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Abstract: -  This paper deals with a single server retrial queueing system in which customers arrive according 

to poisson fashion with state dependent rates. An arriving customer enters into service immediately on finding 

the server free; otherwise the customer enters into a retrial orbit and repeatedly attempts to access the server at 

independent and identically distributed intervals. We study the classical and constant retrial policy in accordance 

with the discipline to access the server from the orbit. The service interruption due to server breakdown is taken 

into consideration. The repairman repairs the server in m-phases and also requires general distributed set up time 

before starting repair of 1
st
 phase. The life-time and phase repair time of the server are assumed to be according 

exponential and general distributed, respectively. We perform the steady state analysis of the model using 

supplementary variable technique and Laplace transform; then employ the probability generating function 

approach to derive expressions for various performance measures. Finally, numerical illustration is given to 

explore the effect of various parameters on the system performance. 

 

Keywords: - State dependent, Retrial queue, Supplementary variable, Server breakdown, Set up time,  

Multiphase repair, Reliability. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 31-07-2018                                                                            Date of acceptance: 18-08-2018 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION 
The literature on retrial queues is increasing rapidly as these models arise frequently in the performance 

prediction of many telecommunications, computer networks and manufacturing/production systems, etc.. 

Moreover, retrial queues are used to examine the queueing situations of advanced communication systems 

including packet switching networks, shared bus local area networks operating under the Carrier-Sense Multiple 

Access protocol and many others. Retrial queueing systems differ from classical queueing systems in the sense 

that in classical queueing systems it is assumed that the customers are in continuous contact with the server i.e. 

they can observe server’s state, whether it is busy or not and thus starts getting service immediately whenever 

the service station becomes idle. On the other hand in some retrial queueing systems the customers do not know 

about the server’s state and therefore they have to check from time to time if the server is idle.  

In general the single server retrial queue can be defined as a group (orbit) of unserved customers, which 

is formed by the accumulation of the customers who find the server busy upon arrival, and leave service area to 

join the retrial orbit. In this orbit the customers wait for some time (retrial time) and conduct a repeated attempt 

independently of each other until they find the server free and working. Keilson et al. (1968) used the method of 

supplementary variable to analyze M/G/1 retrial queue. Some other important contributions in this direction are 

due to Yang and Templeton (1987), Falin (1990), Rege (1993), Falin and Templeton (1997), Rodrigo et al. 

(1998). The accessible bibliography on retrial queues can be found in Artelejo (1999). Krishana Kumar and 

Arivudainambi (2002) derived analytical results for some performance measures of the M/G/1 retrial system 

under steady state. Moreno (2004), Wenhui (2005) considered single server retrial queue with general retrial 

times. Retrial queue with Bernoulli schedule in different frameworks have been taken into consideration by 

Atentia et al. (2006), Atentia and Moreno (2005), Atencia et al. (2009) and Choudhury and Ke (2012).  Atentia 

et al. (2006) analyzed retrial queue with classical as well as constant retrial policy. Dudin et al. (2015) 

considered a retrial queueing system with a single server and group admission of customers. M/G/1 feedback 

retrial queue server breakdown and repair under multiple working vacation policy was studied by Rajadurai et 

al. (2018)  

In many real time systems, the server is subject to random breakdowns when it is in working state. The 

performance of any system is highly influenced by the server breakdown as such it is of vital importance to 

study performance and reliability of retrial systems with unreliable servers. Many researchers have analyzed 

retrial queueing system with server breakdown from time to time. Aissani (1988), Kulkarni and Choi (1990), 

Aissani (1993) considered the retrial queues with server subject to breakdowns. The M/G/1 retrial system in 

which server failure takes place before starting the service was considered by Yang and Li (1994). Artalejo 



 

International organization of Scientific Research                                                               37 | P a g e  

(1994), Aissani and Artalejo (1998), Wang et al. (2001) studied such system in which failures take place after a 

random amount of service time. Almasi et al. (2005) investigated single server retrial queue with a finite number 

of homogeneous calls and a single nonreliable server; the server is subject to random breakdowns depending on 

whether it is busy or idle. Performance and reliability of retrial queueing systems with unreliable server have 

been analyzed by Gharbi and Ioualalen (2006). Choudhury et al. (2010) investigate the steady-state behavior of 

an  retrial queue with an additional second phase of optional service and service interruption where 

breakdowns occur randomly at any instant while the server is serving the customers.  Zhang and Wang (2013) 

presented an analytic approach for investigating a single-server retrial queue with finite population of customers 

where the server is subject to interruptions. Chang et al. (2018) studied unreliable-server retrial queue with 

customer feedback and impatience. 

For some real queueing systems the incorporation of the server’s set up time is required, which can be 

seen in computer networks, production systems, airline and railway scheduling, etc.. M(n)/G/1/N queues with 

set up time and state dependent arrival rates was analyzed by Li et al. (1995); they developed an efficient 

algorithm for computing the stationary queue length distribution. N policy M/G/1 queueing system with setup 

time for different models have been taken into consideration by Hur and Paik (1999) and Wang et al. (2007). 

Lee and Kim (2007) considered exponentially distributed set up time for M/G/1 queueing system. Performance 

analysis of single-server retrial queue with Bernoulli schedule and set up has been done by Wenhui (2005) and 

Krishna Kumar et al. (2013). Equilibrium pricing in an M/G/1 retrial queue with reserved idle time and setup 

time was investigated by Zhang and Wang (2017). 

In the present paper, we consider classical as well as constant retrial policy. In classical retrial policy 

all the customers in retrial queue attempt at a fixed retrial rate but in constant retrial policy they are discouraged 

and reduce their retrial rate depending upon the number of customers present in retrial orbit. The probability of 

repeated attempt during the interval ),( dttt  , when there are n customers in the orbit at time t, is 

)(dtodtn   for classical retrial policy whereas for constant retrial policy it is )(dtodt  . Fayolle (1986) 

first introduced the constant retrial policy. The classical as well as constant retrial policy has been studied by 

few researchers (cf. Atentia et al. (2006); Jain et al. (2008)) 

The model under consideration is an extension of study done by Wang et al. (2001) for M/G/1 retrial 

queue with unreliable server. We incorporate the concepts of state dependent arrival rates, general distributed 

setup time and repair in m-phases. The rest of the paper is organized in different sections in the following 

manner. The requisite assumptions and notations are described in section 2. Afterwards in section 3, the steady 

state equations governing the model are obtained using supplementary variable technique. Analysis of queue 

size distribution is established by using Laplace transforms and generating function in section 4. Section 5 

provides expressions for various performance indices characterizing the system. In the next section 6, the cost 

analysis is done. Some special cases are discussed in section 7. Some reliability indices are obtained in section 

8. The numerical illustration and sensitivity analysis is performed in section 9 and section 10, respectively. 

Finally, concluding remarks are given in section 11.  
 

II. THE MODEL 
In this section, we develop a model for a single server retrial queueing system with server subject to breakdown 

and subject to repair in phases. This model is developed under Poisson stream with state dependent rates. The 

basic assumptions governing the model are as follows: 

 
The customers arrive according to a Poisson stream with state dependent rates BI  , , S  and 

)...,,2,1(; mjj  , depending upon the status of the server who may be idle, busy, under set up and j
th

 

(j=1,2,…, m) repair phase, respectively. 
 

 
The arriving customers examine whether the server is available and idle; on finding the server idle, the 

customer is attended by the server immediately, on the other hand if the server is busy or broken-down, the 

arriving customers join a retrial group (orbit). As the customers in orbit are not aware of the server’s state, they 

repeat their request or service again and again after a random amount of time; the time between two successive 

attempts of the same customer is exponentially distributed with rate n , when there are n customers in the 

retrial orbit at time t. 
 

 We consider the two policies of retrial, first is classical retrial policy in which the probability of a repeated 

attempt during the given time interval is dependent on the number of customers present in the system and is 

given by )(dtodtn  , as such  n . However in constant retrial policy the probability of a repeated 

attempt during the given time interval is )(dtodt  , so that the retrial rate of the repeated customers is given 



 

International organization of Scientific Research                                                               38 | P a g e  

by 
nn

   , when there are n repeated customers in the system.  As the repeated customers are discouraged 

when more number of customers join the orbit.  

 The service times of customers are assumed to be independent and identically distributed random variables 

with common probability distribution function A (.), probability density function a (.). Laplace transforms and 

k
th

 moment of a (.) respectively are denoted by )(* sa  and )0()1( )*(kk

k a ,  k=1,2,… , respectively. 

Now })(.{exp)()(
0



u

dttuua  , where )(u  is service completion rate given by   

       
)(

)(
)(

uA

ua
u   . 

 The server is subject to breakdown and the life time of the server follows an exponential distribution with 

rate 0 . 

 The repairman requires set up time before starting the repair of broken down server and renders repair of 

the server in m phases. The random variables v and wj
 
(j=1,2,…, m) denote the time required for the set up and 

j
th

 phase repair with common probability distribution functions B(.) and Gj (.), respectively; the corresponding 

probability density functions are b(.) and gj(.), respectively. Laplace transforms of b(.) and g(.) are )(* sb and 

)(* sg j  whereas k
th

 moments are )0()1( )*(kk

k b  and mjg k

j

kj

k ,...,2,1);0()1( )*(  ; k=1,2,…, 

respectively. 

Also })(exp{)()(
0



v

dttvvvb   and })(exp{)()(
0



jw

jjjjj dttwwg  , where )(v  and )( jj w  

are set up and repair completion rates, respectively and are given by   

       
)(

)(
)(

vB

vb
v   and 

)(

)(
)(

jj

jj

jj
wG

wg
w  , mj ,...,2,1 . 

       We also denote mjwww j ,...,2,1),,...,,( 21 jw . 

 )(),(),(),( jRESEBEIE  and )(CE  denote the expected length of idle period, busy period, set up 

period and j
th

 (j=1,2,…, m) phase repair period and cycle duration, respectively. 

 

Stochastic behavior of the retrial system can be described by the Markov process 

},...,2,1,0:)(),(),(),(),({}0:)({ mjttWtVtUtNtCttX j  , by making use of supplementary 

variables )(),( tVtU  and )(tW j . Here )(tC  denotes the server’s state at time t ; I, B, S, j, indicate that the 

server is idle, busy, under set up and j
th 

(j=1,2,…,m) phase of repair, respectively. Random variable N (t) is 

corresponding to the number of repeated customers at time t. )(),(),( tWtVtU j  denote the random variables 

corresponding to elapsed service time, set up time and repair time for j
th

 (j=1,2,…, m) phase, respectively at time 

t.  

The state probabilities are defined as: 

0,0;])(,)([)(,  ntntNItCPtP nI  

0,0,0;])(,)(,)([),(,  untduutUuntNBtCPduutP nB  

0,0,0,0;])(,)(,)(,)([),,(,  vuntdvvtVvutUntNStCPdvvutP nS  

])(,)(,)(,)(,)([),,,(, jjjjjnj dwwtWwvtVutUntNjtCPdwvutP jw ; 

                               0,0,0,0,0  jwvunt , mjwww j ,...,2,1),,...,,( 21 jw
 

The state probabilities are defined as: 

)(lim ,, tPP nItnI  , ),(lim)( ,, utPuP nBtnB  , ),,(lim),( ,, vutPvuP nStnS   

),,,(lim),,( ,, jj ww vutPvuP njtnj  ; mjwww j ,...,2,1),,...,,( 21 jw . 
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III. STEADY STATE EQUATIONS AND THEIR SOLUTION 
In this section, we construct the system of the equations in steady state, governing the model by using the 

supplementary variables under certain initial, boundary and normalization conditions which are as follows: 

duuPuPn nBnInI )()()( ,

0

, 


         …(1.a) 

)(),,()()()( 1,,

0

, uPdwvuPwuPu
u

nBBmnmmmnBB 











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


  mw   …(1.b) 
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v

nSSnSS 












       …(1.c) 

mjvuPvuPw
w
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j

,...,2,1);,,(),,()( 1,, 
















 jj ww     …(1.d) 

The initial conditions are 

1)0(0, IP , 0,0)0(,  nP nI  

0),,,0(),,0(),0( ,,,  jwvuPvuPuP njnSnB  for  0n and j=1,2,…,m 

The boundary conditions are given by 

1,,, )1()0(  nInnIInB PnPP         …(2.a) 

)()0,( ,, uPuP nBnS           …(2.b) 





0

,,1 ),()()0,,( dvvuPvvuP nSn         …(2.c) 

;),,()()0,,,(
0

1,111, 


  jnjjjnj dwvuPwvuP 1j1j ww       

      mjwww j ,...,3,2),,...,,( 111  1jw  …(2.d) 

The normalization condition is 

1....)....,,(....),()(
0 1 0 0 0

121,

0 0

,

0

,, 







    



 

   

n

m

j

jjnjnSnBnI dwdvdwduwwwvuPdudvvuPduuPP

                …(3) 

We introduce following generating functions: 
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n
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n

n

nII
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      …(4) 

Multiplying Eqs. 1(b-d) and 2(b-d) by 
nz  and summing over n, we get 

mmmmBB dwvuPwuzPuz
u

),,()(),()()1(
0

mw
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






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
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0),,()()1( 












vuzPvz

v
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mjvuzPwz
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






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
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   …(7) 

and 
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),()0,,( uzPuzP BS              …(8) 

),,()()0,,,(1 vuzPvvuzP S            …(9) 

),,,()()0,,,,( 111 1j1j ww   vuzPwvuzP jjjj        mj ,...,3,2,      

                  …(10) 

The solutions of the differential Eqs. (6)-(7) by substituting Eqs. (9) and (10) respectively, are 

)(),(),,(
)1(

vBeuzPvuzP
vz

BS
S 


                       …(11) 

)(),,()(),,,( 1

)1(

11
11 wGevuzPvwvuzP

wz

S




                     …(12) 
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
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            …(13) 

Now Eqs. (11)-(13) lead to 
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1
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1

1

uzPvBewGewvvuzP B
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
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
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
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w   …(14) 

From Eqs. (5), (14) and (8), we have 
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uzh
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
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       …(15) 

where the auxiliary function h(z) is given by 


























 



)}1({)}1({1)1()(
1

** zgzbzzh j

m

j

jSB   

and satisfies the properties 

(i) 0)1( h   (ii) 
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
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3.1 Classical retrial policy:  In this case  n , so that we proceed as follows: 

Multiplying Eqs. 1(a) and 2(a) by 
nz  and summing over n, we get 

duuzPuzPzzP BIII ),()()()(
0




        …(16) 

)()()0,( zPzPzP IIIB
          …(17) 

Solving Eqs. (16) and (15), we obtain 
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The solution of Eq. (18) is 
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Using (17) in  (18), we obtain 
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
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Applying limit 1z  in Eq. (20) and using L’Hospital’s rule, we have 
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Similarly from Eqs. (15), (11)- (13) respectively, we find 
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Using normalization condition we find the unknown constant as 
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Thus from  (13), we obtain  
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3.2 Constant retrial policy: In this case substituting 
nn

  , the solution can be obtained as follows: 

Multiplying Eqs. (1.a) and (2.a) by 
nz  and summing over n, we obtain 
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Substitution of Eq. (15) in Eq. (28) leads to 
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From Eqs. (29) and (30), we obtain 
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By Eq. (29), we get 
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Proceeding similarly as in previous section and using normalizing condition, the probability that the system is 

free, is obtained as 
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IV. THE GENERATING FUNCTIONS 
To quantify the various measures of performance for the queueing system, the probability generating function 

approach can be employed. In this section we establish the probability generating function and marginal 

generating functions of the queue size distribution. 

Eqs. (15) and (20) give  
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From Eqs. (11)-(13) with the recursive use of Eqs. (33)-(35), we get 
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Eqs. (33)-(36) represent the partial probability generating functions of queue size when the server’s states are 

busy, set up, and j
th

 phase of repair, respectively.  

Using Eqs. (33)- (36) and the result 

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we get the marginal generating functions as follows: 
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Probability generating function of the number of repeated customers is 
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Probability generating function of the number of customers in the system is 
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V. PERFORMANCE METRICES 
Performance metrices play an important role to predict the performance of the system. In this section, we 

provide expressions for various system characteristics using which the performance of the system can be 

predicted. Throughout this section, it is assumed that retrial policy is classical. The results for constant retrial 

policy may be derived similarly. 

 

5.1 Probability of server’s state:  

      When the system is in steady state then the probabilities for different states are derived using marginal 

probability generating functions as follows: 

The probability of the server being idle is 
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The probability of the server being busy is given by 
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The probability that the server is in set up state, is obtained using 
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The probability that the server is in j
th

 (j=1,2,…,m) phase of repair, is determined by
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5.2 Average queue size:  

        Now we find expressions for the expected number of customers in the retrial queue and in the system in 

case of 2-phase repair as follows: 

The expected number of customers in the retrial queue is given by 
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The expected number of customers in the system is obtained as 
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VI. COST FUNCTION 
Customers’ encounter with waiting lines can significantly affect their overall level of satisfaction with the 

organization. Aim of an organization is to offer sufficiently fast service, within cost constraints so that they can 

satisfy their customers. Before establishing the expression for the expected total cost, we define some cost 

elements corresponding to waiting customers and server’s states as follows: 

           oC =Start-up cost per unit time  

    hC =Holding cost per unit time per customer in the system 

                  IC =Cost per unit time when server is idle 

     BC =Cost per unit time when server is busy in rendering service 

     SC =Cost per unit time when server is in set up state     

     jC =Cost incurred per unit time when server is in j
th  

(j=1,2,…, m) phase of repair 

The expected length of the cycle is given by 
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VII. SOME SPECIAL CASES 
 In this section we deduce analytical results of some special cases by setting appropriate parameters. For 

the cases I-III we fix the second moment of service time for some specific distributions to discuss some 

particular cases of our model. 

Case I:  M/Ek/1 retrial queueing model with unreliable server, set up and repair in phases: 

   In this case we have ,
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                Now from Eqs. (45) and (46), we get  
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Case II:  M/  /1 retrial queueing model with unreliable server and repair in phases:  

              For this case substituting 
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Case III:  M/D/1 retrial queueing model with unreliable server and repair in phases: 

When service time distribution is deterministic we have 
2

121 )(,
1
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  so that Eqs. (45) and (46) convert 

to 
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Case IV:  M/G/1 retrial queueing model with unreliable server: 

   For this case, we have 0 jSBI   mj ...,,2,1,  . Also there is no set up and single phase 

repair so that we obtain 
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Case V:  M/G/1 retrial queueing model with reliable server:   

  For this case, we have 0 jSBI   mj ...,,2,1,   and 0 , so that 

  Eqs. (45) and (46) reduce to 
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VIII. RELIABILITY INDICES 

In this section, we provide expressions for some reliability indices by considering the failure states of the server 

as absorbing states. For reliability analysis we construct the following transient state differential difference 

equations: 
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with initial condition 
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Taking Laplace transform of both sides of Eqs. (60.a)-( 60.c), we get 
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Probability generating functions in terms of Laplace transforms are defined as  
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Multiplying Eqs. (61.a)-( 61.c) by 
nz  and summing over n, we get 
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Solving Eq. (63.b) and using Eq. (63.c), we get 

)()}]1({exp[),(),(),,( *** uAuzszsP
z

zsPuzsP BIIIB 











                     …(64) 

    1),()}1({),()}1({ **** 



 zsPzsbszsP

z
zzsb IBIIIB    …(65) 

 let zzsbzg B  )}1({)( *           …(66) 

We observe that   

             0}{)0( *  Bsbg  , 01}{)1( *  sbg  

             and 0)}1({)( *2 


 zsbzg BB   

 

It is noticed that g (z) has exactly one root (say r) in the interval [0,1], also g (z) is strictly positive in the interval 
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In case when rz  , we note that 
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Now we shall establish some reliability indices as follows: 

(i) Reliability of server in terms of Laplace transform is given by 
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(ii) The availability of server in steady state is obtained using  
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(iii) The failure frequency of the server in steady state is obtained as 
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             
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 1I          …(72) 

(iv) The mean time to system failure (MTSF) is given by  

           0

*

0

)]([)( 



  ssRdttRMTSF  

                       
1

1

*

*

1 11

* ])}1({[

)}1({1
exp

])}1({[

11
drdx

xxbx

xbx

rrb
r B

BII

r

B















 

 




        

               …(73) 

IX.  SENSITIVITY ANALYSIS 

Set  B S  

A.1 2 1.9 1.8 1.7 1.6 

A.2 2.5 2.4 2.3 2.2 2.1 

A.3 3 2.9 2.8 2.7 2.6 

A.4 3.5 3.4 3.3 3.2 3.1 

Table 1: Arrival rates for different sets 

Sensitivity analysis helps to find how the uncertainty in the output of a mathematical model or system can be 

dispensed to different sources of uncertainty in its inputs. It is also helpful in testing the robustness of the results 

of a model or system in the presence of uncertainty. We perform numerical experiment to examine the effect of 

different input parameters on various performance measures by assuming m=2, k-Erlang distribution for service 

time and classical retrial policy. All the computational works have been done by using software MATLAB and 

program is run on Pentium IV. In table 1 we have displayed different sets of arrival rates taken for figures 1 and 

2. In tables 2-7, we summarize numerical results of various system characteristics by varying different 

parameters. The results for the expected number of customers in the retrial queue and in the system with the 

variation of various system parameters have been displayed in figs. 1-4.  

            In Tables 2-7 we set ,10/1  ,2  ,10  ,4k , I  , B  , S  

,1    2  and assume that set up time and repair times in 1
st
 and 2

nd
 phases are exponential distributed 

with parameters 8,10,15 )2()1(   , respectively. 

From tables 2-4 it is noted that the probability of server being in idle state decreases with ,  and increases 

with increasing values of   whereas the probabilities of server being in busy state, set up state, 1
st
 phase of 

repair state, 2
nd

 phase of repair state increase with the increment in the values of   and  . 

In tables 5-7, we depict results for availability (failure frequency) by varying   for different values of 

breakdown rate ( ), service rate of server )(  and various sets of ),( )2()1(  , respectively. From table 5 

we note that as   increases, the availability (failure frequency) decreases (increases), but for fixed values of   

it also decreases (increases) with  . Similar effects are observed for different values of   &  ,   & 

),( )2()1(   respectively from tables 6 and 7. It is noted that the availability (failure frequency) increases 

(decreases) with the service rate of the customers (  ) and the repair rates of the server ),( )2()1(  ; but 

decreases (increases) with the arrival rate of the customers and failure rate of the server as also seen in table 5.  

In figs. 1 and 2, we depict the effect of parameters  ,  and   on the expected number of customers in the 

retrial queue and in the system for different sets of arrival rates (see table 1) by setting default parameters as 

,10/1 4,10,2  k , )15/1,20/1(),( )2(

1

)1(

1  , )12/1,15/1(),( )2(

2

)1(

2  , ),( 21  = 

)40/1,50/1( . We observe from all figures that the expected number of customers )( 1LE  and )( 2LE  

increase with the increase in the arrival rates as expected. The effects of change in service rate on the expected 

number of customers )( 1LE  and )( 2LE  are visualized in fig. 1 (a) and 2 (a), respectively. It is seen that the 
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increment in the values of   results in the decrement in )( 1LE  and )( 2LE ; this decrement is very sharp for 

smaller values of  , whereas for higher values of   it is almost constant. This is what we expect in physical 

situation that is if the service rate is higher the queue will be of smaller length, but ultimately effect diminishes.  

When we explore the effect of   on )( 1LE  and )( 2LE  in figs. 1(b) and 2 (b), a positive correlation between 

  and )( 1LE , and also between   and )( 2LE  are noticed with the increasing values of  ; both )( 1LE  

and )( 2LE  increase, however the effect is more prominent for higher values of  . From figs. 1 (c) and 2 (c) 

we observe the variation in )( 1LE  and )( 2LE  with the increase in retrial rate ( ). It is found that initially, for 

smaller values of   there is a rapid decrement in )( 1LE  and )( 2LE  but for higher values of   it decreases 

gradually. 

For graphs in figures 3 (a)-(c) and 4 (a)-(c) we take , I  , B  , S  ,1    2  and 

visualize the effect of   on the expected number of customers in the retrial queue and in the system for 

different values of ,  and  . We observe the similar effects as seen for figures 1 and 2. 

From the tables and graphs, we conclude that 

 Expected number of customers in the retrial queue and in the system both increase with  the  increasing 

values of arrival rate and failure rate of the server and decreases with the increment in the values of service 

rate and retrial rate of customers; which are in agreement with the physical situation. 

 The availability (failure frequency) of the server decreases (increases) with the increment in the arrival rate 

of customers and failure rate of the server whereas it increases (decreases) with the increasing values of 

repair rate and service rate of the server; such patterns also tally with real life observations. 

 Expected total cost increases with arrival rate of customers and failure rate of server, however it can be 

minimized by increasing the service rate to a certain extent. 

 

X. CONCLUSION 
Retrial queues are widely used to model problems in telephone switching systems, telecommunication 

and computer networks and many other congestion situations. The M/G/1 retrial queue by including (i) 

unreliable server (ii) state dependent arrival rates (iii) setup time and (iv) repair in m-phases, is studied using 

supplementary variable technique and Laplace transform to establish the queue size distribution. The model is 

more realistic as it deals with the more versatile congestion situations than studied in earlier existing literature 

on retrial queues. The incorporation of state dependent rates makes our model more closer to practical problems 

as arrivals may be influenced by the states of the server. The concept of server breakdown together with set up 

time is of great interest in many real life congestion systems. Also the repair facility in phases can assist the 

system engineers and decision makers in improving the reliability and availability of the concerned system.  

Expressions for various performance as well as reliability indices are provided in explicit form, which can be 

easily used to prepare ready reckners as shown by taking numerical illustration. The cost analysis done may be 

helpful to decision makers and practioners for smooth and reliable functioning of the system at optimum cost. 
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 P(I) P(B) P(S) P(RI) P(R2) E(TC) 

1 0.8853 0.1113 0.0009 0.0011 0.0014 148.38 

1.1 0.8724 0.1238 0.0010 0.0012 0.0015 161.86 

1.2 0.8591 0.1366 0.0011 0.0014 0.0017 175.59 

1.3 0.8456 0.1498 0.0012 0.0015 0.0019 189.60 

1.4 0.8318 0.1632 0.0014 0.0016 0.0020 203.91 

1.5 0.8176 0.1769 0.0015 0.0018 0.0022 218.54 

1.6 0.8031 0.1910 0.0016 0.0019 0.0024 233.53 

1.7 0.7882 0.2054 0.0017 0.0021 0.0026 248.91 

1.8 0.7730 0.2202 0.0018 0.0022 0.0028 264.71 

1.9 0.7574 0.2354 0.0020 0.0024 0.0029 280.98 

2 0.7413 0.2509 0.0021 0.0025 0.0031 297.78 

Table 2: Some performance measures for different values of   
 

 P(I) P(B) P(S) P(RI) P(R2) E(TC) 

5 0.7413 0.2509 0.0021 0.0025 0.0031 197.71 

6 0.7932 0.2006 0.0017 0.0020 0.0025 176.57 

7 0.8278 0.1671 0.0014 0.0017 0.0021 164.76 

8 0.8524 0.1432 0.0012 0.0014 0.0018 157.28 

9 0.8709 0.1252 0.0010 0.0013 0.0016 152.13 

10 0.8853 0.1113 0.0009 0.0011 0.0014 148.38 

11 0.8968 0.1001 0.0008 0.0010 0.0013 145.53 

12 0.9062 0.0910 0.0008 0.0009 0.0011 143.30 

13 0.9140 0.0834 0.0007 0.0008 0.0010 141.50 

14 0.9206 0.0770 0.0006 0.0008 0.0010 140.02 

15 0.9263 0.0715 0.0006 0.0007 0.0009 138.78 

   Table 3: Some performance measures for different values 
 

 

 P(I) P(B) P(S) P(RI) P(R2) E(TC) 

0 0.8889 0.1111 0.0000 0.0000 0.0000 147.93 

0.5 0.8707 0.1120 0.0047 0.0056 0.0070 150.31 

1 0.8522 0.1130 0.0094 0.0113 0.0141 153.04 

1.5 0.8334 0.1139 0.0142 0.0171 0.0214 156.18 

2 0.8142 0.1149 0.0192 0.0230 0.0287 159.76 

2.5 0.7948 0.1159 0.0241 0.0290 0.0362 163.83 

3 0.7750 0.1169 0.0292 0.0351 0.0438 168.46 

3.5 0.7548 0.1179 0.0344 0.0413 0.0516 173.71 

4 0.7343 0.1190 0.0397 0.0476 0.0595 179.67 

4.5 0.7135 0.1200 0.0450 0.0540 0.0675 186.43 

5 0.6922 0.1211 0.0505 0.0605 0.0757 194.09 

  Table 4: Some performance measures for different values of   
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

  

A F A F A F 

0.0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

0.2 0.9702 0.0205 0.9607 0.0411 0.9512 0.0618 

0.4 0.9389 0.0419 0.9193 0.0844 0.8994 0.1274 

0.6 0.9061 0.0644 0.8755 0.1301 0.8443 0.1971 

0.8 0.8717 0.0881 0.8292 0.1785 0.7856 0.2714 

1.0 0.8354 0.1130 0.7802 0.2298 0.7230 0.3507 

1.2 0.7973 0.1392 0.7281 0.2842 0.6559 0.4355 

1.4 0.7570 0.1668 0.6727 0.3421 0.5841 0.5265 

1.6 0.7145 0.1960 0.6137 0.4038 0.5068 0.6244 

1.8 0.6695 0.2269 0.5507 0.4696 0.4234 0.7298 

2.0 0.6218 0.2596 0.4833 0.5401 0.3333 0.8439 

Table 5: Availability and failure frequency for different values of   and   

 
 
 
 



=5 10 =15

A F A F A F 

0.0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

0.2 0.9564 0.0042 0.9787 0.0020 0.9859 0.0014 

0.4 0.9090 0.0087 0.9564 0.0042 0.9713 0.0027 

0.6 0.8571 0.0137 0.9332 0.0064 0.9564 0.0042 

0.8 0.8003 0.0191 0.9090 0.0087 0.9410 0.0056 

1.0 0.7376 0.0251 0.8836 0.0111 0.9252 0.0072 

1.2 0.6682 0.0317 0.8571 0.0137 0.9090 0.0087 

1.4 0.5910 0.0391 0.8294 0.0163 0.8922 0.0103 

1.6 0.5045 0.0474 0.8003 0.0191 0.8749 0.0120 

1.8 0.4069 0.0567 0.7697 0.0220 0.8571 0.0137 

2.0 0.2959 0.0673 0.7376 0.0251 0.8388 0.0154 

Table 6: Availability and failure frequency for different values of   and 
 

 



),( )2()1(  = ),( )2()1(   =(15,10) ),( )2()1(   =(25,20) 

A F A F A F 

0.0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

0.2 0.9476 0.0412 0.9641 0.0410 0.9685 0.0410 

0.4 0.8919 0.0850 0.9263 0.0842 0.9355 0.0840 

0.6 0.8326 0.1317 0.8865 0.1297 0.9008 0.1292 

0.8 0.7693 0.1814 0.8444 0.1778 0.8643 0.1768 

1.0 0.7016 0.2347 0.8000 0.2286 0.8258 0.2270 

1.2 0.6291 0.2917 0.7529 0.2824 0.7851 0.2799 

1.4 0.5511 0.3530 0.7030 0.3394 0.7421 0.3359 

1.6 0.4672 0.4190 0.6500 0.4000 0.6967 0.3952 

1.8 0.3765 0.4903 0.5935 0.4645 0.6484 0.4580 

2.0 0.2781 0.5676 0.5333 0.5333 0.5972 0.5248 

                             Table 7: Availability and failure frequency for different values of   and ),( )2()1(   

 


