
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org

ISSN (e): 2250-3021, ISSN (p): 2278-8719

Vol. 08, Issue 8 (August. 2018), ||V (V) || PP 55-61

International organization of Scientific Research 55 | P a g e

A Survey on Realizing Memory-Optimized Distributed Graph

Processing

Dr.R Priya
1
, Sona Mary Louis

2

Head of the Department/Associate Professor, Department of Computer Science, Sree Narayana Guru College,

Coimbatore, Tamil Nadu, India
1

M.phil Scholar, Department of Computer Science, Sree Narayana Guru College, Coimbatore, Tamil Nadu,

India
2

Coorresponding Author: Dr.R Priya
1
,

Abstract: The current trend applications involve the graph data, which is increased every time. This

applications includes a number of distributed graph processing systems are, (a) pregel, (b) apache giraph, (c)

graphX, but this systems not include available excessive memory that is cannot provides extra memory in real-

world graphs, so the task of graph processing system for distributed environments is include one demand, that

demand is needed excessive memory for distributed data. This graph processing system holds unused memory

representations of adjacency lists. The memory usage pattern directly expresses how to graph the first memory

area in distributed graph processing system. In this paper proposes the objectives are: (a) Three compressed

techniques: Its adjacency list representations are applied in every DGPS, (b) A variable-byte encoded: Its

representation only out-edge weights it is used for space-efficient support of weighted graphs, (c) A tree-based

compact out-edge: Its representation allowed for efficient mutations on graph elements, that is edges and

vertices. This concepts availability provides number of edges and find out the space-efficiency and execution

time. It to reduce the respective memory requirements for graph elements it continuously compared with the

state-of-the-art methods, in this time memory-optimized methods hold the efficiency of the uncompressed

structures and then it to enables the execution of algorithms for large-scale graphs include alternative structures

on memory oriented errors.

Keywords: Distributed graph processing, graph compression, pregel, apache giraph, Memory optimization,

graphX.

--- ----------

Date of Submission: 16-08-2018 Date of acceptance: 03-09-2018

--- ----------

I. INTRODUCTION
 In the current stage all type of web applications are moreover increased in World Wide Web (WWW)

space, that includes the number of web applications, social networks and some more free source that is open-

source software and this oriented details such as product key, size of the executable file and some other needed

information available in the web. This type of web applications are daily used one so many user to access this

applications and get more benefit today. To access these applications perform some actions like upload,

download, modify, edited and so on, firstly, to this systems that routinely to handle huge or volume of data that

has modeled as called, “Graphs”. So, this reason by increasing graph-vertices to realization of a number of

DGPS approaches. This approach is to handle the large-scale graphs using some hardware, and parallelize the

execution of algorithms by dividing graphs into number of partitions. Then, it assigning vertices to machines

(workers) and it follows the programming paradigm of “think like a vertex” and it is introduced with the

approach “Pregel”. The term memory-optimization is allows the mining of the graph’s elements without

decompression that is additional memory includes with unencoded representation. Apache giraph is used for

graph search service, so improved performance and scalability. The pregel system includes the locality of

reference, so to find out-edges (Weighted graphs).

II. OBJECTIVES:
 In this concept mostly used for to find the edge that is, out-edges. Out-edges represents the space-

efficient of vertex and the graph weights. It allows the fast mining of graph elements like edges and vertices

without needs of decompression. It enables the execution of graph algorithms in memory-constrained settings.

Finally, the memory management this task is completely fast that means faster execution.

A Survey On Realizing Memory-Optimized Distributed Graph Processing

International organization of Scientific Research 56 | P a g e

Key Terms

Graph

 A graph is combination of edges and vertices. Graph is covered the area that is this described term of as

use the graph element and make the path between source to destination, it typically describes vertices as nodes,

edges as paths, so the term are called graph. Graph is to implements the undirected and directed graph that

meaning based on the concept form the mathematics, term like graph theory.

The elements of graph are edges and vertices are denoted by E and V that defines Graph G. Graph is to

find smallest node use the above formula.

 Graph G= (V, E)

Adjacency List
 It is a collection of unordered lists and it is used to represent a finite graph that is predefined graph.

Each of adjacency lists describes the set of neighbors of a vertex in the graph.

Apache Giraph
 It only graphs processing on big data. In these terms applying giraph utilizes the apache hadoop’s

MapReduce implementation to process graphs. This concept is applied in the social media like facebook, and to

analyze the performance improvements. This concept is used in to the Google graph processing system called

“Pregel” and it is compared to another big graph processing libraries namely, such as “cassovary”.

Graph Processing System (GPS)

 GPS is an open-source system, so it is used for the large graphs, so to avoid the problems. The facility

of open-source is based on scalability, error-curing and easy to program execution. It implements and included

the vertex-centric computations with global computations. It optimizes the network problems. It can be

implemented using a higher-level domain specific language, and executed. It is a called “Distributed system”.

Memory Optimization

 The memory optimization is a technique that minimizes the memory transfer that is short out the

mapping. Use the cache obliviousness that means use the cache buffer it stores the recent files or address so

easily mapped or routed the memory area. This concept not includes the pointer concept, so better space

utilization, to get the lower levels of memory and more elements in cache line to map fast so easily finish their

works.

III. LITERATURE REVIEW:
 This paper [1] author has presented the concept of “GPS: A Graph Processing System”, which is fully

robust open-source system that is free source system, so access everyone and everyone download easily. It was

developed for scalable that is change the size, fault-tolerant that is adjust the error for mapping or graphing, and

easy-to-program execution of algorithms and that’s oriented important steps on very large graph. This system

describes and new techniques are presented for the best concept of Distributed Graph Processing System

(DGPS) that is graph partitioning technique. The GPS system is similar to the Google’s rights or proprietary

rights. This system use GPS system like pregel system. This system includes three features are: (i). Use the API

that is application programming interface, it is an extended feature that to make global computations that

globalization or generalization the concept, so more easily expressed and more efficient; (ii). Use the static

partitioning and a dynamic repartitioning scheme that re-assigned or re-valued vertices to various different

workers during the computation. This scheme is based on the pattern of message. (iii). Adjacency lists is

distributed from an optimization concept, this lists includes high-degree vertices fully collects and all nodes

computed then, to improve the performance.

 This system is to introduce the MapReduce Framework and hadoop that open-source implementation.

This system provides the automatically measuring the extreme that is large volume of data, automatic error

adjacency, and easy and simple programming interface based around implementing a set of or a group of

functions.

 This paper [2] author has presented the graph techniques for distributed memory graphs. The paper,

“Distributed-Memory Breadth-First Search on Massive Graphs”, solve the problem of traversing large graphs.

The problem solving techniques that is a traversal systematic method analyzing all vertices that is, nodes and

edges that is, path or bridge in a graph, in many different type of manner. The BFS (Breadth-First Search) is

very important which means it serving many graph algorithms in form of building blocks. Parallel graph

algorithm is applying the BFS, and then it analyzes all vertices in a graph, which means DFS (Depth-First

Search) is generally sequential order. The parallel algorithm use BFS and the optimal sequential algorithm use

DFS. The BFS is denotes some algorithmic symbols, are G denoted by Graph, s denoted by source vertex. G is

A Survey On Realizing Memory-Optimized Distributed Graph Processing

International organization of Scientific Research 57 | P a g e

covered the area of every vertex that is reachable from s, that is to find the path between source to destination.

Number of vertices is connected in to another number of vertices through number of edges, in this form

collectively called Graph (Undirected and directed graph). The BFS include one worst-case that means to

analyze all edges are connected to s belongs to every vertex in the connected component. In this system aim is,

(a) low computational intensity, and (b) Data access patterns. The parallel BFS is to improve and optimized in

two major techniques namely, (i). Direction-optimization and (ii). Two-dimension decomposition. The first

technique is described by beamer et al, then this technique reduces the number of edges by using Bottom-up

algorithm into traversal, the second technique is 2D that is use the sparse adjacency matrix of graph. The 2D

approach follows the formula in pr×pc rectangular processor grids.

 This paper [3] author has presented DGPS for computation-centric. Generally, the DGPS is focus only

scalability that is optimizes the inter-node communication, and load balance. It delivers the unsatisfactory graph

into shared memory graph computation framework. In this paper presents the concept of “Gemini”, that is the

DGPS is applies and optimize the targeting computation performance, so to build the scalability on top of

efficiency. This system based on, (a). A sparse-dense signal-slot abstraction, that is hide the slotted information

and to extend the hybrid push-pull computation model from shared-memory to distributed scenarios, (b). A

chunk-based partitioning scheme that is small partitioning enables low-overhead scaling out designs and

locality-preserving vertex accesses, (c). A dual representation of the scheme is to compress accesses to vertex

indices, (d). NUMA-ware sub-partitioning for efficient intra-node memory accesses, (e). Locality-aware pieces

of information that is called “chunking” and then fine-grained that is correctly analyzed data work-stealing for

improving both inter-node and intra-node load balance.

 This paper [4] author has presented the GPS concept using ReRAM. The previous GPS is includes poor

locality and high memory bandwidth requirement. This GPA (Graph Processing Accelerators based on memory

access optimizations or placing the computation logics close to memory, this system previous technique is used

for significant data movements and energy consumption it motivates the hardware GPA (Graph Processing

accelerators).

 In this paper introduces the GRAPHR that is ReRAM-based graph processing accelerator. The

GRAPHR is follows the policy of near-data processing and analyzes the availability of performing massive

parallel analog operations with low physical component that is nothing but, hardware and energy cost. This

technique steps are, (i). The algorithms are iterative and generally tolerate the approximation; (ii). Both

probability calculation that is PageRank and collaborative filtering and graph algorithms involving integers that

BFS/SSSP, are the directed error. The BFS is Breadth First Search and the SSSP is Single-Source Shortest Path

algorithm. GRAPHR is a vertex program of graph algorithm. It can be expressed in 2D form that is nothing but,

sparse matrix vector multiplication (SpMV). It can be efficiently and importantly performed by ReRAM

crossbar, this is really uses a large set of graph algorithms. The technique GRAPHR consists of the two

components are: (a) memory ReRAM and, (b) graph engine (GE). The graph computations are performed

through 2D form in GEs that is, ReRAM crossbars. The matrix is already known and then the vector/matrix

based on the graph computation is not offers the new graph computations, but the ReRAM offers the one

opportunity to realize the massive that is huge parallelism with unexpected energy efficiency and low physical

component cost that is hardware cost. First, small subgraphs processed by GEs, the aim of performing parallel

operations hiding the unwanted reason for sparsity.

 In this paper [5] author has presented the DGPS for Large-scale graphs. The distributed processing is

includes size and irregular structure of graph computations. In this paper, presented the new concept HIPG, that

is a distributed framework. It facilitates high-level programming of parallel graph algorithms, it expressing a

hierarchy of distributed computations that executed and independently and managed by the user. This system is

high-level framework for distributed processing of large-scale graphs, so the solution is finds all type of scaled

graphs. The HIPG programs that is the framework of this paper introducing concept and is commonly, it is short

and simple; but this achieves (a) good portability, (b) memory utilization, (c) performance, The graphs are needs

to be partitioned between memories of multiple machines or sources and then it processed in parallel in such a

distributed environment that is nothing but distributes the data through graph. This is allowed by the efficient

storage of edges with the source nodes or points or vertices. The partitioning graph is a small number of edges

and spanning that is splitting.

 The parallelizing graph algorithms, amount of computation per graph’s node is commonly very small

and communication especially different graph chunks that is small graphs. In this paper proposed in to the

implementation of HIPG that is Hierarchical Parallel Graph Algorithms that only operate on the large-scale

graphs. It provides an interface so to perform structure-driven distributed graph computations that are organized

into a hierarchy that is inherited, coordinated that is combine by logical objects are known as “Synchronizers”. It

not supports the not limited creating divide-and-conquer graph algorithms. In this, techniques are a program is

already known, so it is automatically sequentially component provided by the user, so that model is a

computational model, obviously. In this techniques in this orderly to perform, first it can be used the program

A Survey On Realizing Memory-Optimized Distributed Graph Processing

International organization of Scientific Research 58 | P a g e

graph algorithms, Then this technique introduce the three graph algorithm for increasing the order of complexity

are namely, (i) Reachability search, (ii) Finding single-source shortest paths, (iii) Strongly connected

components decomposition.

 This paper [6] presented the survey of PGPS that is Parallel Graph Processing System Frameworks that

has provided the truthful and correct survey deliver by author. A graph analysis is particularly developed in

previous system use the complexity techniques or methods, that is complex network analysis, information

retrieval and data mining and so on. In this paper introduced and describes the various many programming

paradigms, models, and frameworks for GPS. But the problem is many data collections have spreads in size and

leave the huge performance. In this GPS is to find the best balance between simple, user-friendly and

productivity-enhancing front-ends and high-performance back-ends for analysis.

 In this paper [7] author has presented by the Big-Memory Machine concept of “Ringo: Interactive

Graph Analytics”, which means a system for analysis of large graphs. Typically, the graphs offer a way to

represented by the analyze systems of the interacting objects that is like people, proteins, and WebPages with

edges between the objects denoting interactions that means friendships, physical interactions, links, etc. The

term mining graph offers a valuable insight about the individual that is separate objects same as relationship.

This system allowed and it is to build an easy-to-use interactive and attractive high-performance graph analytics

system, so the graphs also need to the built input data, which in the form of relational tables. This system

provides the rich and high functionality for manipulating that changing everyone, the raw input data tables into

various different types of graphs. This system provides the many number of functions that can be applied to the

constructs the graph.

 It shows a single big-memory machine provides a very attractive and interactive platform for

performing analytics on all. But the largest graph, that it provides excellent performance and use of compared to

alternative approaches. This concept totally describes how to integrates the graph analytics with an its

interactive process of trial-and-error that is bugs, the data exploration and rapid testing the techniques oriented

logics, and the common data mining data processing that is workloads, that means use more data mining

techniques so that data are flows.

 This paper [8] author has presented the new concept based on chronological order that is related to

Graph matching pattern theme. This paper, “PGX.D/Async: A Scalable Distributed Graph Pattern Matching

Engine”, which means the distributed querying pattern. This system introduces the querying system named as

“Graph Querying”. In this term Graph Querying (GQ) and pattern matching that graph mapping, it is becoming

an efficient feature of graph processing. It allows us to data analysts so it to easily collects and correctly

understand the information about the graph in a way or a path is similar to the best query passing system SQL

for (Structured Query Language) databases. In the pattern matching is the process increasingly big and large

graphs but not fit or fix in the single machine only. This graph is able to handle very large datasets, and that it is

an implementation technique for pattern matching operations with asynchronous depth-first traversal that is

related to DFS (Depth-First Search). This term allows a high degree of parallelism and control the memory

consumption that is memory adjustments. In this querying system deals with some querying schemes like,

PGQL, an SQL-like query language for property graphs, that all. In this system provides an (a) intuitive, (b)

distributed, (c) in-memory pattern matching engine for very large graphs, so this pattern matching is applied in

many terms to get the better way to source to destination matching pattern in the current trend.

 This paper [9] author has presented the data mining based technique namely Memory cloud that the

paper fully covered the “trinity: a distributed graph engine on a memory cloud”. The computation of this

technique performed by graph algorithms such as data driven, and requests a high degree of data access that is

random data access, but it not provide the level of efficient random access required by this graph computation.

Then, the memory-based approaches are usually not scale that is sizable by the reason is capacity limit of single

machines. In this paper is to introduce the concept of trinity. Its general purpose is graph engine on a distributed

memory cloud, that is commonly distributed data are stored in this cloud area, known. This term is optimized

memory management and network oriented communication, so this concept supports the graph exploration same

as efficient parallel computing. This graph access patterns are in both stages, the computation so to optimize the

memory and communication and it is to provide the best performance. It supports online query processing and

then offline analytics that this is both stages on large graphs with machines. The term trinity provides a high

level specification language called TSL (Trinity Specification Language). Use TSL for the users to declare data

schema that is overall design and the communication protocols nothing but communication oriented set of rules

and regulations, which brings a great ease-of-use for the general purpose of the graph management and

computing and then it shows the trinity’s performance in both (Online/offline) low latency graph queries same

as high throughput graph analytics on Web-scale, billion-node graphs, that concept are applied in the large

number of nodes so we are get the better performance.

 This paper [10] author has presented the parallel graph processing it applies in memory accelerator.

This concept is, “A scalable processing-in-memory accelerator for PGPS”, like Parallel Graph Processing

A Survey On Realizing Memory-Optimized Distributed Graph Processing

International organization of Scientific Research 59 | P a g e

System. In the digital world expects the fast digital data access and need the fast data analysis. In memory big-

data processing in every computer system that is increased one. In the large-scale graph processing is gaining

the proper results and its applicability from social science to machine learning that is the data mining techniques

are available to use in this part. The problem of this stage consider the term is, Scalable hardware (that is

physical components) design that can efficiently process the large graphs in main memory that’s all. In the cost-

effective that is expense cost and then scalable graph processing systems. This system is to realize by build a

system that’s the performance increases and percentage with size of graphs that stored in the system, which is

extremely related to memory bandwidth limitations. In this paper use the concept of PIM (Processing-in-

memory), and it is applied to get this system solution to achieve the objective. This concept usage based to get

the merit of such a new technology and to enable the memory-capacity–proportional performance. It uses the

large-scale GPS that is Tesseract. Tesseract is designed by a programmable PIM accelerator (for Large-Scale

GPS). In these terms concepts are based on these following points: (a). mainly available the memory bandwidth

it was fully utilized by new hardware architecture. (b) The communication between different memory partitions

used an efficient method also. (c) Use the unique hardware design and design a programming interface. It

includes two hardware prefetchers, and it used for memory access pattern of GPS. This part is provides the

programming model.

 In this paper [11] author has newly presented the different and enthusiastic and better needs to satisfy

this concept, its related to Disk-based Graph Processing. This paper increase the edges that are path or route

based on user needs and purpose is a generic I/O optimization for Disk-based Graph processing System. In

separate PC that is, single-PC is easily maps the disk-based processing of big graphs for popularity. This system

is a well-designed for partition structure and minimized the random disk accesses. In this previous model use the

static partitions, this system before starts the processing. But this system is cannot changed the edge or set the

zero new impact on the computation vertex values. In this paper concept provides a common optimization and

that removes the I/O inefficiency through dynamic partition so use dynamic layouts. The previous system use

static partition so use static layout, so that do not changed one. This system use the dynamic that means changed

one, so the edges are changed or increased based on needed edges. This concept satisfies the edge requirements

for fast and easily access the source to destination pathways, obviously. The concept based implementation

provides the optimization in GraphChi that represents out-of-core vertex-centric graph system. The out-of-core

graphs systems are classified into two types it based on computation styles are, (a) vertex-centric, (b) edge-

centric.

 This paper [12] author has presented the concept is locality exists in GPS it is based on workload

characterization on an Ivy bridge server that means. GPS is increased the application domain and

communication-bound. It was introduce the three high performance algorithms (LLC-Last-Level Cache,

NUMA- Non-Uniform Memory Access, MLP-Memory-Level Parallelism) for dual-socket server. It provides

the simultaneous low compute and bandwidth utilization and to improve performance without requiring a new

memory system, but the previous system fully utilize the memory bandwidth and increasing memory bandwidth

utilization so due to decreasing the communication.

 The paper [13] namely, “Distributed graph Storage and Querying System” has presented author to

deliver the wonderful message for memory storage mapping through querying system. The graph database

provides an efficient way to store the data and access inter-connected data. The query system is no longer for

graph analysis, that situation based created the path and accessing. So, the concept is query large graphs that no

longer fix in memory. If necessary to make multiple trips or ways to the storage device to filter and gather the

data based on query. The I/O accesses the operations and slows down the query response time and previously

fully used the graph so the specific benefits that graph databases offer. The database system show graphs that

viewed as indivisible structures, but not allowed the hierarchical type of graph, because it affects the query

performance or query response time for large graphs, so the higher level not accepted, but actually access the

entire information from disk. Use the distributing storage is to extract the better performance, this concept is

entire solution cannot provide, in the time of problem stage, this automatically cure the simple problem, because

more number of simple problem makes the large problem already known so this type based solved. In this paper

main purpose is to optimize the distributed graph storage system for scalable that is size changeable, and faster

querying of big graph data that is large graph.

 The concept of “GraphH: A processing-in-memory architecture for large-scale graph processing” has

presented by author and deliver the paper [14] concept in the clear understandability reports. The graph

processing system specifically to take large-scale graph processing requires the high-bandwidth of data access.

So the graph computing include continuous scale so to achieve a high bandwidth on generic computing

architectures, it includes the points are, local bandwidth wasted by using random access pattern, global data

access is poor locality provides, choose the same vertex so heavy workload, more heavy conflicts so across

processing units these are. The solution is provided by this concept based on this following steps, (i) How to

design the hardware specifications based on fully utilize bandwidth of PIM devices and ensure locality that is,

A Survey On Realizing Memory-Optimized Distributed Graph Processing

International organization of Scientific Research 60 | P a g e

interconnection scheme, (ii) How to allocate the data based on schedule processing flow so to avoid the heavy

conflicts and unbalanced workloads.

 In this paper proposes GraphH, then the PIM architecture for GPS on the Hybrid memory cube array,

to solve the problem. This architecture includes the SRAM-based On-Chip vertex buffers that is small storage,

that to eliminates the local bandwidth wastes; It was introduces the concept of reconfigurable double-mesh

connection to provide high global bandwidth. This algorithm use the methods are (i) index mapping Interval-

block (ii) Round interval Pair, so to avoid the heavy conflicts and unbalanced, and then continuously introduced

the two optimization methods, so to reduce the synchronization and reuse On-Chip data.

Table 1.0. Comparison table

Paper

Number

Techniques Advantages Disadvantages

1. MapReduce Framework

and hadoop

Open-source implementation. Some network problem.

2 Breadth-first search Find path between source to

destination

To analyze all edges are

connected to s belongs to

every vertex.

3 Gemini Optimize targeting

computation performance.

Hide the information.

4 ReRAM To reduce poor locality, high

memory bandwidth.

Time Consuming.

5 HIPG Good portability, memory

utilization, performance.

Only suitable for Hierarchical

type of graph.

6 PGPS Simple, user-friendly,

productivity.

Apply only shortest graph.

7 Ringo Rich functionality and

manipulating.

Supports the single big-

memory machine.

8 Graph Pattern matching. Fast memory matching. Not apply in Single machine.

9 Trinity It works on both Online/offline

stages.

Protocol problem

Affected the performance.

10 PIM Increase memory capacity. Expensive.

11 GraphChi It represents out-of-core

vertex-centric graph system.

Minimize random disk

access.

12 LLC, NUMA, MLP Bandwidth Utilization Low computation

13 Querying system Faster response. No longer fix in memory.

14 SRAM-based On-Chip To reduce heavy conflicts and

unbalanced workloads.

Requires high-bandwidth.

The above table 1.0 depicts the working methodologies of various techniques which can be used to

achieve memory-optimization for Distributed graph processing system.

IV. CONCLUSION
 This paper proposes the three techniques and the techniques are implemented these are known as

compressed techniques, so compressed the out-edge representations for distributed graph processing. This out-

edge terms like, BVEdges, IntervalResidualEdges, and IndexedBitArrayEdges. The term Variable-

ByteArrayWeights is represents a variable-byte encoded of out-edge weights. The term RedBlackTreeEdges

represents tree-based representations of mutations. It mainly focuses the vertex-centric model, like pregel,

apache giraph. The memory optimization is used the distributed graph processing system but it only follows the

pregel paradigm. The BVEdges is based on state-of-the-art graph techniques for compression, and achieves the

best compression but it provides the slow access time to graph’s elements is edges and vertices. Finally the

RedBlackTreeEdges is equal to the HashMapEdges but memory is sufficient, and it shows the significant

improvements.

REFERENCES:
[1]. Semih Salihoglu, Jennifer Widem. “GPS: A graph processing system”.

[2]. Aydin Buluc, Scott Beamer, Kamesh Madduri, Krste Asanovic, David Patterson. “Distributed-Memory

Breadth-First Search on Massive Graphs”.

[3]. Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. “Gemini: A Computation-Centric

Distributed Graph Processing System”.

A Survey On Realizing Memory-Optimized Distributed Graph Processing

International organization of Scientific Research 61 | P a g e

[4]. Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. “GraphR: Accelerating Graph

Processing Using ReRAM”.

[5]. Elzbieta Krepska, Thilo Kielmann, Wan Fokkink, Henri Bal. “A High-Level Framework for Distributed

Processing of Large-Scale Graphs”.

[6]. Niels Doekemeijer, Ana Lucia Varbanescu. “A Survey of Parallel Graph Processing Frameworks”.

Report Number PDS-2014-003.ISSN 1387-2109.

[7]. Yonathan Perez, Rok Sosic, Arijit Banerjee, Rohan Puttagunta, Martin Raison, Pararth Shah, Jure

Leskovec. “Ringo: Interactive Graph Analytics on Bog-Memory Machines”. [2015: 1105-1110].

[8]. Nicholas P.Roth, Vasileios Trigonakis, Sungpack Hong, Hassan Chafi, Anthony Potter, Moris Motik, Ian

Harrocks. “PGX.D/Async: A Scalable Distributed Graph Pattern Matching Engine”.

[9]. Bin Shao, Haixun Wang, Yatao Li. “Trinity: A Distributed Graph Engine on a Memory Cloud”.

[10]. Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, Kiyoung Choi. “A Scalable Processing-in-

Memory Accelerator for Parallel Graph Processing”.

[11]. Keval Vora, Guoqing Xu, Rajiv Gupta. “Load the Edges You Need: A Generic I/O Optimization for Disk-

based Graph Processing”. [June 22-24, 2016],978-1-931971-30-0.

[12]. Scott Beamer, Krste Asanovic, David Patterson. “Locality Exists in Graph Processing: Workload

Characterization on an Ivy Bridge Server”.

[13]. Janani Balaji. “Distributed Graph Storage And Querying System”. [2016].

[14]. Guohao Dai, Tianhao Huang, Yuze Chi, Jishen Zhao, Guangyu Sun, Yongpan Liu, Yu Wang, Yuan Xie,

Huazhong Yang. “GraphH: A Processing-in-Memory Architecture for Large-scale Graph Processing”.

IOSR Journal of Engineering (IOSRJEN) is UGC approved Journal with Sl. No. 3240,

Journal no. 48995.

Dr.R Priya A Survey On Realizing Memory-Optimized Distributed Graph Processing.”

IOSR Journal of Engineering (IOSRJEN), vol. 08, no. 8, 2018, pp. 55-61.

