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Abstract: In this article, we have investigated the complete synchronization of two identical non-linear 

dynamical systems of the three-body problem by taking into consideration the primaries as oblate bodies. We 

assumed that the primaries are moving in the circular motion around there centre of mass in the non-uniform 

motion. Here we have designed a non linear controller based on the Lyapunov stability theory. The proposed 

controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of 

the master system. For validation of results by numerical simulations we used the Mathematica10 when the 

primaries are Jupiter and Mars. 
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I. INTRODUCTION  
A deterministic system is chaotic whenever its evolution sensitively depends on the initial conditions. 

This property implies that two trajectories emerging from near by initial conditions separate exponentially in the 

course of time. Pecora and Carroll [1]  gave idea of synchronization of chaotic systems using the concept of 

master and slave system and they demonstrated that chaotic synchronization could be achieved by driving or 

replacing one of the variables of a chaotic system with a variable of another similar chaotic device. Many 

methods and techniques for chaos control and synchronization of various chaotic systems have been developed, 

such as non linear feedback control method discussed by Lu L. Zhang and C. Guo Z. A. [2] sliding mode control 

technique studied  by Haeri. M. and Emadzadeh. A. [3].  adaptive control technique to stabilize and synchronize 

a hyperchaotic system with uncertain parameters have been discussed by Israr Ahmad et al. [4]. In an another 

paper Israr Ahmad et al  have been studied a synchronization problem of a three-dimensional (3-D) Coullete 

chaotic system using the active- and adaptive-based synchronization control techniques [5]. Chaos 

synchronization using active control has recently been widely accepted as an efficient technique for 

synchronizing chaotic systems. This method has been applied to many practical systems such as spatiotemporal 

dynamical systems [6], the Rikitake two-disc dynamo-a geographical system [7], Non-linear Bloch equations 

modeling "jerk" equation (Ucar et al. [8]), Complex dynamos (Mahmoud [9]),  drive-response chaotic system 

Israr Ahmad et al. [10]. The synchronization problem via nonlinear control scheme is studied by Chen and Han 

[11] , Chen [12], Ju H. Park.[13]  and  Mossa et. All  [14]. 

Many mathematicians have made the huge contributions to the analytical, qualitative and numerical 

studies of the restricted three-body problem when the primaries are moving in the circular motion around there 

centre of mass in the uniform motion. A detailed analysis of this problem is illustrated in the work of American 

mathematician Szebehely [15]. In (1975) Sharma, R. K. and Subbarao[16] have discussed the collinear 

equilibria and their characteristic exponents in the restricted three body problem when the primaries are oblate 

spheroids. The Lagrangian triangular equilibria in the planar restricted three body problem where the primaries 

are oblate homogeneous spheroids discussed by Arredondo, J.A. et al [17].  Khan and Shahzad  [18] 

investigated the synchronization behavior of the two identical circular restricted three body problem influenced 

by radiation evolving from different initial conditions via the active control. In an another paper the Complete 

synchronization, anti-synchronization and hybrid synchronization of two identical parabolic restricted three 

body problem have been studied by Khan and Rimpi pal [19]. Arif [20] studied the complete synchronization, 

anti-synchronization and hybrid synchronization in the planar restricted three problem by taking into 

consideration the small primary is ellipsoid and bigger primary an oblate spheroid via active control technique. 

Being motivated by the above discussion, in section 2 we have formulated the equation of motion of 

the three-body problem when the primaries as oblate bodies are moving in a circular motion around there centre 

of mass in the non-uniform motion. Section 3 deals with the complete synchronization behavior of two identical 

systems via nonlinear control technique. In this section we have designed a non linear controller based on the 

Lyapunov stability theory.  Numerical simulations are  performed to  plot  time  series  analysis  graphs  of the  
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master system  and  the  slave  system  which  further illustrate the effectiveness of the  proposed  control  

technique Finally, we conclude the paper in section 4. 

 

II. EQUATION OF MOTION  
To write the equation of motion we assume that the two oblate bodies of masses 𝑚1 and 𝑚2 are 

moving  in the circular motion around their centre of mass O with angular velocities, the mean motions 𝑛1 and 

𝑛2 respectively Fig(1). The motion of a particle P of mass 𝑚 defined by its radius vector 𝑟  will be referred to a 

frame of reference 𝑂𝑥 𝑦  that rotates in the same direction and the same angular velocity 𝑛1 as the primary of 

mass 𝑚1, which in this frame are taken to stay at rest on 𝑥-axis. Balance between the gravitational and 

centrifugal forces requires that  

 
Fig(1) 

 
Figure (1) : Non-uniform motion of charged particle P around there centre of mass. 

 

𝑘2𝑚1
2  𝑚2

2 

𝑙2
= 𝑎 𝑚1𝑛1

2 = 𝑏 𝑚2𝑛2
2                               (1) 

𝑘 = Gaussian constant, 𝑙2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 𝑐𝑜𝑠  𝑛1 −  𝑛2  𝑡∗ = variable mutual distance between the 

primaries.         
Then the equation of motion of the particle P in the fixed system may be written as:  

𝑑2𝑋

𝑑𝑡∗2 =
𝜕𝐹(𝑋,𝑌, 𝑡∗)

𝜕𝑋
                                             (2) 

𝑑2𝑌

𝑑𝑡∗2 =
𝜕𝐹(𝑋,𝑌, 𝑡∗)

𝜕𝑌
                                               (3) 

Where 

𝐹 = 𝑘2  
 𝑚1

R1

+
 𝐼1

2𝑅1
3 +

 𝑚2

R2

+
 𝐼2

2𝑅2
3                       (4) 

𝑅1
2 = (𝑋 − 𝑋1)2+ (𝑌 − 𝑌1)2,   𝑅2

2 = (𝑋 − 𝑋2)2+ (𝑌 − 𝑌2)2, 𝑋1 = 𝑎 cos  𝑛1 𝑡
∗, 𝑌1 = 𝑎 sin𝑛1 𝑡

∗, 𝑋2 = 𝑏 cos  𝑛2 𝑡
∗, 

 𝑌2 = 𝑏 sin𝑛2 𝑡
∗. Where 𝑡∗ is the dimensional time,  𝐼𝑖 =  𝑚𝑖  

𝑅𝑖𝑒
2 −𝑅𝑖𝑝

2

5
 ,  𝑅𝑖𝑒 , 𝑅𝑖𝑝   equatorial and polar radii of 

the primaries. 𝑖 = 1,2. 
Now introduce a rotating co-ordinate system  𝑥 , 𝑦   by substituting 

           𝑍 = 𝑧 𝑒𝑖𝑛1𝑡
∗
                                      (5) 

Where  

𝑍 = 𝑋 + 𝑖𝑌,      𝑧 = 𝑥 + 𝑖𝑦  

After, using the complex vector 𝑍, the equation of motion 2 and 3 takes the form: 

 

𝑑2𝑧

𝑑𝑡∗2 + 2𝑖𝑛1
𝑑𝑧

𝑑𝑡∗
− 𝑛1

2𝑧 = −𝑘2  
𝑚1(𝑧−𝑎)

𝑅1
3 +

3 𝐼1(𝑧−𝑎)

2𝑅1
5 +

𝑚2 𝑧−𝑏𝑒
 𝑛2−𝑛1 𝑡

∗
 

𝑅2
3 +

3 𝐼2 𝑧−𝑏𝑒
 𝑛2−𝑛1 𝑡

∗
 

2𝑅2
5                                                             

                                                                                                                                                (6) 

Where 

𝑅1 =  𝑧 − 𝑧1 ,     𝑅2 =  𝑧 − 𝑧2 ,     𝑧1 = 𝑎𝑒𝑖𝑛1𝑡
∗
   and    𝑧2 = 𝑏𝑒𝑖𝑛2𝑡

∗
 

 The equations of motion in the rotating coordinate system are: 
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𝑑2𝑥 

𝑑𝑡∗2 − 2𝑛1
𝑑𝑦 

𝑑𝑡∗
− 𝑛1

2𝑥 =  −𝑘2  
𝑚1(𝑥 −𝑎)

𝑟1
3 +

3 𝐼1(𝑥 −𝑎)

2𝑟1
5 +

𝑚2 𝑥 −𝑏  𝑐𝑜𝑠  𝑛2−𝑛1 𝑡
∗ 

𝑟2
3 +

3 𝐼2 𝑥 −𝑏  𝑐𝑜𝑠  𝑛2−𝑛1 𝑡
∗ 

2𝑟2
5     

                                                                                                                                                 (7) 
𝑑2𝑦 

𝑑𝑡∗2 + 2𝑛1
𝑑𝑥 

𝑑𝑡∗
− 𝑛1

2𝑦 = −𝑘2  
𝑚1𝑦 

𝑟 1
3 +

3 𝐼1𝑦 

2𝑟1
5 +

𝑚2 𝑦 −𝑏  𝑠𝑖𝑛  𝑛2−𝑛1 𝑡
∗ 

𝑟 2
3 +

3 𝐼2 𝑦 −𝑏  𝑠𝑖𝑛  𝑛2−𝑛1 𝑡
∗ 

2𝑟2
5                                      

                                                                                                                                                      (8) 

Where 

 

  𝐹 =
𝑛1

2

2
 𝑥 2 + 𝑦 2 +𝑘2  

 𝑚1

𝑟 1
+

 𝐼1

2𝑟 1
3 +

 𝑚2

𝑟 2
+

 𝐼2

2𝑟 2
3 .  𝑟 1 =  (𝑥 − 𝑎)2 + 𝑦 2 

1

2 , 

𝑟 2 =   𝑥 2 + 𝑦 2 + 𝑏2 − 2𝑦 𝑏 sin 𝑛2 − 𝑛1 𝑡
∗ − 2𝑥 𝑏 𝑐𝑜𝑠 𝑛2 − 𝑛1 𝑡

∗ 
1
2 

We shall introduce the dimensionless pulsating co-ordinates system given by: 

𝑥 =
𝑥 

𝑙
, 𝑦 =

𝑦 

𝑙
,        𝜇1 =

𝑚1

𝑀
 ,      𝜇2 =

𝑚2

𝑀
 ,    𝑟1 =

𝑟 1
𝑙

 ,    𝑟2 =
𝑟 2
𝑙

 . 

Let a particular case 
𝑛1

𝑛2

=
1

6
. 

Then  𝑛2 − 𝑛1 𝑡
∗ = 5𝑛1𝑡

∗ = 𝑡. 
(Primaries are in a 1:6 resonance, the inner primary will complete six periods for every one period of outer 

primary, i.e. orbital period of Mars ≈ 687 days where orbital period of Jupiter ≈ 4380 days). 

Now substituting the values in equations (7) and (8), we get 

𝑥 +
2

𝑙
𝑙  𝑥 − 2𝑛1 𝑦  = 

1

𝑙
  𝑈𝑥 + 2 𝑛1𝑦𝑙                                (9) 

𝑦 +
2

𝑙
𝑙  𝑦 + 2𝑛1  𝑥  =  

1

𝑙
 𝑈𝑦 − 2 𝑛1𝑥𝑙                                 (10) 

   Where dots denote the derivatives with respect to the dimensionless time (𝑡) and subscripts     signify partial 

derivatives and 

𝑈 = 𝑛1
2  

 𝑥2+𝑦2 

2
+ 𝑙2  

36𝜇2

𝑟1
+

𝜇1

𝑟2
  −

 𝑥2+𝑦2 

2
𝑙   + 

𝑛1
2 𝑎+36𝑏 

2𝑙
  

𝐼1

𝑟1
3 +

𝐼2

𝑟2
3 , 

𝑟1
2 =  (𝑥 − 𝜇1)2 + 𝑦2 ,   𝑟2

2 =  𝑥2 + 𝑦2 + 𝜇2
2 − 2𝑦𝜇2 sin 𝑡 − 2𝑥𝜇2 𝑐𝑜𝑠𝑡 . 

 

III. COMPLETE  SYNCHRONIZATION 
 

To design a non linear controller let 

𝑥 = 𝑥1 ,   𝑥 = 𝑥2 ,  𝑦 = 𝑥3 ,  𝑦 = 𝑥4 

Then the equation (9) and  (10) can be written as:  

   𝑥1 = 𝑥2                                                                                                      (11) 

 𝑥2 =  𝑥1  𝑛1
2 −

𝑙   

𝑙
 −

2

𝑙
𝑙  𝑥2 +

2 𝑛1𝑥3𝑙  

𝑙
+ 2𝑛1𝑥4 + 𝐴1                       (12)  

  𝑥3 = 𝑥4                                                                                                       (13)                                                                            

 𝑥4 = −
2 𝑛1𝑥1𝑙  

𝑙
− 2𝑛1𝑥2 +  𝑥3  𝑛1

2 −
𝑙   

𝑙
 −

2

𝑙
𝑙  𝑥4 + 𝐵1                        (14) 

Where 

𝐴1 = −𝑛1
2𝑙  

36 𝑥1−µ1 µ2

𝑟1
3 +

 𝑥1−µ2 𝑐𝑜𝑠𝑡  µ1

𝑟2
3   + 

3 𝑛1
2 𝑎+36𝑏 

2𝑙
 
 𝑥1−µ1 𝐼1

𝑟1
5 +

 𝑥1−µ2 𝑐𝑜𝑠𝑡  𝐼2

𝑟2
5  , 

   𝐵1 = −𝑛1
2𝑙  

36𝑥3µ2

𝑟1
3 +

 𝑥3−µ2 𝑠𝑖𝑛𝑡  µ1

𝑟2
3   + 

3 𝑛1
2 𝑎+36𝑏 

2𝑙
 
𝑥3𝐼1

𝑟1
5 +

 𝑥3−µ2 𝑠𝑖𝑛𝑡  𝐼2

𝑟2
5   

𝑟1
2= (𝑥1 − 𝜇1)2 + 𝑥3

2,   𝑟2
2 =  𝑥1

2 + 𝑥3
2 + 𝜇2

2 − 2𝑥3𝜇2 sin 𝑡 − 2𝑥1𝜇2 𝑐𝑜𝑠𝑡 , 
The system (11,12,13 and 14) is the master system. The state orbits of this master system are shown in Figure 

(2) and this figure shows that the system is chaotic. 
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Fig(2) 

Figure (2) : state orbits of the master system 

 
Let us define identical slave system  

𝑦1 = 𝑦2 + 𝑢1(𝑡)                                                                                            (15) 

𝑦2 =  𝑦1  𝑛1
2 −

𝑙   

𝑙
 −

2

𝑙
𝑙  𝑦2 +

2 𝑛1𝑦3𝑙  

𝑙
+ 2𝑛1𝑦4 + 𝐴2 + 𝑢2(𝑡)               (16) 

𝑦3 = 𝑦4 + 𝑢3(𝑡)                                                                                              (17) 

𝑦4 = −
2 𝑛1𝑦1𝑙  

𝑙
− 2𝑛1𝑦2 +  𝑦3  𝑛1

2 −
𝑙   

𝑙
 −

2

𝑙
𝑙  𝑦4 + 𝐵2 + 𝑢4(𝑡)             (18) 

Where 

𝐴2 = −𝑛1
2𝑙  

36 𝑦1−µ1 µ2

𝑟1
3 +

 𝑦1−µ2 𝑐𝑜𝑠𝑡 µ1

𝑟2
3    + 

3 𝑛1
2 𝑎+36𝑏 

2𝑙
 
 𝑦1−µ1 𝐼1

𝑟1
5 +

 𝑦1−µ2 𝑐𝑜𝑠𝑡  𝐼2

𝑟2
5  , 

 𝐵2 = −𝑛1
2𝑙  

36𝑦3µ2

𝑟1
3

+
 𝑦3 − µ2 𝑠𝑖𝑛𝑡 µ1

𝑟2
3

 +
3 𝑛1

2 𝑎 + 36𝑏 

2𝑙
 
𝑦3𝐼1
𝑟1

5
+
 𝑦3 − µ2 𝑠𝑖𝑛𝑡 𝐼2

𝑟2
5

  

𝑟1
2  = (𝑦1 − 𝜇1)2 + 𝑦3

2,   𝑟2
2 =  𝑦1

2 + 𝑦3
2 + 𝜇2

2 − 2𝑦3𝜇2 sin 𝑡 − 2𝑦1𝜇2 𝑐𝑜𝑠𝑡 , 
and 𝑢𝑖(𝑡); 𝑖 =1 ,2,3,4 are control functions to be determined. 
Let 𝑒𝑖  = 𝑦𝑖 − 𝑥𝑖  ; i = 1, 2, 3, 4 be the synchronization errors. 

 From (11) to (18), we have 
𝑒1 = 𝑒2 + 𝑢1                                                                                               (19) 

𝑒2 =  𝑛1
2 −

𝑙   

𝑙
 𝑒1 −

2

𝑙
𝑙  𝑒2 +

2 𝑛1𝑙  

𝑙
𝑒3 + 2𝑛1𝑒4 + 𝐴2 − 𝐴1 + 𝑢2         (20) 

𝑒3 = 𝑒4 + 𝑢3                                                                                                 (21) 

𝑒4 = −
2 𝑛1𝑙  

𝑙
𝑒1 − 2𝑛1𝑒2 +  𝑛1

2 −
𝑙   

𝑙
  𝑒3 −

2

𝑙
𝑙  𝑒4 + 𝐵2 − 𝐵1 + 𝑢4       (22) 

Lyapunov stability theory state that when controller satisfies the assumption with 𝑉 𝑒 =  
1

2
 𝑒𝑡  𝑒 a positive 

definite function and the first derivative of this function 𝑉 ′  < 0, the chaos  synchronization of two identical 

systems (master and slave) for different initial conditions is achieved.  

 

So the first derivative of 𝑉 𝑒  for the system will be 

 

𝑉 ′ = 𝑒1 𝑒2 + 𝑢1 + 𝑒2   𝑛1
2 −

𝑙  

𝑙
 𝑒1 −

2

𝑙
𝑙  𝑒2 +

2 𝑛1𝑙  

𝑙
𝑒3 + 2𝑛1𝑒4 + 𝐴2 − 𝐴1 + 𝑢2 + 𝑒3 𝑒4 + 𝑢3  

          +𝑒4  −
2 𝑛1𝑙  

𝑙
𝑒1 − 2𝑛1𝑒2 +  𝑛1

2 −
𝑙   

𝑙
 𝑒3 −

2

𝑙
𝑙  𝑒4 + 𝐵2 − 𝐵1 + 𝑢4 . 

Hence, if we choose the controller 𝑢 as follows,  

𝑢1 = −𝑒1 − 𝑒2                                                                        (23) 

𝑢2 = − 𝑛1
2 −

𝑙   

𝑙
 𝑒1 +

2

𝑙
𝑙  𝑒2 −

2 𝑛1𝑙  

𝑙
𝑒3 − 𝐴2 + 𝐴1 − 𝑒2        (24) 

𝑢3 = −𝑒3 − 𝑒4                                                                             (25) 

𝑢4 =
2 𝑛1𝑙  

𝑙
𝑒1 −  𝑛1

2 −
𝑙   

𝑙
 𝑒3 +

2

𝑙
𝑙  𝑒4 − 𝐵2 + 𝐵1 − 𝑒4              (26) 

 
Then 

𝑉 ′ = −𝑒1
2 − 𝑒2

2 − 𝑒3
2 − 𝑒4

2 < 0                                         (27) 
Hence the error state   

400 200 200 400
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200
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lim
𝑡→∞

 𝑒(𝑡) = 0 

 

which gives asymptotic stability of the system. This means that the controlled chaotic systems  (master and 

slave) are synchronized for deferent initial conditions.  

 

IV. NUMERICAL SIMULATION 
Let us consider an example of Jupiter-Mars system in the three body problem in which the inner primary  𝑚2 is 

taken as the Mars and outer primary is  𝑚1 as the Jupiter and small body as a space- craft.  From the 

astrophysical data we have  

Mass of the Mars 𝑚2 = 6.407 ×  1023   kg. 

Mass of the Jupiter 𝑚1 = 1.89712 ×  1027kg. 

Mean distance of Mars from the origin = 227.800000 km. 

Mean distance of Jupiter from the origin = 778.547200 km. 

In dimensionless system 𝑚1 + 𝑚2 = 1 unit. Variable distance between the primaries 𝑙 is 1 unit. 

The initial conditions of master and slave systems [𝑥1 0 , 𝑥2 0 , 𝑥3 0 , 𝑥4 0 ] = [−2, 2, 0, 4] 
and [𝑦1 0 , 𝑦2 0 , 𝑦3 0 , 𝑦4 0 ] = [2, 3, 2, 7] respectively. We have simulated the system under consideration 

using mathematica 10. Results for uncoupled system are given in figures 3,5,7,9 and that of controlled system 

are shown in figures 4,6,8 and 10 for respectively. These figures shows that the state [𝑥1 𝑡 , 𝑥2 𝑡 , 𝑥3 𝑡 , 𝑥4 𝑡 ] 
of master system [11 to 14] asymptotically synchronize with the state  [𝑦1 𝑡 , 𝑦2 𝑡 , 𝑦3 𝑡 , 𝑦4 𝑡 ] of slave 

system [15 to 18].    

 

   

                                                                      

                   
                           Fig (3)                                                                                     Fig(4)     

  Figure (3) :Time series of the Uncontrolled states 𝑥1, 𝑦1 .  Figure (4):Time series of the synchronized states 𝑥1 

, 𝑦1 .                                                                                                                     
 

                                                                  

                                                                        

                   
                          Fig(5)                                                                                      Fig(6)   
 Figure (5) :Time series of the Uncontrolled states 𝑥2, 𝑦2 .  Figure (6):Time series of the synchronized states 𝑥2 

, 𝑦2 .   
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                      Fig(7)                                                                                            Fig(8)      
  Figure (7) :Time series of the Uncontrolled states 𝑥3, 𝑦3 .  Figure (8):Time series of the synchronized states 𝑥3 

, 𝑦3 .                                     

                                                                   

                 
                                     Fig(9)                                                                                 Fig(10) 

   Figure (9) :Time series of the Uncontrolled states 𝑥4, 𝑦4 . Figure (10):Time series of the synchronized states 𝑥4 

, 𝑦4 . 
                                  

V. CONCLUSION  
The equation of motion of the three -body problem when the primaries are moving in a circular orbit 

around there centre of mass in the non-uniform motion by taking into consideration the primaries as oblate 

bodies formulated. We have also investigated the complete synchronization behavior of  two identical non-linear 

dynamical systems of the three-body restricted problem by taking into consideration the primaries as oblate 

bodies, via  non linear controller based on the Lyapunov stability theory. Here two systems (master and slave) 

are compete synchronized when start with deferent initial conditions. Hence the slave chaotic system completely 

traces the dynamics of the master system in the course of time. For validation of results by numerical 

simulations we used the Mathematica 10 when the primaries are Jupiter and Mars 
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