a survey, International journal of Project Management, Vol.22 (2004), pp 51-61
- 12 Zia,H.(1995),Risk management for overseas construction projects, International journal of Project Management,Vol.13,No. 4, pp 231-237.