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I. INTRODUCTION 
Boundary-layer behavior over a moving continuous solid surface is an important type of flow 

occurring in several engineering processes. Such processes include heat-treated materials travelling 

between a feed roll and a wind-up roll or materials manufactured by extrusion and many others. Since 

the pioneering work of Sakiadis [1], various aspects of the problem have been investigated by many 

authors. Crane [2], Gupta and Gupta [3] have analyzed the stretching problem with constant surface 

temperature, while Soundalgekar [4] investigated the Stokes problem for a viscoelastic fluid. This 

flow was examined by Siddappa and Khapate [5] for a special class of non-Newtonian fluids known 

as second-order fluids, which are viscoelastic in nature. Danberg and Fansler [6] studied the solution 

for the boundary layer flow past a wall that is stretched with a speed proportional to the distance along 

the wall. 

Rajagopal et al. [7] independently examined the same flow as in [5] and obtained similarity 

solutions of the boundary-layer equations numerically for the case of small viscoelastic parameter k1. 

It is shown that skin-friction decreases with increase in k1.  Dandapat and Gupta [8] examined the 

same problem with heat transfer. In [8], an exact analytical solution of the non-linear equation 

governing this self-similar flow which is consistent with the numerical results in [7] is given and the 

solutions for the temperature for various values of k1 are presented. Later, Cortell [9] extended the 

work of Dandapat and Gupta [8] to study the heat transfer in an incompressible second-order fluid 

caused by a stretching sheet with a view to examining the influence of the viscoelastic parameter on 

that flow. It is found that the temperature distribution depends on k1, in accordance with the results in 

[8]. 

 In the case of fluids of differential type (see Ref. [10]), the equations of motion are in general 

one order higher than the Navier–Stokes equations and, they need additional boundary conditions to 

determine the solution completely. These important issues were studied in detail by Rajagopal [10], 

[11] and Rajagopal and Gupta [12]. On the other hand, Abel and Veena [13] investigated a 

viscoelastic fluid flow and heat transfer in a porous medium over a stretching sheet and observed that 

the dimensionless surface temperature profiles increases with an increase in viscoelastic parameter k1; 

however, later, Abel et al. [14] studied the effect of heat transfer on MHD viscoelastic fluid over a 

stretching surface and an important finding was that the effect of visco-elasticity is to decrease the 

dimensionless surface temperature profiles in that flow. Furthermore, Char [15] studied MHD flow of 

a viscoelastic fluid over a stretching sheet; however, only the thermal diffusion is considered in the 

energy equation. Vajravelu and Rollins [16] obtained analytical solution for heat transfer 

characteristics in viscoelastic second order fluid over a stretching sheet with frictional heating and 

internal heat generation. Later, Sarma and Rao [17] extended the work of 

 Vajravelu and Rollins [16] and studied the effect of work due to deformation in the energy 

equation.  Vajravelu and Roper [18] and Cortell [19] analyzed the effects of work due to deformation 

in viscoelastic second grade fluid over a stretching sheet. Another effect which bears great importance 
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on heat transfer is the viscous dissipation. When the viscosity of the fluid and/or velocity gradient is 

high, the dissipation term becomes important. Consequently, the effects of viscous dissipation are also 

included in the energy equation 

In the present paper, heat transfer of an incompressible MHD viscoelastic fluid past stretching 

sheet with internal heat generation, viscous dissipation and work due to deformation terms are 

considered in the energy equation.Nonlinear boundary layer equations are solved using 

Quasilinearization technique. The thermal boundary condition is taken as the sheet with Prescribed 

Surface Temperature (PST case). Results are in good agreement with available studies. This paper 

highlights the effect of work due to deformation on heat transfer characteristics of the fluid. 

 

II. MATHEMATICAL FORMULATION 
 Following the postulates of gradually fading memory, Coleman and Noll [20] derived the constitutive 

equation of second-order fluid flow in the form 

      (1) 

       where T is the Cauchy stress tensor, -PI is the spherical stress due to constraint of 

incompressibility,µ is the dynamics viscosity,α1,α2are the material constants andA1 and A2are the first 

two Rivlin–Ericken tensors [21] defined as 

 

       (2) 

     (3) 

Here,ν denotes the velocity field and d/dt is the material time derivative. If the fluid of second grade 

modeled by (1) is to be compatible with thermodynamics and is to satisfy the Clausius-Duhem 

inequality for all motions and the assumption that the specific Helmholtz free energy of the fluid is a 

minimum when it is locally at rest, Dunn and Fosdick [22] found that the material moduli must satisfy 

 

       (4) 

 

But later on Fosdick and Rajagopal [23] have reported, by using the data reduction from experiments 

that in the case of a second order fluid the material constants µ, α1, α2should satisfy the relation 

       (5) 

 

They also reported that that the fluids modeled by (1) with the relationship (5) exhibit some 

anomalous behavior. A critical review on this controversial issue can be found in the work of Dunn 

and Rajagopal [24].  It was mentioned that second-order fluid, obeying model equation (1) 

withα1<α2,α1<0 although exhibits some undesirable instability characteristics, the second order 

approximations are valid at low shear rate. Now in literature the fluid satisfying the model equation 

(1) withα1<0 is termed as second-order fluid and withα1>0 is termed as second grade fluid. 

 In present study, it is considered a laminar steady flow of an incompressible MHD 

viscoelastic (Walters’ liquid B model) fluid over a wall coinciding with the plane y = 0, the flow 

being confined to y > 0.Two equal and opposite forces are applied along the x-axis, so that a sheet is 

stretched with a velocity proportional to the distance from the origin. The resulting motion of the 

quiescent fluid is thus caused solely by the moving surface. The flow satisfies the rheological 

equation of state derived by Beard and Walters [25].  

The governing boundary layer equations for momentum, in the usual form, are 

 

                                                                                         (6) 
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     (7)   

 

Whereu and v are the velocity components along the x and y directions respectively,ν are the 

kinematic viscosity, k0 = -α1/ρis the co-efficient of elasticity, andρ is the density. Hence, in the case 

second order fluid flowk0 takes positive value asα1 takes negative value and other quantities have their 

usual meanings. In deriving (7) it is assumed that the normal stress is of the same order of magnitude 

as that of the shear stress, in addition to usual boundary layer approximations. 

The boundary conditions for the velocity field are:  

    (8)            

           The condition
𝜕𝑢

𝜕𝑦
→ 0 𝑎𝑠 𝑦 → ∞  is the augmented condition since the flow is in an unbounded 

domain, which has been discussed by Rajgopal [10]. In this case, the flow is caused solely by the 

stretching of the sheet, since the free stream velocity is zero.  

 

Defining new variables: 

   (9) 

Wherefƞ(ƞ) denotes differentiation with respect to η. Clearly u and v defined above satisfy the 

continuity equation (6), and equation (7) is transformed as 

   (10) 

The boundary conditions (8) become 

 

𝑓 0 = 𝑅, 𝑓𝜂 0 = 1        (11a)   

   (11b) 

where k1=k0b/ν is the viscoelastic parameter,Mn=αB0
2
/ρb is magnetic parameterand R= ( 0v / /b ) 

is the suction parameter. 

 

 

III. HEAT TRANSFER ANALYSIS 
 

By using boundary layer approximations, and taken into account internal heat generation, viscous 

dissipation and work due to deformation, the equation of energy for temperatureT is given by 
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Wherek is the thermal diffusivity andCp the specific heat of a fluid at constant pressure. The thermal 

boundaryconditions depend on the type of heating process under consideration. Here it is considered 

as Prescribed Surface Temperature (PST case). 
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3.1 Prescribed Surface Temperature (PST case) 

For this circumstance, the boundary conditions are 

    at y=0       (13a)

      (13b) 

Wherel is the characteristic length.  

Using (9), equation (12) reduces to 

 

      fffffkfEcff  1

2
Pr2PrPr     (14) 

where kc p /Pr  , Prandtl number, where AcblEc p/2 , Eckert numberand  pcbQ  / , 

heat source/sink parameter. 

with boundary conditions 

 
 

IV. NUMERICAL SOLUTION OF THE PROBLEM 
The flow equation (10) coupled with energy equation (14) become set of nonlinear differential 

equations.  A numerical method, Quasilinearization technique [26], is in most cases directly 

applicable to computer aided solutions of non-linear two-point boundary value problems. So this 

method is used to solve this system.  

   For convenience equations (10), (14) are rearranged as 

                                    (15) 

      fffffkfEcff  1

2
Pr2PrPr    (16) 

with boundary conditions: 

01,1,   atfRf       (17a)

  asff 0,0,0       (17b) 

           In order to implement the Quasilinearization method, the equations (15) and (16) are converted 

to a system of first order differential equations by substituting  

 
 

Then equations (15) and (16) give 

 

 

 

 

    (18) 
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Using Quasilinearization technique, the system (18) can be linearized as 

 

          (19) 
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 The above system of equations (19) is linear in(𝑥𝑖
𝑟+1 , 𝑖 = 1,2, … 6) and general solution can 

be obtained by using the principle of superposition. 

The boundary conditions reduce to 

 

 
 

The initial values are chosen as follows: 

 

For the homogeneous solution: 

 

 

                                          (20)            
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For particular solution: 

   01001Rx p

i           (21) 

  

 The general solution of system of equations is given by 

   (22) 

 where C1, C2, C3 are the unknown constants and are determined by considering the boundary 

conditions as η → ∞. This solution(x1
r+1

, i=1,2,…6)is then compared with solution at the previous 

step(x1
r
, i=1,2,…6)  and next iteration is performed if the convergence has not been achieved or 

greater accuracy is desired.  

 

V. RESULTS AND DISCUSSIONS 
Here, a study is presented on heat transfer of an incompressible MHD viscoelastic fluid past a 

stretching sheet. The nonlinear differential equations of flow and heat transfer were solved by 

Quasilinearization technique. The energy equation includes internal heat generation, viscous 

dissipation and the work due to deformation. 

  
Fig 1 shows the effect of Magnetic field parameter on temperature distribution.  Temperature profile 

increases with increase in Magnetic field. Since increase of magnetic field increases the thermal 

boundary layer thickness. The increasing frictional drag due to Lorentz force is responsible for 

increasing the thermal boundary layer thickness. 

Fig 2 reveals the effect of Prandtl number (Pr) on non-dimensional temperature θ (η) profiles 

are shown. Temperature θ (η) decreases with increase in the Prandtl number Pr. This is consistent with 

the fact that the thermal boundary layer thickness decreases with increasing values Prandtl number Pr.  

Fig 3 depicts the effect of suction parameter(R) on the heat transfer θ (η). Temperature 

profiles decreases with increasing values of suction parameter(R). Due to suction parameter(R) there 

will be loss of fluid in the boundary layer region, hence there will be less scope for heat transfer from 

the sheet to the fluid. This causes the declination in the heat transfer for increasing values of suction 

parameter. 

Fig 4 displays that temperature profiles decreases with increasing values of viscoelastic 

parameter (k1) , this is an important finding in MHD viscoelastic fluid , where opposite behavior can 

be seen in viscoelastic fluid flows. 

In Fig 5, non-dimensional temperature θ(ƞ)and temperature gradient θ’(ƞ)profiles are plotted 

for various values internal heat source/sink parameter α.  It shows that θ(ƞ)increases with increasing 

values α. This is due to the fact that heat is generated inside the boundary layer for increasing values 

of heat source/sink parameter α. The magnitude of −𝜃 ′ 0   decreases with increasing values of α. 

In Fig6, temperatureθ(ƞ) and temperature gradientθ’(ƞ) are drawn for various values of Eckert 

number (Ec). Temperatureθ(ƞ) increases with increase in viscous dissipation, because heat energy is 

stored in the fluid due to frictional heating. The values −𝜃′ 0   decrease with increase in viscous 

dissipation, which yields augment in fluid’s temperature. 

The effect of work due to deformation term in the energy equation can be analyzed from 

Table 1 and Table 2. It can be seen from both the tables that, at a given point, temperatureθ(ƞ) 

decreases with increase in viscoelastic parameterk1.  From Table 2, it is observed that when work due 

to deformation is taken into account, for given k1, temperatureθ(ƞ)decreases, which is in contrast to 

the second grade fluids [16]. And values of −𝜃 ′ 0  in Table 2 are larger than in Table1. Physically it 

means that heat transfer rate is more from the sheet, which results in decrease in temperatureθ(ƞ).  

 

VI. CONCLUSIONS: 
From our numerical results, it can be concluded that:  

i. Temperature profiles increases with increase magnetic field parameter (Mn). 

ii. Thermal boundary layer thickness decreases with increase in Prandtl number (Pr). 

iii. Temperature profiles decreases with increasing values viscoelastic parameter (k1), which is an 
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important finding in MHD viscoelastic fluids in contrast to viscoelastic fluids. 

iv. Work done deformation term in energy equation reduces the temperature profiles, this is in 

contrast to the second grade fluids. 

 

 
Fig 1. Effect of Magnetic field parameter (Mn) on temperature distribution θ(η) 

 

 
Fig 2.Effect of Prandtl number on Temperature profiles. 
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Fig3. Effect of suction parameter (R) on temperature distributionθ (η). 

 

Fig4. Effect of viscoelastic parameter (k1) on temperature distributionθ (η). 
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Fig 5: Effect of heat source/sink parameter (α) on (a). Temperature θ (η), (b). Temperature 

gradient θ’ (η) 
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Fig 6. Effect of Eckert number (Ec) on  (a) Temperature θ(η)  (b) Temperature gradient θ’(η) in 

PST case             with Pr=3, k1=0.3 
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Table1:Values of θ (η), θ’ (η) with Pr=0.7, Mn=1, R=5, Ec=0.02, α=0.5 When work due to deformation   is 

not taken into account 

 
 ƞ θ(ƞ) θ’(ƞ) 

k1=0.3 
   

 
0.0 1.00000 -3.19772 

 
0.2 0.54716 -1.55587 

 
0.4 0.31885 -0.81985 

 
0.6 0.19467 -0.46172 

 
0.8 0.12313 -0.27270 

 
1.0 0.08007 -0.16799 

 
1.4 0.03494 -0.07398 

 
1.8 0.01406 -0.03426 

 
2.0 0.00862 -0.02063 

 
2.4 0.00420 -0.00407 

 
2.8 0.00343 -0.00160 

 
3.0 0.00299 -0.00286 

 
3.4 0.00150 -0.00396 

 
3.8 0.00028 -0.00189 

 
4.0 0.00001 -0.00088 

    k1=0.5    

 
0.0 1.00000 -3.44788 

 
0.2 0.51812 -1.61352 

 
0.4 0.28873 -0.78818 

 
0.6 0.17370 -0.40971 

 
0.8 0.11194 -0.22918 

 
1.0 0.07620 -0.13793 

 
1.4 0.03940 -0.06013 

 
1.8 0.02183 -0.03198 

 
2.0 0.01620 -0.02476 

 
2.4 0.00829 -0.01558 

 
2.8 0.00339 -0.00916 

 
3.0 0.00183 -0.00657 

 
3.4 0.00000 -0.00291 

    k1=0.7    

 
0.0 1.00000 -4.03528 

 
0.2 0.43955 -1.83846 

 
0.4 0.18793 -0.80983 

 
0.6 0.07865 -0.34531 

 
0.8 0.03267 -0.14286 

 
1.0 0.01385 -0.05766 

 
1.4 0.00326 -0.00952 

 
1.8 0.00128 -0.00256 

 
2.0 0.00086 -0.00179 

 
2.4 0.00031 -0.00098 

 
2.8 0.00006 -0.00033 

 
3 0.00001 -0.00014 
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Table2: Values of θ (η), θ’ (η) with Pr=0.7, Ec=0.02, Mn=1, R=5, when work due to deformation 

is taken into account 

  ƞ   θ(ƞ) θ’(ƞ)  

k1=0.3 
   

  0.0 1.00000 -3.56656 

  0.2 0.50760 -1.62260 

  0.4 0.28016 -0.76669 

  0.6 0.16971 -0.38944 

  0.8 0.11030 -0.22771 

  1.0 0.07262 -0.15801 

  1.4 0.02443 -0.08662 

  1.8 0.00300 -0.02301 

  2.0 0.00063 -0.00263 

  2.4 0.00229 -0.00446 

  2.8 0.00181 -0.00638 

  3.0 0.00033 -0.00767 

  3.4 -0.00161 -0.00085 

  3.8 -0.00069 0.00392 

  4.0 0.00000 0.00264 

        

k1=0.5 
   

  0.0 1.00000 -3.64216 

  0.2 0.49270 -1.68618 

  0.4 0.25596 -0.79587 

  0.6 0.14311 -0.38437 

  0.8 0.08795 -0.19121 

  1.0 0.05991 -0.10063 

  1.4 0.03455 -0.04209 

  1.8 0.02037 -0.03101 

  2.0 0.01455 -0.02713 

  2.4 0.00571 -0.01655 

  2.8 0.00129 -0.00614 

  3.0 0.00043 -0.00274 

  3.4 0.00000 -0.00023 

        

k1=0.7 
   

  0.0 1.00000 -4.08080 

  0.2 0.43416 -1.84978 

  0.4 0.18222 -0.80439 

  0.6 0.07459 -0.33586 

  0.8 0.03030 -0.13598 

  1.0 0.01242 -0.05534 

  1.4 0.00128 -0.01343 

  1.8 -0.00228 -0.00550 

  2.0 -0.00308 -0.00250 

  2.4 -0.00296 0.00277 

  2.8 -0.00136 0.00446 

  3.0 -0.00054 0.00359 

  3.1 -0.00021 0.00282 

  3.2 0.00002 0.00189 
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