Perfect Domination Polynomial for Lollipop Graph $\boldsymbol{L}_{\boldsymbol{n}, \mathbf{1}}$

S.Chandrasekaran ${ }^{1}$, K.Kanimozhi ${ }^{2}$
${ }^{1}$ (Associate professor \& Head, Department of mathematics,Khadir Mohideen College, Adirampattinam)
${ }^{2}$ (Guest Lecturer, D.G.Govt. Arts College (W), Mayiladuthurai Corresponding Author:S.Chandrasekaran

Abstract

Let $G=(V, E)$ be a connected simple undirected graph. A subset $\mathrm{S} \subseteq V$ is a dominating set if for every vertex $v \in V / S$, there exists a vertex $w \in S$ such that $v w \in E$; that is every vertex outside S has atleast one neighbor in S. The minimum cardinality of a dominating set of G is the domination number of G, it is denoted by $\gamma(G)$. A subset $\mathrm{S} \subseteq V$ is a perfect dominating set if for every vertex $v \in V / S$, there exists exactly one vertex $w \in S$ such that $v w \in E$; that is every vertex outside S has exactly one neighbor in S . The minimum cardinality of a perfect dominating set of G is the perfect domination number of G , it is denoted by $\gamma_{p}(G)$. We introduce new concept that a perfect domination polynomial of a graph G. The perfect domination polynomial of a graph G of order n is the polynomial $$
P D(G, x)=\sum_{i=\gamma_{p}(G)}^{n} p d(G, i) x^{i}
$$

Where $p d(G, i)$ is the number of perfect dominating sets of G of size i and $\gamma_{p}(G)$ is the perfect domination number of G. we obtain some properties of $\mathrm{D}(\mathrm{G}, \mathrm{x})$ and we compute this polynomial for Lollipop graph $L_{n, 1}$.

Keywords: Domination set, Domination polynomial, Lollipop graph, Perfect domination, Perfect domination polynomial.

Date of Submission: 12-01-2019Date of acceptance: 29-01-2019

I. INTRODUCTION

In literature, the concept of domination in graphs introduced by Claude Berge in 1958 and Oystein Ore in 1962 [6] is currently receiving much attention. Following the article of Ernie Cockayne and Stephen Hedetniemi [2], the domination in graphs became an area of study by many researchers. One type of domination in graphs is the perfect domination. This was introduced by Cockayne et al. [1] in the paper Perfect domination in graphs.

Let $G=(V, E)$ be a connected simple graph and $v \in V$. The open neighbourhood of v is the set $N(v)=\{u \in V ; u v \in E\}$. The closed neighbourhood of v is the set $N[v]=N(v) \cup\{v\}$.A subset $\mathrm{S} \subseteq V$ is a dominating set if for every vertex $v \in V / S$, there exists a vertex $w \in S$ such that $v w \in E$; that is every vertex outside S has atleast one neighbor in S . The minimum cardinality of a dominating set of G is the domination number of G , it is denoted by $\gamma(G)$. A subset $\mathrm{S} \subseteq V$ is a perfect dominating set if for every vertex $v \in V / S$, there exists exactly one vertex $w \in S$ such that $v w \in E$; that is every vertex outside S has exactly one neighbor in S. The minimum cardinality of a perfect dominating set of G is the perfect domination number of G, it is denoted by $\gamma_{p}(G)$. Let $\mathrm{D}(\mathrm{G}, \mathrm{i})$ be the family of dominating sets of a graph G with cardinality i and let $\mathrm{d}(\mathrm{G}, \mathrm{i})=$ $|\mathrm{D}(\mathrm{G}, \mathrm{i})|$. Then the domination polynomial $\mathrm{D}(\mathrm{G}, \mathrm{x})$ of G is defined as $D(G, x)=\sum_{i=\gamma(G)}^{n} d(G, i) x^{i}$

In the second section, we introduce the domination polynomial and in the third section we derive perfect domination polynomial for the Lollipop graph.

II. PERFECT DOMINATION POLYNOMIAL

The perfect domination polynomial of a graph G of order n is the polynomial

$$
P D(G, x)=\sum_{i=\gamma_{p}(G)}^{n} p d(G, i) x^{i}
$$

Where $p d(G, i)$ is the number of perfect dominating sets of G of size i and $\gamma_{p}(G)$ is the perfect domination number of G.

Theorem 2.1.

$$
\operatorname{PD}\left(K_{n}, x\right)=x\left(n+x^{n-1}\right)
$$

Proof:

We prove this theorem by using induction method.
When $\mathrm{n}=2$, consider $G=K_{2}$.

Here Perfect domination number K_{2} is 1(i.e., $\gamma_{p}\left(K_{2}\right)=1$). Perfect domination sets of size 1 are $\left\{v_{1}\right\}$ and $\left\{v_{2}\right\}$. So $p d(G, 1)=2$.
Perfect domination set of size 2 is $\left\{v_{1}, v_{2}\right\} . p d(G, 2)=1$
Therefore the perfect domination polynomial is defined by

$$
P D(G, x)=2 x^{1}+1 x^{2}=x(2+x)
$$

When $\mathrm{n}=3$, consider $G=K_{3}$.

Here Perfect domination number K_{3} is 1(i.e., $\gamma_{p}\left(K_{3}\right)=1$). Perfect domination sets of size 1 are $\left\{v_{1}\right\},\left\{v_{2}\right\}$ and $\left\{v_{3}\right\}$. So $p d(G, 1)=3$.
By the definition of Perfect domination set, there is no perfect domination set of size 2, because in the complete graph every vertex is a neighbourhood of other vertex. $\operatorname{pd}(G, 2)=0$. Perfect domination set of size 3 is $\left\{v_{1}, v_{2}, v_{3}\right\} . p d(G, 3)=1$

Therefore the perfect domination polynomial is defined by

$$
P D(G, x)=3 x^{1}+0 x^{2}+1 x^{3}=x\left(3+x^{2}\right)
$$

When $\mathrm{n}=4$, consider $G=K_{4}$.

Here Perfect domination number K_{4} is 1(i.e., $\gamma_{p}\left(K_{4}\right)=1$). Perfect domination sets of size 1 are $\left\{v_{1}\right\},\left\{v_{2}\right\},\left\{v_{3}\right\}$ and $\left\{v_{4}\right\}$. So $p d(G, 1)=4$.

By the definition of Perfect domination set, there is no perfect domination set of size 2 and of size 3 , because in the complete graph every vertex is a neighbourhood of other vertex. $p d(G, 2)=p d(G, 3)=0$. Perfect domination set of size 4 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. $p d(G, 4)=1$

Therefore the perfect domination polynomial is defined by

$$
P D(G, x)=4 x^{1}+0 x^{2}+0 x^{3}+1 x^{4}=x\left(4+x^{3}\right)
$$

By proceeding in this manner we get the general term for n .

$$
P D\left(K_{n}, x\right)=x\left(n+x^{n-1}\right)
$$

Theorem 2.2.
Let $\overline{K_{n}}$ be the empty graph with n vertices. Then

$$
D\left(\overline{K_{n}}, x\right)=x^{n} .
$$

Proof:

Since $D\left(\overline{K_{1}}, x\right)=x$., we have the result by Theorem 2.1.

Theorem 2.3:

Perfect domination polynomial of any graph G has no constant term.

Proof:

Since $\gamma_{p}(G) \geq 1$, the perfect domination polynomial has no term of degree 0 . Therefore it has no constant term.

Theorem 2.4:

Let G be a graph and H be any induced subgraph of G . Then $\operatorname{deg} P D(G, x) \geq \operatorname{deg} P D(H, x)$

Proof:

Let G be a graph of order n (i.e., $|V(G)=n|$), by the definition of $\mathrm{PD}(\mathrm{G}, \mathrm{x})$, it is of order n .
Let $H \subseteq G$, then H is a subgraph of order m which is less than or equal to $\mathrm{n}(m \leq n)$. So the highest degree of $\operatorname{PD}(\mathrm{H}, \mathrm{x})$ is atmost n . Hence we conclude that $\operatorname{deg} P D(G, x) \geq \operatorname{deg} P D(H, x)$

III. PERFECT DOMINATION POLYNOMIAL FOR LOLLIPOP GRAPH $\boldsymbol{L}_{n, 1}$.

Definition 3.1.

The lollipop graph is the graph obtained by joining a complete graph K_{n} to a path graph P_{1} with a bridge and it is denoted by $L_{n, 1}$

Theorem 3.2.

$$
\operatorname{PD}\left(L_{n, 1}, x\right)=x\left(n+x^{n-1}\right)
$$

Proof:

We prove this theorem by using induction method.

When $\mathrm{n}=3$, consider $G=L_{3,1}$.

v_{2}

\boldsymbol{v}_{3}

Here Perfect domination number $L_{3,1}$ is 1(i.e., $\gamma_{p}\left(L_{3,1}\right)=1$). Perfect domination set of size 1 is $\left\{v_{3}\right\}$. So $p d(G, 1)=1$. Perfect domination set of size 2 is $\left\{v_{3}, v_{4}\right\}$. So $p d(G, 2)=1$. Perfect domination set of size 3 is $\left\{v_{1}, v_{2}, v_{3}\right\}$. i.e., $p d(G, 3)=1$. Perfect domination set of size 4 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} . p d(G, 4)=1$

Therefore the perfect domination polynomial is defined by

$$
P D(G, x)=1 x^{1}+1 x^{2}+1 x^{3}+1 x^{4}=x\left(1+x+x^{2}+x^{3}\right)
$$

When $\mathrm{n}=4$, consider $G=L_{4,1}$.

Here Perfect domination number $L_{4,1}$ is 1(i.e., $\gamma_{p}\left(L_{4,1}\right)=1$). Perfect domination set of size 1 is $\left\{v_{4}\right\}$. So $\operatorname{pd}(G, 1)=1$.

Perfect domination set of size 2 is $\left\{v_{4}, v_{5}\right\}$. So $p d(G, 2)=1$. There is no Perfect domination set of size 3, so $p d(G, 3)=0$. Perfect domination set of size 4 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} . \operatorname{pd}(G, 4)=1$. Perfect domination set of size 5 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} . p d(G, 5)=1$

Therefore the perfect domination polynomial is defined by

$$
P D(G, x)=1 x^{1}+1 x^{2}+0 x^{3}+1 x^{4}+1 x^{5}=x\left(1+x+x^{3}+x^{4}\right)
$$

When $\mathrm{n}=5$, consider $G=L_{5,1}$.
Here Perfect domination number $L_{5,1}$ is 1 (i.e., $\gamma_{p}\left(L_{5,1}\right)=1$). Perfect domination set of size 1 is $\left\{v_{5}\right\}$. So $p d(G, 1)=1$.

Perfect domination set of size 2 is $\left\{v_{5}, v_{6}\right\}$. So $p d(G, 2)=1$. There is no Perfect domination set of size 3 and 4 , so $p d(G, 3)=p d(G, 4)=0$. Perfect domination set of size 5 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\} . p d(G, 5)=1$. Perfect domination set of size 6 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} . p d(G, 6)=1$

Therefore the perfect domination polynomial is defined by

$$
P D(G, x)=1 x^{1}+1 x^{2}+0 x^{3}+0 x^{4}+1 x^{5}+1 x^{6}=x\left(1+x+x^{4}+x^{5}\right)
$$

By proceeding in this manner we get the general term for n .
$P D\left(L_{n, 1}, x\right)=x\left(1+x+x^{n-1}+x^{n}\right)$.

IV. CONCLUSION

In this paper we introduced a new polynomial namely, Perfect domination polynomial. And we derive some theorems and then derive perfect domination polynomial for the Lollipop graph $L_{n, 1}$.

REFERENCES:

[1]. E.J. Cockayne, B.L. Hartnell, S.T. Hedetniemi and R. Laskar, Perfect domination in graphs, J. Combin. Inform. System Sci. 18(1993), 136-148.
[2]. E.J. Cockayne, and S.T. Hedetniemi Towards a theory of domination in graphs,
[3]. Networks, (1977) 247-261.
[4]. Daisy P. Salve and Enrico L. Enriquez , Inverse Perfect Domination in Graphs
[5]. Iain Angus Cameron Beaton, DOMINATION POLYNOMIALS
[6]. O. Ore. Theory of Graphs. American Mathematical Society, Provedence, R.I., 1962
[7]. A. Vijayan and T. Nagarajan, Vertex-edge Domination Polynomials of Lollipop Graphs Ln,1, International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Volume 3, Issue 4, April 2015, PP 39-44 ISSN 2347-307X (Print) \& ISSN 2347-3142 (Online) www.arcjournals.org.

