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Abstract: The present article examines the influence of variable liquid properties on flow and heat transfer 

over a permeable stretching sheet with variable thickness. The transformed system of coupled non-linear or-

dinary differential equations is solved analytically via optimal homotopy analysis method (OHAM). Numeri-

cal results are analyzed graphically. Wall thickness parameter exhibits dual nature for flow and heat transfer 

patterns when it takes the value greater than 1 or less than. The skin friction and the wall temperature gradient 

are examined for influential parameters in this consideration. 
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I. INTRODUCTION 
Fluid flows through permeable media are of enthusiasm for some fields of engineering and natural 

sciences, for example, oil recuperation, soil mechanics, material adsorption on solids, filtration, and polymer 

property estimations. In these designing and applied research fields, the flow through a permeable medium is 

normally treated by a basic relationship broadly referred to in a summed up frame as the Kozeny or Darcy law. 

In view of these application Abel et al. [1] examined the impact of permiablity on the flow and heat transfer 

of a non-Newtonian liquid over a non-isothermal stretching sheet. Pal and Mondal [2] applied Soret and Du-

four effects, chemical reaction and thermal radiation on flow field over a porous stretching sheet. Stret-

ching/shrinking porous sheet geometry is considered by Rosali et al. [3] and recorded the enhancement in the 

skin friction coefficient and the local Nusselt number for increasing permeability parameter. Recently, Bhatti 

et al. [4] continued the work of Ref. [3] by considering shrinking porous sheet. One of the important facts that 

all these researchers have concentrated on the pioneering work of Crane [5] and moreover numerous re-

searchers have examined the nature of fluid flow by considering the geometry proposed by Crane[5](See 

Shehzad et al.[6], Prasad et al.[7], Vajravelu et al.[8], Hayat et al.[9], Zeeshan et al.[10])         

All the above researchers have explored the nature of flow and heat transfer of a Newtonian/non 

Newtonian fluid by considering linear/ nonlinear stretching sheet. However, there is one more special type of 

nonlinear stretching of the sheet recorded in the literature, namely, nonlinear stretching with variable thick-

ness. Here, the boundary conditions are different from conventional nonlinear stretching sheet problems such 

as    0

m

wu x U x b 
 

at  
 1 2

 = A
m

y x b


 . For all practical purposes deforming substances like needles 

and nozzles were the base for variable sheet thickness. A stretching sheet with a variable thickness can be 

more close to the situation in practical applications. In the year 2012 Fang et al. [11] coined the word „varia-

ble thickness‟ and analysed the flow pattern numerically. Many researchers extended the work of Fang et al. 

[11] with the addition of heat and mass transfer ( Khader and Megahed [12], Prasad. et al.[13], Salahuddin et 

al. [14], Prasad et al.[15-17]). 

The object of present analysis is to predict the impact of variable liquid properties on the flow and 

heat transfer of fluid towards permeable stretching sheet of variable thickness. The relevant problems are 

formulated. Convergent series solutions of governing equations are constructed by optimal homotopy analysis 

method (OHAM) ([18]-[20]). Graphical results are used to elaborate the impacts of involved parameters. 

 

II. MATHEMATICAL FORMULATION 

Consider a steady two-dimensional viscous incompressible fluid flow past a permeable stretching 

sheet with variable thickness. The origin is located at the slit, through which the sheet (see Fig. 1)  is drawn in 

the fluid. The Flow caused due to nonlinear stretching sheet is restricted in domain y>0. Stretching velocity of 

the permeable sheet is  0 0( ) =     where  and 
m

wU x U x b U b  are constants (m is the velocity exponent pa-
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rameter). The problem statements in the absence of pressure gradient are: 
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Fig.1 Physical description of the problem. 

 

where, (u,v) are the fluid velocity components in the stream wise and cross-stream directions, re-

spectively. The subscript denotes partial differentiation with respect to the independent  variables  is the 

constant fluid density,  T is the coefficient of viscosity and K   is the permeability of the porous me-

dium. Here in this work  T  is considered to vary as an inverse function of temperature (see for details 

Prasad et al. [18]). The appropriate boundary conditions for the problem are 
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Let the dimensionless similarity variable be 
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where  yx,  identically satisfies the continuity Eq. (1), the velocity components can be written as  
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(7) 

Using above, Eqs. (2)- (3) and (4) reduces to 
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and the corresponding boundary conditions are   1m   
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The non-dimensional parameters, namely, variable thickness    ,the fluid viscosity parameter  r ,  the 

porous parameter  K
 

  and the Prandtl number  Pr  are defined as   
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The value of r is determined by the viscosity of the fluid and 01
 = =

2

Um
A 




is the plate surface. In 

order to facilitate the computation, we define    ( ) =  and ( ) = ( ) = ( ).f f f              

Now the equations become
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and the corresponding  boundary conditions are   1m   
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where the prime denotes the differentiation with respect to  . With reference to variable transformation, the 

integration domain will be fixed from 0 to ∞. The shear stress and the wall temperature gradient respectively 

become  = (0) and ( )= (0)f f       . The values of engineering interest are the local skin friction fxC  

and the local Nusselt number xNu  defined as  
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where Re = ( )x wU x b  is the local Reynolds number.  

 

III. SEMI-ANALYTICAL NUMERICAL SOLUTION METHOD 
The governing equations are highly nonlinear, coupled ODEs with variable coefficients. We use the 

optimal homotopy analysis method (OHAM) to obtain appropriate analytic solutions to equations (11) and 

(12) with associated boundary conditions (13). The OHAM has been successfully applied to a wide variety of 

nonlinear problems (see [18-20]). 

 We choose the auxiliary linear operators as 
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Initial approximations satisfying the boundary conditions (13) are found to be 
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Let us consider the so-called zero-th order deformation equations  
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Here [0,1]q  is an embedding parameter, while 0f  , 0   and 0   are the convergence 

control parameters. With these approximations, we may evaluate the residual error and minimize it over the 

parameters f ,   and 
  in order to obtain the optimal value of f ,   and 

 giving the least 

possible residual error. To do so, one may use the integral of squared residual errors, however this is very 

computationally demanding. To get around this, we use the averaged squared residual errors, defined by 
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where /k k M  , 0,1,2,.... .k M  For different order approximations, the CPU time required 

for obtaining the approximate solutions will vary. Table 1 lists the values of individual average residual errors 

by considering the optimal values of 1.20389f   , 1.021035   , 1.026977   , which 

have been obtained by minimizing the averaged residual errors at the 10
th

 order approximation. Results are 

validated by comparing the present results with the results available in the literature (See Table.2). 

 

IV. RESULT AND DISCUSSION 
In order to understand the mathematical model, we present the numerical results graphically for the 

horizontal velocity profile f  and the temperature profile    with   for different values of   and  

parameters m, K , r , Pr,  and r in Figs. 2 to 6. The skin friction (0)f   and the wall temperature gradient 

(0)  are tabulated in Table 3.  

Fig. 2 (a) and Fig. 2 (b) illustrates the effect of m on f  for increasing values of . It shows that the 

velocity decreases with an increase in the value of m. This implies that the momentum boundary layer thick-

ness becomes thinner as m increases. Fig. 3(a) portrays the velocity distribution for different values of K. It 

indicates that the porous parameter opposes the transport phenomena. This is due to the fact that the variation 

in K leads to the variation of the Lorentz force which in turn produces more resistance to the transport phe-

nomena. It is clearly seen from the graph that the momentum boundary layer thickness decreases as K in-

creases, and hence there is an increase (in absolute sense) in the velocity gradient (0)f   at the surface (see 

Table 3). Fig. 3(b) shows the effect of r  on f  . It is observed that the velocity f  decreases with in-

creasing r . Also, as r approaches to zero the boundary layer thickness is squeezed and velocity distribution 

asymptotically tends to zero. This is due to the fact that for a given fluid, when r  is smaller, higher is the 

temperature difference between the wall and the ambient fluid. The results clearly reveal that r  is the indi-

cator of the variable viscosity with temperature which has a substantial effect on the velocity component 
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f  and hence on the skin friction. 

We shall now turn our attention to the influence of various parameters on the temperature field  .The 

effect of m on    is exhibited in Fig. 4(a) and Fig. 4(b). The effect of increasing values of m is to increase the 

temperature distribution. This is in conformation with the fact that an increase in m leads to an increase in the 

thermal boundary layer thickness which is also true even for non-zero values of K. As explained above, increase 

in K increases the temperature as shown in Fig. 5(a). Moreover, the rate of cooling of the end product is impor-

tant in several manufacturing processes such as metal and polymer extrusion, which will confirm the quality of 

the end product. Fig. 5(b) explains effect of r on . From the graphical representation it is seen that the effect 

of increasing value of r is to enhance the temperature. That is, an increase in r results in an increase in the 

thermal boundary layer thickness. The effect of Pr on  can be found from Fig. 6(a). The figure demonstrates 

that an increase in Pr (means decrease in the thermal conductivity )k  leads to a decrease in the temperature. 

Hence the thermal boundary layer thickness decreases as Pr increases. This is because fluid with a higher values 

of Pr posses a large heat capacity and hence intensifies the heat transfer. Therefore, cooling of the heated sheet 

can be improved by choosing a coolant with a large Pr. Fig. 6(b) displays the effects of   on . Fluid 

temperature is found to increase with increasing values of   which leads to a fall in the rate of heat transfer. 

That is, the assumption of temperature dependent thermal conductivity suggests a reduction in the magnitude of 

the transverse velocity by a quantity ( )k T y  which can be seen in Eq. (2.3).Therefore, the rate of cooling is 

much faster for the coolant material having small thermal conductivity parameter. Fig. 6(c) elucidates the effect 

of r on   in the boundary layer. An increase in the value of  r leads to decrease in   and  this is because 

when r > 0, heat flows from the stretching sheet into the ambient medium and, when r < 0, the temperature 

gradient is positive and heat flows into the stretching sheet from the ambient medium.  

An interesting observation from the above results is that the velocity and temperature distributions 

depend heavily on the parameters m and . It is noticed that the velocity at any point near the plate decreases 

monotonically as   increases for  < 1m . Also it is obvious from the figures that the thickness of the boun-

dary layer becomes thinner for higher values of  when m < 1, but the reverse is true for 1m  (see Fig. 

2(a) and Fig. 2(b)). This is due to the induced mass transfer. This momentum transfer accelerates the fluid 

particle at the downward region. This kind of significant change in the velocity can also be seen for pos itive 

values of m, the stretching sheet case. For higher values of ,  thermal boundary layer becomes thinner 

for  < 1m  when compared with 1m (See Fig. 4(a) and Fig. 4(b)). 

The effects of the physical parameters on the skin friction (0)f   and the Nusselt number (0)  

are presented in Table 3. It is noticed that the effect of increasing values of the parameters m, K, r ,  is to 

decrease (0)f  and to increase (0) . The effect of increasing values of r and the Pr is to decrease (0) . 

Further it is observed that an increase in  leads to a decrease in (0)f  as well as (0) for m < 1, whereas 

an opposite trend is observed as m > 1.  

 

V. CONCLUSIONS 
The important findings are as follows: 

 The dimensionless velocity and temperature distributions at any point near the plate decrease when m < 1 

and the thickness of the boundary layer becomes thinner when  m < 1 and a reverse is true for m ≥ 1. 

 In the presence of temperature dependent thermo-physical properties, the effect of increasing porous pa-

rameter is to decrease the velocity field. However, quite opposite is true with the thermal boundary layer. 

 The non-dimensional heat transfer rate reduces for increasing m. 

 The effect of the Pr is to decrease the thermal boundary layer thickness and the wall temperature gra-

dient. 

 The effect of  is to enhance the temperature in the flow region and is reversed in the case of the r.  

 Of all the parameters, the variable thermo-physical property parameters have strong effects on the drag, 

heat transfer characteristics, the horizontal velocity field and the temperature field.  
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Table 1: Individual average residual error as a function of the number of iterations. CPU time required 

to calculate the solution is also listed. Parameter values are fixed at Pr 1.09,  

1 22.0, 0.1, ,rLe      
1 1

, , 0.
2 3

m K     We have optimal convergence control pa-

rameter values of 1.20389f   , 1.021035   , 1.026977   . 

n  
f

n  n

  n

  CPU time (Sec) 

2 5.86×10
-3

 1.45×10
-2

 7.59×10
-2

 3.70 

4 2.31×10
-3

 1.96×10
-3

 2.03×10
-2

 11.05 

6 5.14×10
-4

 4.32×10
-4

 1.74×10
-2

 28.83 

8 4.86×10
-5

 7.19×10
-5

 5.22×10
-3

 78.01 

10 2.12×10
-6

 6.43×10
-6

 4.09×10
-4

 149.96 

12 1.73×10
-6

 7.95×10
-6

 4.82×10
-4

 259.53 

14 3.21×10
-7

 4.62×10
-6

 2.62×10
-4

 496.31 

16 4.67×10
-8

 1.03×10
-6

 2.85×10
-5

 561.59 

18 2.05×10
-7

 5.95×10
-7

 2.68×10
-5

 766.29 

20 1.66×10
-7

 5.07×10
-7-

 2.07×10
-5

 961.20 
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Table 2. Comparison of skin friction  0f   for different values of m and   with
 

, 0.0.r K   
 

m 

 0f 
 

1

2
   

1

4
   

Fang et 

al.[11] 

Khader and Me-

gahed [12] when 

0.0   

Present 

Work by 

OHAM 

Fang et 

al.[11] 

Khader and 

Megahed [12] 

when 0.0   

Present 

Work by 

OHAM 

10.0 1.0603 1.0603 1.06032 1.1433 1.1433 1.14331 

5.0 1.0486 1.0486 1.04866 1.1186 1.1186 1.11862 

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.0 0.9576 0.9577 0.95773 0.7843 0.7843 0.78441 

-1/3 1.0000 1.0000 1.0000 0.5000 0.5000 0.5000 

-1/2 1.1667 1.1666 1.16659 0.0833 0.8322 0.83221 

 

Table 3. Variation of skin friction and wall-temperature gradient for different values of physical para-

meters. 

Pr    r  r  K  
m
 

0.0   
1

10
   

1

4
   

(0)f 

 
(0)   (0)f   (0)   (0)f   (0)   

1.0 0.1 1.0 
-5.

0 
0.0 

-1/

2 

0.580

523 

-1.819

807 

0.55434

0 

-1.982

426 

-0.22406

0 

-2.08570

6 

-1/

3 

-0.040

846 

-1.647

321 

-0.2133

54 

-1.686

796 

-0.60039

2 

-1.75893

4 

0.

0 

0.732

229 

-1.243

645 

-0.8100

50 

-1.282

226 

-0.93467

4 

-1.33396

1 

1.

0 

-1.178

604 

-0.881

745 

-1.1786

04 

-0.881

745 

-1.17860

4 

-0.88174

5 

5.

0 

-1.410

420 

-0.881

745 

-1.3687

23 

-0.599

053 

-1.30872

4 

-0.55414

4 

10

.0 

-1.458

498 

-0.572

057 

-1.4078

02 

-0.532

096 

-1.33547

3 

-0.47579

9 

1.0 0.1 1.0 
-5.

0 
0.2 

-1/

2 

0.673

353 

-1.901

353 

0.44509

4 

-2.033

648 

-0.45748

1 

-2.11503

6 

-1/

3 

-0.264

173 

-1.585

368 

-0.4807

40 

-1.632

266 

-0.81915

2 

-1.71483

5 

0.

0 

-0.888

657 

-1.214

101 

-0.9649

20 

-1.247

645 

-1.08382

6 

-1.29976

0 

1.

0 

-1.290

938 

-0.858

403 

-1.2909

37 

-0.858

401 

-1.28943

7 

-0.85129

3 

5.

0 

-1.507

071 

-0.614

852 

-1.4648

36 

-0.583

143 

-1.40290

0 

-0.52180

7 

10

.0 

-1.552

348 

-0.558

263 

-1.5009

69 

-0.518

078 

-1.42651

8 

-0.44233

1 

1.0 0.1 1.0 
-1

0.0 

0.0 

10

.0 

-1.350

809 

-0.570

495 

-1.3066

84 

-0.529

089 

-1.26423

9 

-0.48926

3 

0.5 
-1.559

542 

-0.534

179 

-1.5142

79 

-0.491

750 

-1.47046

8 

-0.45151

0 

1.0 
-1.742

674 

-0.515

136 

-1.6967

65 

-0.480

624 

-1.75150

2 

-0.38977

2 

1.0 0.1 1.0 

-1

00 0.2 
5.

0 

-1.397

307 

-0.626

948 

-1.3605

70 

-0.594

903 

-1.32490

1 

-0.56411

3 

-5. -1.507 -0.614 -1.4648 -0.583 -1.42388 -0.55271
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0 071 852 36 143 1 9 

-2.

0 

-1.798

244 

-0.601

746 

-1.7390

80 

-0.569

686 

-1.68209

5 

-0.54086

8 

1.0 0.1 

-2.0 

-5.

0 
0.2 

10

.0 

-1.552

788 

-0.355

966 

-1.5011

37 

-0.309

924 

-1.45152

4 

-0.27021

6 

-1.0 
-1.552

633 

-0.425

808 

-1.5010

77 

-0.381

940 

-1.45156

4 

-034383

9 

0.0 
-1.552

486 

-0.493

188 

-1.5010

21 

-0.451

264 

-1.45160

4 

-0.41459

5 

1.0 
-1.552

348 

-0.558

263 

-1.5009

69 

-0.518

078 

-1.45164

3 

-0.48268

4 

2.0 
-1.552

217 

-0.6211

79 

-1.5009

21 

-0.582

551 

-1.45168

2 

-0.54829

3 

1.0 

0.0 

1.0 
-5.

0 
0.2 

10

.0 

-1.552

152 

-0.615

189 

-1.5008

81 

-0.568

135 

-1.45146

1 

-0.52346

0 

0.1 
-1.552

349 

-0.558

262 

-1.5009

69 

-0.518

077 

-1.45146

5 

-0.47991

9 

0.2 
-1.552

525 

-0.514

121 

-1.5010

52 

-0.479

130 

-1.45147

5 

-0.44590

2 

0.3 
-1.552

683 

-0.478

737 

-1.5011

30 

-0.447

831 

-1.45149

0 

-0.41847

9 

0.7

1 

0.1 1.0 
-5.

0 
0.2 

10

.0 

-1.552

851 

-0.463

371 

-1.5012

99 

-0.438

500 

-1.45189

6 

-0.41892

2 

1.0 
-1.552

347 

-0.558

264 

-1.5010

54 

-0.519

363 

-1.45185

0 

-0.48567

4 

2.0 
-1.550

947 

-0.863

580 

-1.5004

00 

-0.776

217 

-1.45175

7 

-0.69477

8 

5.0 
-1.549

337 

-1.534

385 

-1.4997

75 

-1.866

861 

-1.45191

7 

-1.11338

9 

7.0

2 

-1.549

028 

-1.874

454 

-1.4997

81 

-1.569

589 

-1.45214

5 

-1.29275

1 

10.

0 

-1.548

910 

-2.296

484 

-1.4999

42 

-1.866

861 

-1.45248

4 

-1.48449

3 

 

Hanumesh Vaidya "An Optimal Analysis of Flow and Heat Transfer over a Slender Permea-

ble Elastic Sheet with Variable Fluid Properties "IOSR Journal of Engineering (IOSRJEN), 

vol. 08, no. 6, 2018, pp. 49-60 

 

 


