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Abstract: Here, we have studied mathematically the role of alternative prey in a predator-prey model with prey 

refugia. We have discussed the local and global stability of our system around different equilibrium points. 

Some numerical simulations are presented to shown significant qualitative results. Our results shown that 

alternative prey for predator population has an important role to control the system dynamics. 
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I. INTRODUCTION 
After the pioneering work of Lotka[2] and Volterra[18], the study of predator-prey model becomes 

much  familiar. Although the study of ecological model has seen much progress in last few decades, many long 

standing mathematical and ecological problems remain open. The mathematical models of predator population 

and prey population depend on various factors and parameters. Many researchers[3, 4, 9, 10, 11, 16] study 

predator-prey ecological model introducing various techniques such as disease, refugia, harvesting, grouping, 

allee effects etc. Chattopadhyay and Arino [7] studied a predator-prey model introducing disease in the prey 

species. Hasting and Powell[1] studied the chaotic nature of a three species food chain model. Biswas et al[14, 

15] studied the dynamical behaviour of an eco-epidemiolocal model with allee effects and harvesting. Das et 

al[8] discuss a predator-prey model where both populations are affected by disease. Roy et al[12] studied the 

chaotic behaviour of a predator-prey food chain model with disease in intermediate population. 

In nature, all living species like a suitable environment where it can live freely and reproduce. 

Ecological species take various techniques for searching foods and for defensive purposes. Predator population 

depends on their prey for survival and prey population applies different refugia strategies for living. Wang et 

al[6] proved that the prey species are able to refuge their predators using some techniques. Kar[17] discuss the 

activities of harvesting and prey refuge by studing a prey-predator model. Chen et al[5] showed that the 

densities of prey and predator populations can be affected by introducing prey refuge in a system. For this 

reason, when prey refuse is very high predator  has no food source and go for extinction. Now, if the predator 

population has an alternative prey sources for food, they can survive even prey refuse is high. Alternative prey 

creates a positive impact for sustaining predator population. From this point of view, we have tried to study the 

effects of alternative prey in an ecological predator-prey system with prey refuse. The main objective of this 

study is to investigate mathematically the dynamic properties and behaviours of the system. 

The paper is organized as follows. In the section(2), we outline the mathematical model with some 

basic assumptions. We study the local and global stability of the system about different equilibrium points in 

section(3). We perform some numerical simulations and discussion in section (4). The article ends with a 

conclusion. 

 

II. MODEL FORMULATION 
Here we consider a predator-prey food chain model with prey refuse and alternative prey for predator 

population. Let x(t) denotes the prey population, y(t) denotes alternative prey and z(t) denotes the predator 

population. We take the following assumption to formulate our model: 

(a) When the predator population is absent, the prey population grows logistically with intrinsic growth rate „p‟ 

and carrying capacity‟ k‟(> 0). 

(b) The growth rate of alternative prey is „q‟. 

(c) We take the interaction functions between (i) predator and prey, (ii) alternative prey and predator are of 

Holling type-II. 
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With the above assumptions we write our mathematical model as the following set of nonlinear ordinary 

differential equations: 

 
dx

dt
  = px(1 - 

x

k
 ) - 

a1(1 - m)xz

1+b1(1 - m)x
  

dy

dt
  = qy(1 - y) - 

a2yz

1+b2y
                                                    (1) 

dz

dt
  = 

e1 a1(1 - m)xz

1+b1(1 - m)x
 + 

e2 a2yz

1+b2y
 - dz 

 

 Here, the constants a1 and a2 are the maximal predation rates of  predator population for prey and 

alternative prey respectively; e1 and e2 are conversion rates of prey and alternative prey to predator respectively; 

b1 and b2 are half saturation constants for prey and alternative prey respectively; m is the refugia parameter for 

prey population; d is the date rate of predator population. 

 

System (1) has to be analyzed with the following initial conditions: 

x(0) > 0; y(0) > 0; z(0) > 0. 

 

III. MODEL ANALYSIS 
3.1. Existence of equilibrium points 

The system has seven equilibrium points. The trivial equilibrium point E0(0, 0, 0), the axial equilibrium points 

E1(k, 0, 0) and E2(0, 1, 0), the predator free equilibrium point is E3(k, 1, 0) exist for all parametric values. 

Alternative prey free equilibrium point is E4(x4, 0, z4) where, 

x4 = 
d

 (1 - m)(e1a1 - b1d)
  and  z4 = 

px4 (1 - 
x4

k
 )(1 + b1(1 - m)x4)

 a1(1 - m)
 . The existence condition of E4 is  

e1a1 - b1d > 0 since (1 - m) > 0. 

The prey species free equilibrium point is E5(0, y5, z5) where, 

y5  = 
d

 (e2 a2 - b2d)
  and  z5 = 

q

 a2
 (1 - y5 )(1 + b2 y5 ). The existence condition of E5 is e2 a2 - b2d > 0. 

The interior equilibrium point is given by E*(x*, y*, z*) where  x*, y* and  z* satisfies the following set of 

equations: 

p(1 -  
x*

k
 ) - 

a1(1 - m)z*

1+b1(1 - m)x*
  = 0 

q(1 - y*) - 
a2z*

1+b2 y*
  = 0 

e1 a1(1 - m)x*

1+b1(1 - m)x*
 +  

e2 a2y*

1+b2y*
 - d = 0 

 

 

3.2.  Local stability around the boundary equilibrium points 

 

The Jacobian matrix J of the system (1) at any arbitrary point (x, y, z) is given by (Jij)3×3 where,  

J11 = p(1 -  
2x

k
 ) -  

a1(1 - m)z

(1+b1(1 - m)x)
2
 
 , J12 = 0,  J13 = - 

a1(1 - m)x

1+b1(1 - m)x 
 , J21 = 0 ,  J22 = q(1 - 2y) - 

a2z

(1+b2 y)
2 ,  

J23 =  
- a2y

1+b2 y
 , J31 = 

e1a1(1 - m)z

(1+b1(1 - m)x)
2
 
 , J32 =  

e2a2z

(1+b2 y)
2 , J33 = 

e1a1(1 - m)x

1+b1(1 - m)x 
 + 

e2a2y

1+b2 y
  - d .  

 

Theorem 1. The trivial equilibrium point E0(0, 0, 0), the axial equilibrium points E1(k, 0, 0) and E2(0, 1, 0) are 

always unstable. 

 

Proof.  The eigen values associated with the Jacobian matrix computed around E0  are p, q and - d. Since both 

the eigen values p > 0 and q > 0 so the equilibrium point E0 is always unstable. 

Again, the characteristic roots of the Jacobian matrix computed around E1 are - p, 
e1a1(1 - m)k

1 + b1 (1 - m)k 
  - d and q.  
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Since one of the eigen value q > 0, then the equilibrium point E1 is always unstable. 

The eigen values associated with the Jacobian matrix computed around E2 are p, - q and  
e2a2

1+b2
  - d. Since one 

eigen value p > 0, then the equilibrium point E2 is always unstable. 

 

Theorem 2. The predator free equilibrium point E3(k, 1, 0) is locally asymptotically stable if R03 < 1, where R03 

= 
e1a1(1 - m)k(1 + b2)

(1 + b2(1 - m)k)(d + db2 - e2a2) 
 . The alternative prey free equilibrium point E4(x4, 0, z4) is locally 

asymptotically stable if R04 < 1, where R04 = 
q

a2z4
   with H11 < 0 and H33  <  0. The prey species free equilibrium 

point E5(0, y5, z5) is locally asymptotically stable if R05 < 1, where R05 = 
p

(1 - m)a1z5
  with B22 < 0 and B33 < 0. 

 

Proof.  The characteristic roots of the Jacobian matrix computed around the predator free equilibrium point  

E3(k, 1, 0) are - p, - q and 
e1a1(1 - m)k

1 + b2(1 - m)k 
 + 

e2a2

1+b2
  - d. Hence the equilibrium point E3 will be locally 

asymptotically stable if R03 < 1, where R03 = 
e1a1(1 - m)k(1 + b2)

(1 + b2(1 - m)k)(d + db2 - e2a2) 
 .  

 

Let, the Jacobian matrix computed around the alternative prey free equilibrium point E4(x4, 0, z4) is J4 = (Hij)3×3 

where, H11 = p(1 -  
2x4

k
 ) -  

a1(1 - m)z4

(1 + b1(1 - m)x4)
2
 
 , H12 = 0, H13 = - 

a1(1 - m)x4

1 + b1(1 - m)x4
 , H21 = 0 , H22 = q - a2z4,  H23 = 0, 

H31 = 
e1a1(1 - m)z4

(1 + b1(1 - m)x4)
2
 
 , H32 =  e2a2z4 , H33 = 

e1a1(1 - m)z4

1 + b1(1 - m)x4 
  - d .  

Now, the characteristic roots of the Jacobian matrix J4 computed around the equilibrium point E4 are q - a2z4 and 

the roots of the equation 

η
2
  - (H11 + H33)η + (H11 H33  - H13 H31) = 0 . 

Hence, all the characteristic roots of the Jacobian matrix J4 will be negative if R04 < 1, where R04 = 
q

a2z4
   with 

H11 <  0 and H33  <  0. Therefore, the system will be locally asymptotically stable around E4  if the conditions 

stated above are satisfied. 

 

Again, let, the Jacobian matrix computed around the prey species free equilibrium point E5 is J5 = (Bij)3×3 where, 

B11 = p - a1(1 - m)z5 , B12 = 0, B13 = 0, B21 = 0 , B22 = q(1 - 2y5) - 
a2z5

(1+b2 y5)
2  ,  B23 = - 

a2z5

1+b2 y5
 ,  

B31 = e1a1(1 - m)z5 , B32 =  
e2a2z5

(1+b2 y5)
2 , B33 = 

e2a2z5

1+b2 y5
  - d .  

The characteristic roots of the Jacobian matrix J5  is p - a1(1 - m)z5 and the roots of the equation  

θ
2
 -  (B22 + B33)θ + B22B33 - B23B32  = 0 . 

Therefore, all the eigen values of the Jacobian matrix J5 will be negative if R05 < 1, where R05 = 
p

(1 - m)a1z5
  with 

B22 < 0 and B33 < 0. 

Hence, it is obvious that the system will be locally asymptotically stable around the prey species free 

equilibrium point E5 if the conditions stated above are satisfied. 

 

 

3.3. Local stability around the interior equilibrium point E*(x*, y*, z*) 

 

Let, the Jacobian matrix calculated around the interior equilibrium point E*(x*; y*; z*) is J* = (Aij)3×3, where 

A11 = p(1 -  
2x*

k
 ) -  

a1(1 - m)z*

(1 + b1(1 - m)x*)
2
 
 , A12 = 0,  A13 = - 

a1(1 - m)x*

1 + b1 (1 - m)x*
 , A21 = 0, A22 = q(1 - 2y*) - 

a2z*

(1+b2 y*)
2 

,  

A23 =  
- a2y*

1+b2 y*
 , A31 = 

e1a1(1 - m)z*

(1+b1(1 - m)x*)
2
 
 , A32 = 

e2a2z*

(1+b2 y*)
2 , A33 = 0 .  

 

Now, the characteristic equation of the matrix J* is given by  λ
3
 + Ω1λ

2
 + Ω2λ + Ω3 = 0,  
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 Where, Ω1 = - (A11 + A22) 

              Ω2 = A11A22 - A13A31 - A23A32  

              Ω3 = A22A13A31 + A11A23A32 
              Ω1Ω2 - Ω3 = - (A11 + A22) A11A22 + A11A13A31 + A22A23A32  

 

Therefore, the interior equilibrium point E* will be asymptotically stable if  Ω1 , Ω2 , Ω3 satisfy all the Routh-

Hurwitz conditions (i) all Ω1 , Ω2 , Ω3 > 0 and  (ii) Ω1Ω2 > Ω3. 

Now, all the Routh-Hurwitz conditions will be satisfied if A11 < 0 and A22 < 0, i.e. if  

α
2
p(k - 2x*) < ka1(1 -  m)z* and  β

2
q(1 -  2y*) < a2z* where α = 1+b1 (1- m)x* and β = 1+b2 y*. 

 

3.4. Analysis of global stability around interior equilibrium point  E*(x*, y*, z*) 

Theorem 3: The interior equilibrium point E*(x*, y*, z*) with respect to system(1) will be globally 

stable(asymptotically) if the following conditions hold 

(i) z*  <  min[ 
pD

ka1b1(1- m)
2
 
 , 

qD1

a2b2
 ] 

(ii) e1  <  1+b1 (1- m)x* 

(iii) e2  <  1+b2 y*. 

 

Proof.  To study the global stability nature of the system(1) around the interior equilibrium point E*(x*, y*, z*) 

we consider the following positive definite Lyapunov function 

L(x, y, z) = x + x* log(
x*

x
 ) + y + y* log(

y*

y
 ) + z + z* log(

z*

z
 ). 

Now, calculating time derivative of L(x, y, z), we get 
dL

dt
  = (x - x*)[p(1 - 

x

k
 ) -  

a1(1- m)z

1+b1(1- m)x
 ] + (y - y*)[ q(1 -y) - 

a2z

1+b2y
 ] + (z - z*)[

e1a1(1- m)x

1+b1 (1- m)x
 + 

e2 a2y

1+b2y
 - d] 

      = (x - x*)[p(
x*

k
  - 

x

k
 )  + 

a1(1- m)z*

1+b1 (1-m)x*
   -  

a1(1-m)z

1+b1 (1-m)x
 ] + (y - y*)[ q(y* - y) + 

a2z*

1+b2y*
  - 

a2z

1+b2y
 ] +  

         (z - z*)[
e1a1(1-  m)x

1+b1 (1- m)x
  - 

e1a1(1- m)x*

1+b1 (1- m)x*
 + 

e2 a2y

1+b2y
 - 

e2 a2y*

1+b2y*
 ]. 

After some algebraic calculations, we obtain 
dL

dt
 = - [ 

p

k
  - 

b1a1(1- m)
2
z*

D
 ](x - x*)

2
 - [ 

b1a1(1- m)
2
x* +a1 (1- e1)(1- m)

D
 ](x - x*)(z - z*) - [q -  

b2a2z*

D1
 ](y - y*)

2
  

        - [ 
a2 + b2a2y* - e2a2

D1
 ](y - y*)(z - z*), where D = (1+b1(1- m)x) (1+b1(1- m)x*) and D1 =  (1+b2y) (1+b2y*). 

Therefore, if the conditions(stated above) of the theorem hold, the above expression will be negative definite 

and the function L(x, y, z) will be a Lyapunov function around the interior equilibrium point E*(x*, y*, z*) 

which is positive definite.  

Hence, we can conclude that, the system(1) with respect to interior equilibrium point E*(x*, y*, z*)  will be 

globally asymptotically stable if the conditions of the theorem hold. 

 

IV. NUMERICAL RESULTS AND DISCUSSION 
 In this study we perform some numerical experiments to observe the dynamical behavior of the model 

system using MATLAB software. In this study, alternative prey for predator population is new modification. 

We have taken a set of hypothetical parameter values a1 = 0.6, b1 = 0.02, b2  = 0.5, m = 0.32, e1 = 0.02, e2 = 

0.4a2,  p = 10.0, q = 15.0, k = 100.0 and d = 0.09. Throughout this numerical experiment we have fixed the 

above set of hypothetical parameter values. We mainly want to observe the role of alternative prey of the model 

system. 

 We observe periodic oscillations of the species for above set of parameter values with a2 = 

0.33(Figure(1)). Now we observe trajectory of periodic oscillations in phase plane and we observe limit 

cycle(Figure(2)). From Figure(3) it is found that the system enters into stable oscillations from periodic 

oscillations for a2 = 0.56 and in phase plane we found stable focus Figure(4). Therefore if we increase the 

alternative prey consumption of predator population then the system enters into a stable state from periodic 

oscillations. To observe clear dynamics for variation of maximal predation rate for alternative prey we draw 

bifurcation diagram(Figure(5)) and from this diagram we observe that when maximal predation rate is low the 

system shows periodic oscillations and when maximal predation rate is high the system shows stable focus. 
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Hence it is clear that the maximal predation rate for alternative prey has a great impact and alternative prey for 

predator population can stable a food chain model. 

 

 

 

V. CONCLUSION 
 Recently, many researchers study predator-prey model with various biological factors and conditions. 

In the present paper we consider a predator-prey food chain model with alternative prey source for predator 

population. We study the local as well as global stability of the model system around different equilibrium 

points. To study the global dynamics of the model system we perform some numerical simulations and we 

observe the dynamical behavior of our model system for variation of maximal predation rate for alternative 

prey. From our study it is clear that alternative prey source for predator population can give us a stable predator-

prey food chain model. Alternative prey can prevent the predator population from extinction. Hence our study 

can open a new window of study in future. 
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Figure 1: The figure shows the periodic solution of the system (1) for a1 = 0.6, a2 = 0.33, b1 = 0.02, b2  = 0.5, 

m = 0.32, e1 = 0.02, e2 = 0.4a2, p = 10.0, q = 15.0, k = 100.0 and d = 0.09. 

 

 
Figure 2: Phase diagram of the system(1), all parameter values are given in Figure 1. 
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Figure 3: The figure shows the stable oscillation of the system(1) for a2 = 0.56 and other parameter values are 

given in Figure 1. 

 

 
Figure 4: Phase diagram of the system(1) with respect to Figure 3. 
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        a2  

Figure 5: Figure shows the bifurcation diagram for a2 ∈ [0.2, 0.5] and other parameter values given in Figure-1 

 

 

 

Prodip Roy. “Role of Alternative Prey in A Predator-Prey Model With Prey Refugia - A 

Mathematical Study.” IOSR Journal of Engineering (IOSRJEN), vol. 09, no. 05, 2019, pp. 19-26. 

 

 

 

IOSR Journal of Engineering (IOSRJEN) is UGC approved Journal with Sl. No. 3240, Journal 

no. 48995. 


