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Abstract: In this paper we propose the Galois filed multiplier using Binary encoding technique & One hot 

Encoding technique. A Galois field multiplication method enables for an arithmetical operations including 

addition a deduction a multiplication and a multiplier utilizing the multiplication method. The Galois field 

multiplication method easily realizes various field multipliers by ANDing respective items of multiplier factor 

in a stepwise manner rotating left values resulted from the AND operation at the previous step Exclusively 

ORing the respective values resulted from the rotation with respective corresponding values resulted from AND 

operation at the current step and operating on the highest polynomial term generated at the previous step in 

accordance with a generated polynomial. This approach of Galois field can be used for designing the encoder 

and decoder section for the security purposes using the irreducible polynomial based on the NIST standard. 
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I. INTRODUCTION 
 For every prime number p, there exists a Galois field, also known as the finite field, over the set GF(p) 

having p elements with special elements 0 and 1 as the additive and multiplicative identities, respectively. It is 

possible to extend the fields over GF(p) to a field that consists of pm elements, where m is a nonzero positive 

integer. This extended field over the set GF(pm) is known as the extension of the field over GF(p). Let “+” and 

“_” represent the addition and multiplication operations on the field elements. Then GF(pm) forms a finite field 

if it forms a commutative ring with identity over these two operations. The finite fields over GF(2) and their 

extensions over GF(2m) are used in digital logic owing to the field elements 0 and 1 only as well as their carry 

free logic and ease of implementation in hardware. The finite fields over GF(2m) can be generated with monic 

irreducible polynomials of the form:P(x) = xm+Σ∑m-1i=0 ci:xi, where ci 2 GF(2) . Other than elements 0 and 1 

the field consists of primitive elements that are multiples of the element _, where _ is the root of P(x) i.e., P(_) = 

0, and P(x) is the primitive polynomial of the field. To ensure that the operations over the fields are finite, any    

element in the field having power > (m � 1) is reduced to an element with power < (m � 1) by reducing it with 

P(x). The set of elements f0; 1; _; _2; : : : ; _m�1g forms elements of the polynomial basis (PB) over a certain 

primitive polynomial. Any element A 2 GF(2m) is represented using the elements in PB. The polynomial basis 

multiplication of A(x) and B(x) over GF(2m) is defined using the following expression: C(x) = A(x) _ B(x) mod 

P(x) where A;B 2 GF(2m). 

 

II. FIELDS 
 A field is an algebraic structure in which the operations of addition, subtraction, multiplication, and 

division (except by zero) can be performed, and satisfy the usual rules. More precisely, a field is a set F with 

two binary operations + (addition) and - (multiplication) are defined, in which the following laws hold: 

 

(A1) a+(b+c) = (a+b)+c      (associative law for addition) 

 

(A2) a+b = b+a              (commutative law for addition) 

(A3) There is an element 0 (zero) such that a+0 = a for all a. 

(A4) For any a, there is an element -a such that a+(-a) = 0. 

(M1) a *(b * c) = (a * b) * c (associative law for multiplication) 

(M2) a * b = b * a              (commutative law for multiplication) 

(M3) There is an element 1 (not equal to 0) such that a _ 1 = a          for all a. 

(M4) For any a ≠ 0, there is an element a-1 such that a*a-1= 1. 
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(D) a * (b+c) = (a * b)+(a * c)  (distributive law) 

Using the notion of a group, we can condense these nine axioms into just three: 
 The elements of F form an Abelian group with the operation + (called the additive group of F). The 

non-zero elements of F form an Abelian group under the operation * (called the multiplicative group of F). 

Multiplication by any non-zero element is an auto morphism of the additive group. We usually write x * y 

simply as xy. Many other familiar arithmetic properties can be proved from the axioms: for example, 

0x = 0 for any x. Familiar examples of fields are found among the number systems (the rational 

numbers, the real numbers, and the complex numbers are all fields). There are many others. For 

example, if p is a prime number, then the integers mod p forma field: its elements are the congruence 

classes of integers mod p, with addition and multiplication induced from the usual integer operations. 

For example, here are the addition and multiplication tables for the integers mod 3.  

(We use 0;1;2 as representatives of the congruence classes.) 

 
III. APPLICATION OF GALOIS FIELD 

 The implementation and examination of erasure codes in disk arrays, distributed storage systems and 

content distribution systems has been a common area of research within the systems community over the past 

few years. Most work is concerned with fault tolerant properties of codes, performance implications of codes, or 

both. Most of the erasure codes used in storage systems are XOR-based and generally provide limited levels of 

fault tolerance; a flood of special-purpose, XOR-based codes is the result of a performance-oriented push from 

the systems side [4, 2, 19]. While these codes perform all encoding and decoding using the XOR operator, they 

either lack flexibility in the number of tolerated failures or are not maximum distance separable (MDS) and may 

require additional program complexity. Linear erasure codes, such as Reed-Solomon [12], are MDS. As a result, 

Reed-Solomon codes provide flexibility and optimal storage efficiency. Unfortunately, Reed-Solomon codes are 

generally regarded as inefficient because encoding and decoding require Galois field arithmetic. Some effort has 

gone into alternative representations of Reed-Solomon codes. Arithmetic over field elements GF(2l) may be 

transformed into operations in GF(2), where multiplication is the bit-AND operation [3, 14]. While 

multiplication in a binary extension field is avoided, performance is heavily dependent on the choice of the 

code’s generator matrix and the alternative representation results in additional program code complexity. 

Furthermore, the benefits of the XOR-based Reed-Solomon codes are generally effective when encoding large 

pieces of data. Compared to XOR-based Reed-Solomon and other special-purpose coding techniques, we 

believe that the use of Galois field arithmetic in linear codes leads to simple, generalized implementations. 

Threshold cryptography algorithms, such as Shamir’s secret sharing algorithm [17], also rely on Galois fields 

for encoding and decoding. A random k-degree polynomial over a Galois field is chosen, where the zeroth 

coefficient is a secret to be shared among n participants. The polynomial is evaluated over n coordinates 

(shares), distributed among the participants. Polynomial interpolation is used to reconstruct the zeroth 

coefficient from any k+1 unique shares. The construction, evaluation and interpolation of the polynomial may 

also be done over Zp for some prime number p. Unfortunately, when dealing with large fields, the use of a 

suitable prime number may result in field elements that are not byte-aligned. Using Galois fields allows all of 

the field elements to be byte aligned. Another class of algorithms that use Galois field arithmetic is algebraic 

signatures [16]. Algebraic signatures are Rabinesque because of the similarity between signature calculation and 

the hash function used in the Rabin-Karp string matching algorithm [5]. The algebraic signature of a string s0, 

s1, . . . , sn−1 is the sum Σn−1i=0 siαi, where α and the elements of the string are members of the same Galois 

field. Algebraic signatures are typically used across RAID stripes, where the signature of a parity disk equals the 

parity of the signatures of the data disks. This property makes the signatures well-suited for efficient, remote 

data verification and data integrity in distributed storage systems. All of these applications make extensive use 

of Galois field multiplication, which is generally second to disk access as a performance bottleneck in a storage 
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system that uses Galois fields. We describe methods aimed at improving general multiplication performance in 

the next two sections. 

A. Abbreviations and Acronyms 

GF      : Galois Field 

FPGA     : Field Programmable Gate Array 

MOSFET   :Metal Oxide Semiconductor Field Effect Transistor 

PMOS     : Positive channel Metal Oxide Semiconductor 

NMOS     : Negative channel Metal Oxide Semiconductor 

FIR      : Finite Impulse Response 

OHE     : One Hot Encoding  

MDS     : Maximum Distance Separable 

DSP     : Digital Signal Processing  

VHDL     : VHSIC Hardware Description Language 

VHSIC     : Very High Speed Integrated Circuit 

HPC : High Performance Computing 
 

IV. CIRCUIT DESIGN OF GALOIS FILED MULTIPLIER USING BINARY AND ONE 

HOT TECHNIQUE 
A. GF multiplier using Binary Technique 

 All the designs are made in S- Edit tool of Tanner EDA, In making of all the circuits we had used the 

MOSFETS (i.e. PMOS & NMOS). 

 To design multiplier using binary technique we need total 240 nos. of MOSFET’s. 

Below is the input given to design circuit 

VA0 a0 Gnd 5 

VA1 a1 Gnd 0 

VA2 a2 Gnd 5 

VA3 a3 Gnd 0 

i.e. VA : 0 1 0 1    (5) 

 

VB0 b0 Gnd 0 

VB1 b1 Gnd 5 

VB2 b2 Gnd 0 

VB3 b3 Gnd 0 

i.e. VB : 0 0 1 0   (2) 

 

 
Fig1: GF multiplier using Binary encoding technique 

B. GF multiplier using One Hot technique 

 All the designs are made in S- Edit tool of Tanner EDA, In making of all the circuits we had used the 

MOSFETS (i.e. PMOS & NMOS). 

 To design multiplier using binary technique we need total 712 nos. of MOSFET’s. 

Below is the input given to design circuit 

VA0 a0 Gnd 5 

VA1 a1 Gnd 5 
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VA2 a2 Gnd 0 

VA3 a3 Gnd 0 

i.e. VA:   0 0 1 1     (3) 

VB0 b0 Gnd 0 

VB1 b1 Gnd 0 

VB2 b2 Gnd 5 

VB3 b3 Gnd 0 

i.e. VB:  0 1 0 0     (4) 

 

 
Fig2: GF multiplier using One hot Encoding Technique 

 

C. Output Waveform of multiplier using Binary Technique 

 

 
Fig3: output waveform of multiplier using Binary technique 

 

Now the output for V(c6) V(r6)  V(r5)  V(r2) V(r1) V(r0)  is  0 0 1 0 1 0. So that last four digit is 

giving our result i.e. 1 0 1 0   (10). 
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Fig4: output waveform of binary multiplier using One hot technique 

 

 The output here for multiplier V(c6) V(r6)  V(r5)  V(r4) V(r3)V(r2) V(r1) V(r0)  is  0 0 0 0 1 1 0 0 . The 

last four digit output is 1 1 0 0  (12). 

 

V. COMPARISON OF RESULT BETWEEN GF MULTIPLIER USING BINARY & ONE 

HOT TECHNIQUE 
 In Multiplier using Binary technique we had used the total 240 MOFEST’s i.e. 120 NMOS & 120 

PMOS.  

AREA = Nos.of PMOS x W x L x 3+ Nos. of NMOS x W x L 

= 120 x 1800 x 180 x 3+ 120x1800x180 

= 116640000 + 38880000 

= 50520000 Nm
2
 

So the total area is 50520000Nm
2
. 

In Multiplier using One Hot technique we had used the total 712 MOFEST’s i.e. 356 NMOS & 356 PMOS.  

AREA = Nos.of PMOS x W x L x 3+ Nos. of NMOS x W x L 

  = 356 x 1800 x 180 x 3+ 356 x1800 x 180 

  = 346032000 + 115344000 

  = 461376000 Nm
2 

 

Parameters Multiplier 

using Binary 

technique 

Multiplier 

using One 

Hot 

Technique 

Avg. Power 

required (mWatt) 

2.6 19.45 

Area required 

(nM
2
) 

50520000 461376000 

Delay in response 

time (nSec) 

12.77 20.25 

Table1: Comparison of multiplier using binary & One Hot Technique 
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