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Abstract: In this article, we propose a new probability distribution by compounding  Poisson distribution with 

Ishita distribution. Important mathematical and statistical properties of the distribution have been derived and 

discussed.The expressions for coefficient of variation, skewness , kurtosis ,reliability analysis and order 

statistics  has been obtained. Then, parameter estimation is discussed using maximum likelihood method of 

estimation. Finally, real data set is analyzed to investigate the suitability of the proposed distribution in 

modeling count dataset representing epileptic seizure counts. 
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I. INTRODUCTION 

Compounding of probability distributions is a sound and innovative technique to obtain new 

probability distributions to fit data sets not adequately fit by common parametric distributions. Compound 

distributions serve well to describe various phenomena in biology, epidemiology, genetics and so on. 

Mathematically, compound distribution arises when all or some parameters of a distribution known as parent 

distribution vary according to some probability distribution called the compounding distribution, for instance 

negative binomial distribution can be obtained from Poisson distribution when its rate parameter follows gamma 

distribution. If the parent distribution is discrete/continuous then resultant compound distribution will also be 

discrete/continuous respectively i.e., the support of the parent distribution determines the support of compound 

distributions. The work has been done in this particular area since 1920. It is well known that Greenwood and 

Yule(1920) established a relationship between Poisson distribution and a negative binomial distribution through 

compounding mechanism by treating the rate parameter in Poisson distribution as gamma variate. 

Skellam(1948) derived a probability distribution from the binomial distribution by regarding the probability of 

success as a beta variable between sets of trials. Lindely (1958) suggested a one parameter distribution to 

illustrate the difference between fiducial distribution and posterior distribution. Dubey (1970) derived a 

compound gamma, beta and F distribution by compounding a gamma distribution with another gamma 

distribution and reduced it to the beta Ist and beta 2
nd

 kind and to the F distribution by suitable transformations. 

Gerstenkorn(1993,1996) proposed several compound distributions, he obtained compound of gamma 

distribution with exponential distribution by treating the parameter of gamma distribution as an exponential 

variate and also obtained compound of polya with beta distribution. Mahmoudi et al. (2010) generalized the 

Poisson-Lindely distribution of Sankaran (1970) and showed that their generalized distribution has more 

flexibility in analyzing count data. Zamani and Ismail (2010) constructed a new compound distribution by 

compounding negative binomial with one parameter Lindley distribution that provides good fit for count data 

where the probability at zero has a large value. A new generalized negative binomial distribution was proposed 

by Gupta and Ong (2004), this distribution arises from Poisson distribution if the rate parameter follows 

generalized gamma distribution; the resulting distribution so obtained was applied to various data sets and can 

be used as better alternative to negative binomial distribution. Rashid, Ahmad and Jan (2016) proposed a new 

competitive count data model, by compounding negative binomial distribution with Kumaraswamy distribution 

that finds its application in biological sciences. Para and Jan (2018) introduced two compounding models with 

applications to handle count data in medical sciences. 

In this paper we propose a new compounding distribution by compounding Poisson distribution with 

Ishita distribution, as there is a need to find more flexible model for analyzing statistical data. 
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II. DEFINITION OF PROPOSED MODEL (POISSON ISHITA DISTRIBUTION) 

If ~|X SBP   , where  is itself a random variable following Ishita distribution with parameter , then 

determining the distribution that results from marginalizing over  will be known as a compound of  Poisson 

distribution with that of Ishita distribution, which is denoted by  ;XPID . It may be noted that proposed 

model will be a discrete since the parent distribution is discrete. 

Theorem 2.1: The probability mass function of a Poisson Ishita Distribution i.e.,  ;XPID is given by 
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which is the p.m.f. of  PID 

The corresponding c.d.f of Poisson Ishita distribution is obtained as: 
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III. STATISTICAL PROPERTIES 
In this section, structural properties of the Poisson Ishita model have been evaluated. These include moment, 

moment generating function and probability generating function. 

3.1 Moments 

3.1.1 Factorial Moments 

Using (2.1), the rth factorial moment about origin of the PID (2.1) can be obtained as 
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Taking r=1,2,3,4 in (3.1.1.1), the first four factorial moments about origin of Poisson Ishita Distribution can be 

obtained as 
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3.1.2 Moments about origin (Raw moments)          

The first four moments about origin , using the relationship between factorial moments about origin and the 

moments about origin, of PID (2.1)can be obtained as 
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3.1.3 Moments about the Mean (Central moments) 

Using the relationship 
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3.2 Coefficient of variation, skewness, kurtosis and Index of Dispersion 

The coefficient of variation (C.V), coefficient of skewness ),( 1 coefficient of kurtosis )( 2 ,and index of 

dispersion )(  of the SBPAD are thus obtained as 
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3.3 Moment generating function and Probability generating function of  Poisson Ishita Distribution 

We will derive moment generating function and Probability generating function of PID in this section.  

Theorem 3.3.1: If X has the PID( ), then the Probability  generating  function )(tPX  has the following form 
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Proof: We begin with the well known definition of the probability generating function given by 
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Theorem 3.3.2 : If X has the PID ( ), then the moment generating function )(tM X  has the following form 
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IV. RELIABILITY ANALYSIS 
In this section, we have obtained the reliability, hazard rate, reverse hazard rate and Mills ratio of the proposed 

Poisson Ishita model. 

4.1 Reliability Function R(x) 

The reliability function is defined as the probability that a system survives beyond a specified time. It is also 

referred to as survival or survivor function of the distribution. It can be computed as complement of the 

cumulative distribution function of the model. The reliability function or the survival function of Poisson Ishita 

distribution is calculated as: 
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4.2 Hazard Function 

The hazard function is also known as hazard rate , instantaneous failure rate or force of mortality is given as: 
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4.3 Reverse Hazard Rate and Mills Ratio 

The reverse hazard rate and the mills ratio of Poisson Ishita distribution are respectively given as: 
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V. ORDER STATISTICS 

Let        nXXXX ....,,, 321 be the ordered statistics of the random sample nXXXX ,....,, 321  drawn from 

the discrete distribution with cumulative distribution function  xFX and probability mass function  xPX , 

then the probability mass function of rth order statistics  rX  is given by: 

   
   

        .1
!!1

!
,,

1 rnr

rx xFxFxP
rnr

n
cxf





 r=1, 2, 3,…,n 

Using the equations (2.1) and (2.2), the probability density function of rth order statistics of Poisson Ishita 

distribution is given by: 
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Then, the pmf of first order  1X  Poisson Ishita distribution is given by: 
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and the pmf of nth order  nX Poisson Ishita model is given as: 
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VI.  ESTIMATION OF PARAMETERS
 

In this section, we estimate the parameters of the Poisson Ishita Distribution using methods of maximum 

likelihood estimation. 

 

6.1 Method of Maximum Likelihood Estimation
 This is one of the most useful method for estimating the different parameters of the distribution. Let

nXXXX ,...,,, 321  be the random size of sample n draw from Poisson Ishita Distribution(PID), then the 

likelihood function of PID  is given as 
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VIII.   APPLICATIONS OF POISSON ISHITA DISTRIBUTION 
In this section, we fit our proposed distribution to a dataset representing epileptic seizure counts (see 

Chakraborty (2010)) so as to illustrate our claim that our proposed model fits well when compared to other 

competing models. The data set representing epileptic seizure counts has a long right tail and approaches to zero 

slowly. The data set is given in table 1 below: 

 

Table 1: Dataset representing epileptic seizure counts (see Chakraborty (2010)) 

epileptic seizure (X)  0 1 2 3 4 5 6 7 8 

Observed Counts 126 80 59 42 24 8 5 4 3 

 

In each of these distributions, the parameters are estimated by using the maximum likelihood method. We have 

analyzed the data using R software. Parameter estimates along with standard errors in braces and model function 

of the fitted distributions are given in table 2. 
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Table 2:.Estimated Parameters by ML method for fitted distributions for dataset representing epileptic 

seizure counts. 

Distribution 
Parameter Estimates 

(Standard Error) 
Model function 

Poisson Ishita 

Distribution 
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We compute the expected frequencies for fitting Poisson Ishita, Zero Inflated Poisson, Geometric, 

Poisson Lindley, Negative Binomial and Poisson distributions with the help of R studio statistical software and 

Pearson’s chi-square test is applied to check the goodness of fit of the models discussed. The calculated figures 

are given in the table 3. Based on the chi-square, we observe that Poisson Ishita distribution provides a 

satisfactorily better fit for the data set representing epileptic seizure counts (see Chakraborty (2010))compared 

to other distributions. 

 

Table 3: Fitted proposed distribution and other competing models to a dataset representing epileptic 

seizure counts 

epileptic 

seizure 

(X) 

Observ

ed 

Counts 

Poisso

n 

Distrib

ution 

Zero 

Inflated 

Poisson 

Geometri

c 

Distributi

on 

Poisson 

Lindley 

Distribution 

Negative 

Binomial 

Distribution 

Poisson 

Ishita 

Distributio

n 

0 126 74.935 126.000 137.963 128.681 120.201 129.839 

1 80 

115.71

2 65.080 83.736 87.136 93.009 83.920 

2 59 89.339 68.974 50.823 55.267 59.184 54.622 

3 42 45.985 48.733 30.847 33.636 34.949 34.427 

4 24 17.752 25.824 18.722 19.898 19.837 20.871 

5 8 5.482 10.948 11.363 11.529 10.987 12.208 

6 5 1.411 3.868 6.897 6.575 5.984 6.927 

7 4 0.311 1.171 4.186 3.703 3.221 3.831 

8 3 0.072 0.402 6.464 4.577 3.627 4.357 

Degrees of 

freedom 4 4 6 6 5 6 

Chi-Statistic 

Value 80.913 14.621 10.808 5.473 5.383 4.941 
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p-value 

0.0000

1 0.0121 0.094 0.484 0.372 0.551 

 

Furthermore, in order to compare our proposed distribution and other competing models, we consider the 

criteria like AIC (Akaike information criterion), AICC (corrected Akaike information criterion) and BIC 

(Bayesian information criterion). The better distribution corresponds to lesser AIC, AICC and BIC values.   

        AIC = 2k-2logL         AICC = AIC+
1

)1(2





kn

kk
 and BIC = k logn-2logL 

where k is the number of parameters in the statistical model, n is the sample size and -2logL is the maximized 

value of the log-likelihood function under the considered model. From Table 4, it has been observed that the 

Poisson Ishita distribution have the lesser AIC, AICC and BIC values as compared toother competing models. 

Hence we can concluded that the Poisson Ishita distribution leads to a better fit than the other competing models 

for analyzing the data set given in table 1. 

 

Table 4: Model comparison criterion for fitted models to a dataset representing epileptic seizure counts 

Criterio

n 

Poisson 

Distributio

n 

Zero 

Inflated 

Poisson 

Geometric 

Distribution 

Poisson 

Lindley 

Distribution 

Negative 

Binomial 

Distribution 

Poisson Ishita 

Distribution 

-logl 636.045 599.637 598.396 595.181 594.942 594.764 

AIC 1274.091 1203.274 1198.791 1192.362 1193.884 1191.527 

BIC 1277.952 1210.996 1202.652 1196.223 1201.605 1195.388 

 

Figure 1 gives a graphical overview of the fitted distributions to a data set given in table 1. 

 
 

IX.   CONCLUSION 

A new probability distribution is introduced using compounding technique. Statistical properties of the proposed 

model are studied and application in handling count dataset representing epileptic seizure counts is analyzed. 
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